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Abstract

The dosage of prostate specific antigen (PSA), a non-invasive biomarker easily evaluable, has made

early detection of prostate cancer possible. However, PSA measurements lead to a high percentage

of unnecessary biopsies and may miss aggressive tumors in men with antigen levels below the

standard threshold of 4 ng/ml. We thus propose to combine circulating microRNAs with PSA, to

improve the diagnostic route for prostate cancer.

Plasma  microRNA profiling  was  performed  to  identify  candidate  diagnostic  microRNAs  in  a

discovery cohort of 60 tumors and 60 controls (men with benign prostatic hyperplasia or healthy

donors). Linear models with an empirical Bayesian approach and multivariate penalized logistic

regression were applied to select tumor-associated microRNAs and/or clinical variables. A classifier

was developed and tested on a  validation cohort  of 68 tumors  and 174 controls,  consecutively

collected, where microRNAs were evaluated by quantitative real-time polymerase chain reaction.

A classifier  based  on miR-103a-3p,  let-7a-5p and PSA could  detect  both  overall  and clinically

significant  tumor  better  than  PSA alone,  even in  50-69 aged  men with  PSA ≤ 4ng/ml.  In  the

validation cohort, the same classifier still performed better than PSA alone in terms of specificity

and positive-predictive-value  and allowed for  a  correct  identification  of  8  out  of  9  tumors  not

detected by PSA, including three high-risk and three tumors in 50-69 years old men. 34% of carriers

of non-malignant lesions with PSA in the 4-16 ng/ml interval, who may avoid unnecessary and

harmful biopsies, were correctly identified.

Coupling the analysis of two circulating microRNAs with PSA dosage could be a useful strategy to

diagnose clinically significant PCa and avoid an important fraction of unnecessary biopsies. 

Summary
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Circulating miRs and PSA were combined in a non-invasive blood-based test for PCa detection that 

allows for reduction of useless biopsies and for identification of prostate tumors with low PSA 

levels in the 50-69 age range. 

Introduction

Prostate  Cancer  (PCa)  is  the most  frequent  neoplasia  diagnosed in  males  and one  of  the most

common causes of cancer-related death (1).

Currently, PCa is investigated by digital rectal examination (DRE) and/or Prostate Specific Antigen

(PSA) levels. However, DRE has low sensitivity  (2) while  PSA is organ- but not tumor-

specific and has a low positive predictive value (PPV=30-35%)  (3).  As a consequence,  correct

diagnosis relies on histopathological verification of adenocarcinoma by invasive multiple bioptic

sampling (4). For a long time, standard biopsies (10-to-12-core transrectal ultrasonography-guided

excisions) have been considered the best reference standard despite their low detection rate and the

upgrading of a percentage of tumors upon surgical tissue examination. Multiparametric magnetic

resonance imaging (mp-MRI), with or without targeted biopsy, is now an alternative with level 1

evidence to standard biopsy for PCa detection  (5). However, there is still an urgent need of non-

invasive markers for i) the early detection of aggressive cancers, especially when PSA is below the

usual cut-off of 4 ng/ml, ii) the avoidance of unnecessary biopsies in men with high PSA due to

benign prostatic hyperplasia (BPH) and iii) the identification of patients on active surveillance who

have truly indolent prostate cancer (6).

For these purposes, in the age of "liquid biopsies", microRNAs (miRs) represent ideal candidates,

especially  for  their  proved  stability  in  body  fluids.  miRs control  major  pathways  such  as  cell

growth,  proliferation,  differentiation  and  survival  (7) and  tumor-associated  miRs  participate  in

intercellular communication and disseminate through the extracellular fluid to reach and influence

the phenotype of remote targets (8).

For these reasons, researchers have focused on the analysis of body fluids and have proposed miRs

as possible biomarkers for several diseases, including PCa (6, 9). Nevertheless, little reproducibility
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of  results  has  been  observed.  Only  few  studies  include  biomarker  discovery,  validation  and

application  on  large  independent  prospective  cohorts,  carefully  considering  all  the  steps  from

sample collection to storage and analysis. 

In the present work, miR profiling of 120 plasma samples was performed to identify candidate miRs

able to detect PCa more accurately than PSA alone.  A classifier  was built  and validated on an

independent cohort of 242 consecutively collected samples.
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Materials and methods

Samples

Samples from men with PCa, suspected symptoms of PCa but negative biopsies (labeled as BPH),

high grade prostatic intraepithelial neoplasia (HGPIN) or atypical small acinar proliferation (ASAP)

were collected at the S. Giovanni Battista hospital of Turin, prior to standard 12-core transrectal

ultrasonography-guided biopsy.  PCa were labelled,  according to  Gleason Score (GS) values,  as

GS6, GS7 or GS>7. According to PSA, GS and tumor size (cT) within clinical TNM staging, PCa

were labelled as low risk, if GS=6, PSA<10, cT<2b; as intermediate risk, if 10≤PSA≤20 or GS=7 or

cT2b-cT2c;  as  high  risk,  if  GS=8-9-10  and/or  PSA>20  and/or  cT3-cT4.  Clinically  significant

tumors  comprised  intermediate/high-risk  PCa.  Healthy  donor’s  (HD)  plasma  was  collected  at

Fondazione Edo and Elvo Tempia, in the same geographic area as patients. HD were in the same

age-range as patients,  had negative DRE and PSA<4ng/ml,  were not  under any pharmacologic

treatment  nor  had  any  previous  prostatic  pathology.  The  study  was  approved  by  the  Ethics

Committee of Novara (Italy), protocol reference: NC-SERPROS, CE 149/11.

All human subjects provided written informed consent with guarantees of confidentiality. Plasma

collection, processing and storage adhered to good practice rules. Haemolyzed samples or samples

belonging to men with other cancer diagnosis were excluded from analyses.

Plasma isolation and storage

Plasma was isolated from EDTA or Lithium Heparin blood samples within 1 hour from collection,

with a standard procedure to prevent haemolysis. Blood was centrifuged at 2500 rpm (1250g) at

4°C  for  10  min.  The  supernatant  was  transferred  into  new  tubes  and  subjected  to  a  second

centrifugation step at 2500 rpm (1250g) at 4°C for 10 min to remove cell debris and fragments.

Plasma was stored in 4.5 ml cryovials  at  -80°C until  transfer to the Cancer Genomics Lab. To

calculate haemolysis score (HS) (10), 10 l of plasma was centrifuged at 1000g for 5 min at room

temperature  and  the  absorbance  at  385  and  414  nm  was  measured  by  a  NanoDrop
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spectrophotometer  (Thermo  Fisher)  using  the  UV-VIS  program.  Finally,  220  l  aliquots  were

created for each sample and stored into 1.5 ml tubes at  -80°C. Samples with HS<0.057 and/or

414nm/385nm absorbance ratio below 2 were kept for further processing.

Circulating RNA extraction

Before extraction, one 220 µl aliquot per sample was centrifuged for 5 min at 1000g at 4°C. Total

RNA was extracted with miRNeasy serum/plasma kit (Qiagen) using Exiqon protocol, with the

batteriophage MS2-RNA carrier (Roche Diagnostics) to promote RNA precipitation and purification

on membranes.  The  C.  elegans cel-miR-39-3p miR mimic  spike-in  (Qiagen)  was added.  RNA

samples were eluted in 30 l of nuclease-free water and stored at –80°C. 

miR profiling

miR profiling was carried out on 138 samples, 120 of which (60 PCa, 51 BPH and 9 HD) were

homogeneously collected in heparin tubes and constituted the discovery phase dataset (Table I).

The other 18 HD samples were collected in EDTA tubes and were used for comparison purposes

only.

The miRNA microarray protocol V2.4 (Agilent Technologies) was followed, starting from 4 l of

total RNA. Briefly: RNA was dephosphorylated and denaturated, then a ligation and labeling step

was  performed.  Samples  were  hybridized  to  oligonucleotide  glass  arrays  representing  2006

miRbase-V19 miRs (Agilent Technologies). After hybridization, slides were washed following the

manufacturer’s washing procedure and scanned with the dual-laser microarray scanner version C

(Agilent Technologies). Images were analysed using Feature Extraction software v10.7.

Statistical analysis

Normalization
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Raw  data  were  processed  using  the  limma  R  package  for  microarray  analysis.  Background

correction  and  inter-array  normalization  were  performed  applying  normexp (offset=20)  and

quantile methods,  respectively.  Raw and average normalized log2Intensities are  available in the

GEO  public  functional  genomics  data  repository  (https://www.ncbi.nlm.nih.gov/geo/),  with  the

following identifier: GSE113234.

Sample size calculation

 An online tool (https://biostatistics.mdanderson.org/MicroarraySampleSize/) was used to compute

sample size for class comparisons: knowing the total number of miRs analyzed (2006) and inputting

1% as acceptable percentage of false-positives, 0.8 as desired statistical power, 0.25 as standard

deviation and 0.2 as minimum log2fold-change, the minimum number of samples per class should

be 36.

Class comparison

To compare  miR profiles  between classes,  linear  model  and empirical  Bayesian  analyses  were

combined using the limma R package. Top differentially expressed miRs were selected using 0.2 as

cut-off for the log2fold-change in PCa versus non-PCa samples and 0.05 for raw p-value.

To compare RT-qPCR data  between PCa and non-PCa samples,  Student  t-test  with Benjamini-

Hochberg correction for multiple testing was applied, while to compare PSA levels among different

disease classes, analysis of variance (ANOVA) with Dunnett correction for multiple testing was

applied. In both cases, differences were considered statistically significant if adjusted p-values were

<0.05.

Classifier

Since i) the log2 PSA distribution density of the PCa-BPH cohort of more than 400 consecutively

collected samples available at the San Giovanni Battista hospital in Turin showed an inflection at 4,

that corresponds to PSA = 16 (Figure 1A, red curve), and ii) within PSA>16 ng/ml samples there

was a strong PCa enrichment, then in our classifier the latter were directly considered as PCa. Only

samples with PSA ≤16 ng/ml were used to build a score that combines PSA with other variables.
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The appropriateness  of this  cut-off  was further  verified by observing the log2 PSA distribution

density of another big cohort of nearly 14,000 asymptomatic men, over 50, who tested their PSA

levels  at  our  Foundation  from  2012  to  middle  2018  (Figure  1,  black  curve).  This  curve,

representative of a voluntary adhesion context, from PSA = 16 on is very close to zero.

Using  log2Intensities  of  differentially  expressed  miRs  in  PCa  within  PSA≤16  ng/ml  samples,

log2PSA and log2Age as input variables, a logistic regression model with LASSO penalty (11) was

fitted to build a classifier able to discriminate PCa from non-PCa, using the glmnet R package. 5-

fold cross-validation was applied to find the best tuning parameter. Following the usual standards of

binary regression, the estimated log odds-ratios of these variables were multiplied by their values

and then summed to build a score: if the score was higher than a selected cut-off, the sample was

classified as PCa. This way, the resulting overall classifier turned out to be a combination of the

initial PSA check (>16 ng/ml) and the score. The accuracy of the classifier was measured by the

area under the ROC curve (AUC).

RT-qPCR

Seven miRs were evaluated first on the same EDTA-HD samples used for miR profiling, to validate

expression changes using RT-qPCR, and then on an independent set of EDTA plasma samples (10

HD, 10 BPH, 10 PCa). Exiqon miRCURY LNA™ Universal RT microRNA PCR protocol (Exiqon)

was followed, starting from 4 l of total RNA, using cel-miR-39-3p as exogenous normalizer and

UniSp6 as internal control for reverse transcription (RT). BioRad CFX96 real-time instrument was

used  to  test  all  miR  assays  on  each  sample  in  the  same  96-wells  plate,  with  3  replicated

measurements for each test, RT and real-time negative controls for each miR.

The two validated miRs were then analyzed on a validation phase dataset (Table I): a larger set of

242 consecutively and prospectively collected plasma samples (68 PCa, 93 BPH, 8 HGPIN/ASAP,

73 HD), all collected in EDTA tubes. Exiqon pick&mix 384-wells plates were analyzed on a 7900

HT Fast real-time PCR platform (Life Technologies). UniSp6 was analyzed separately to check RT.
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UniSp3  was  used  as  inter-plate  calibrator  (and  positive  real-time  control),  cel-miR-39-3p  as

exogenous normalizer and each miR was analyzed in triplicate, as well as negative controls. Data

transformation was done with the delta Ct (DCt) method (Ct = threshold cycle), where Ct miR =

average Ct of the 3 replicates and DCt miR_of_interest = Ct miR_of_interest – Ct cel-miR-39. Final

Ct (Ctn) was given by Ctn miR_of_interest = -DCt miR_of_interest + K, where K= 6.2 is a constant

chosen to make –DCt ranges comparable with microarray log2 intensity ranges. To calculate K, only

BPH and PCa samples were considered (since the two cohorts differed in terms of percentages of

HDs and precancerous lesions were not included in the validation set). The means of microarray

log2 Intensities for the two miRs were calculated and then averaged, yielding 6.6. Then K was

calculated in order to make the average of mean Ctn_miR-103a-3p and mean Ctn_let-7a-5p equal to

6.6.

The independent set was used to test the classifier, using the same coefficients (estimated log odds-

ratios) previously generated, Ctn instead of log2Intensities for miRs and the same classification rule.
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Results

Discovery phase

138 not haemolyzed plasma samples were analysed by miR profiling. Log2PSA distribution in HD,

BPH and PCa groups according to risk class is shown in Figure 1B. PSA distinguished HD from

BPH/PCa,  high-risk  from  low/intermediate-risk  tumors,  but  was  incapable  of  discriminating

between BPH and low/intermediate-risk tumors.

EDTA-HD versus Heparin-HD comparison revealed that the use of heparin-coated tubes did not

affect miR profiling (Suppl_Figure 1A-B). 

The 120 homogeneously collected samples (Table I) were used to highlight numbers and types of

miRs detected in each class (Suppl_Figure 1C-D  and  Suppl_Table I) and compare their levels

(Suppl_Table II).

PCa (n=60) versus HD+BPH (n=60) analysis evidenced one down-regulated (miR-4530) and 9 up-

regulated miRs (let-7a-5p, miR-103a-3p,  let-7d-5p, let-7f-5p, miR-17-5p, miR-4454,  miR-26a-5p,

miR-130a-3p, miR-15b-5p, miR-24-3p, miR-199a-3p, miR-21-5p) in PCa (Figures 2A-2B). 

On the other hand, the comparison between PCa (n=60) and BPH (n=51) resulted in only 2 up-

regulated miRs (let-7a-5p and miR-103a-3p). 

Restriction to PSA≤16 ng/ml samples (48 PCa vs 57 BPH+HD) resulted in 11 up-regulated miRs

(miR-103a-3p, let-7a-5p, let-7d-5p, miR-17-5p, let-7f-5p, let-7b-5p, miR-24-3p, miR-26a-5p, miR-

20a-5p, miR-130a-3p and miR-15b-5p), while analysis of 4-16 ng/ml PSA samples (39 PCa versus

40 BPH) yielded only down-regulated miRs (miR-4530, miR-1207-5p, miR-575, miR-4739, miR-

1202, miR-3679-5p, miR-6085, miR-3656, miR-663a, miR-4687-3p, miR-5739). 

Discovery phase: development of a classifier

In  order  to  find  a  strategy  to  classify  samples,  individuals  with  PSA>16  were  considered

independently and directly classified as PCa: 12 were true PCa while 3 were false positives. Using

only samples with PSA≤16, the most recurrent variables (out of the 11 up-regulated miRs, log2Age
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and log2PSA) with coefficient ≠ 0, selected by the penalized logistic regression model, were: miR-

103a-3p, let-7a-5p and log2PSA, all associated with a positive coefficient (0.1994, 0.1294, 0.0385

respectively).  Figures 2C and 2D depict log2Intensity box-plots for the two miRs in each sample

class. A score was built by summing the products of the coefficients by the variable values, and

samples were ordered by increasing score. Samples with score > 2.02 (chosen to optimize accuracy)

were classified as PCa. The final classifier was then built combining this score with the initial PSA

check (Figure 3), obtaining an AUC of 0.68 (95%C.I.=0.59-0.78), whereas the AUC of PSA alone

was 0.62 (95%C.I.=0.53-0.73) (Figure 4). 36/39 (92%) clinically significant PCa were detected by

the final classifier, whereas 34/39 (87%) by PSA alone. Only 3 intermediate and 5 low-risk PCa

were misclassified. All high-risk PCa were identified, as well as 7/9 (77%) PCa with PSA≤4 ng/ml,

all in men falling in the 50-69 age range. Moreover, 9/40 (22.5%) BPH with PSA>4 ng/ml and all

HD were correctly classified.

Validation of miR expression by an independent technique

Seven potentially interesting miRs, selected from the discovery phase, were further evaluated by

RT-qPCR (Suppl_Table II) on the EDTA-HD samples profiled with microarrays and on 30 EDTA-

collected independent samples (10 PCa, 10 BPH, 10 HD). Since heparin inhibits RT, RT-qPCR as

independent technique to validate expression changes could be applied on EDTA-HD samples only.

Correlation between array intensities and RT-qPCR relative expressions was positive and > 0.8 only

for miR-103a-3p and let-7a-5p (the top 2 up-regulated miRs in all previous analyses, and the ones

included in the classifier), reinforcing their robustness. Also miR-21-5p was detectable in all the

samples,  however  correlation  between  the  two  techniques  was  not  satisfactory  (correlation

coefficient  for  miR-21-5p  =  -0.08,  versus  0.87  and  0.90  for  let-7a-5p  and  miR-103a-3p,

respectively). The other miRs were not detectable in all the samples, thus correlation coefficients

were not calculated for them. However, they were further tested in the independent group of 30

samples  including  BPHs  and  PCas.  Since  they  had  either  Ct  higher  than  40  or  nonspecific
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amplification products (as observed by melting curve analysis), or coefficient of variations always

higher  than  0.1,  they  were  considered  as  undetectable.  In  this  independent  cohort,  statistically

significant  up-regulation  in  PCa versus  HD+BPH resulted  for  both  miR-103a-3p and let-7a-5p

(Figure 5A-B).

Validation of the classifier on an independent cohort

Additional  242 independent  plasma samples (Table I),  consecutively collected and checked for

hemolysis, were used for the validation phase. Figure 6A shows log2PSA box-plot among different

sample classes, whereas Figures 6B and 6C refer to the log2Intensities of the two miRs.

14 samples out of 242 had PSA >16 ng/ml and were directly classified as PCa: 10 were high-risk

PCa while 4 were false-positives. The remaining 228 samples were classified using the same exact

score coefficients and cut-off generated in the discovery step. 

The final classifier yielded an AUC of 0.76 (95%C.I.=0.70-0.82) (Figure 7A), whereas the AUC of

PSA alone was 0.74 (95%C.I.=0.68-0.80). In particular, our classifier correctly identified 8/9 (89%)

patients with PCa and PSA ≤4ng/ml, 7 of which harbored clinically significant (3 high-risk and 4

intermediate-risk) tumors. Of note, three of them fell in the 50-69 age range and had negative DRE.

70/73 HD (96%) were correctly identified. The AUC of the final classifier, for PSA values lower

than 4ng/ml, was 0.86 (95%C.I.=0.77-0.95) while PSA alone had an AUC of 0.79 (95%C.I.=0.59-

0.98) (Figure 7B). In the 4-16 PSA range, the classifier yielded an AUC of 0.6 (95%C.I.=0.43-0.70)

and correctly identified 38/49 (78%) PCa, 31 of which were clinically significant, and 25/74 (34%)

non-PCa. The AUC of PSA alone, in the same interval, was only 0.47 (95%C.I.=0.36-0.57) (Figure

7C).
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Discussion

Studies conducted on normal and (pre)tumoral prostate tissues showed patterns of differentially

expressed  miRs  according  to  disease  status  and/or  severity  (9,12),  with  a  certain  degree  of

concordance among different laboratories.

Due to their stability in body fluids, and particularly in serum/plasma, miRs could also be ideal non-

invasive biomarkers for PCa detection or prognosis prediction (6,9,13).  However, circulating miR

analysis is affected by variability in sampling procedures, RNA extraction and analysis methods,

and high quality study designs are scarce. Only few published studies strictly checked haemolysis,

discarded haemolysis-related miRs,  optimized RNA extraction and miR quantification and used

independent validation cohorts.

Most of the proposed miRs are able to distinguish HD from PCa or HD from BPH but perform very

badly in distinguishing BPH from PCa. Some perform very well in specific datasets or have been

found deregulated in more than one study, but the sign of deregulation is not always concordant (9)

and  their  accuracy  might  suffer  of  overfitting.  Indeed,  validation  of  the  results  gained  from a

screening cohort on a prospective one, using techniques more suitable for diagnostic purposes such

as  RT-qPCR,  remains  still  a  hard  task.  Validation  should  be  intended  as  applying  the  same

classification  rule,  without  any  change  to  improve  classification  results  according  to  the

independent dataset. Moreover, several studies do not include BPH in the dataset, or the size of this

class is limited and does not reflect a real representation of BPH incidence. Additionally, many

prognostic miRs proposed so far derive from studies where only high-risk PCa are included in the

analyses, without considering that these markers are aberrantly expressed in low-risk samples as

well, questioning their use as prognostic markers.

We therefore believe that our study presents several added values,  such as the quality of study

design, adequate sample size, accurate sample collection and processing, and appropriate classifier

validation. The two miRs included in our diagnostic score are miR-103a-3p and let-7a-5p. miR-

103a-3p was proposed as a plasmatic endogenous normalizer even by the Exiqon protocol,  but
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several recent studies highlighted that its levels in body-fluids are not stable and it may work with

other miRs as putative diagnostic (14) or prognostic (15) circulating biomarker. It was included into

diagnostic/prognostic  PCa serum scores  by Mihelich  (16),  and was able  to  predict  biochemical

relapse together with PSA after prostatectomy (17). Another study, where miRs were analysed in

expressed prostatic secretion, found miR-103 associated with prostatitis (18). Let-7a-5p belongs to

the let7 family of tumor suppressors and is usually down-regulated in PCa versus normal or BPH

tissues  (19).  Although it is now well-established that cancer cells may release tumor suppressor

miRs in the blood stream to get rid of them and prevent their antitumor effect, let-7a-5p levels have

been found either up- or down-regulated in PCa compared to controls (9), or positively associated

with PCa reclassification upon active surveillance (6). Its plasma levels strongly vary depending on

whether extracellular vesicle-incorporated or cell-free miRs are analysed (20).

Our study meant to translate results into clinical practice. Therefore, we chose not to enrich our

samples  in  extracellular  vesicle-incorporated  miRs, as  this  analysis  would  have  inserted  other

sources of variability and technical challenges, even though we were aware that this fraction of

miRs might be informative for specific PCa diagnosis  (21) or prediction of prognosis  (22). Some

urine RNA biomarkers are also under study  (23-25), but they require post-DRE sampling and/or

exosome isolation. Instead, our classifier is easily applicable as long as blood is carefully collected

and plasma quickly isolated. 

A classifier that combines two miRs with PSA was able to discriminate PCa from non-PCa and to

identify  clinical  significant  PCa,  better  than  PSA alone  in  the  discovery  cohort.  The  same

methodology, applied to the validation cohort, allowed for identification of all but one low-PSA

tumors: 3 high-risk, 4 intermediate-risk and 1 low-risk PCa. This is an important improvement,

given that three of them were found in men with negative DRE and age in the 50-69 range, that is

the one for which screening for prostate cancer could provide benefits (26). Moreover, for two of

them PSA was even less than 2.5 ng/ml, limit after which free-PSA is dosed (if free to total PSA

ratio (%fPSA) is less than 0.2, further investigations are recommended). %fPSA was not available
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for our cohorts so we could not compare it to our score. However, the use of  %fPSA or of other

PSA-related markers, that are currently under investigation (27-29), is still questionable. In the 4-16

ng/ml PSA range, our classifier identified 25/74 (34%) carriers of non-malignant lesions, who may

avoid unnecessary and harmful biopsies, and correctly classified 78% of PCa.

While  in  the  discovery  phase  the  final  classifier  outperformed  PSA alone  in  detecting  overall

(Figure 3) and clinically significant PCa, in the validation cohort its AUC, specificity and PPV

were  higher  than  those  of  PSA alone,  at  the  cost  of  a  lower  overall  sensitivity  (Figure  7A).

However, it strongly outperformed PSA sensitivity in the 0-4 PSA interval (Figure 7B) and PSA

specificity (Figure 7C) in the 4-16 PSA interval. Indeed, all but one missed PCa fall in this critical

interval for PSA, where intense research is still underway (30).

We also acknowledge that diagnosis was based on standard rather than mp-MRI targeted biopsy. To

further validate and improve our classifier, we have already planned a large multicenter prospective

study for men in the 50-69 age range where PSA and DRE will be coupled with circulating miR

analysis and mp-MRI, and standard biopsy to mp-MRI targeted biopsy.

In summary, we propose an easily applicable blood-based classifier  that requires testing of two

miRs  plus  PSA and  is  a  promising  non-invasive  diagnostic  tool  for  PCa  detection  that  can

complement PSA test.
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Tables

Table I: Study populations for the discovery and the validation phases. Cases and controls were ho-

mogeneous for geographic area, collection times, plasma separation method, storage and haemo-

lysis level. For the discovery phase, samples homogeneous for age, within each disease class, were

selected. In the validation phase, samples were consecutively collected and included high grade pro-

static intraepithelial neoplasia (HGPIN) or acinar small atypical proliferation (ASAP) lesions as

well. This cohort is enriched in >65 years old men and in intermediate-risk PCa. 

Discovery phase 
dataset

Validation phase 
dataset

Samples 120 242
PCa 60 68
BPH 51 93
HGPIN/ASAP 8
HDa 9 73

Age
Median 65 68
<=65 61 89
>65 59 153

PSA 5.96 (4.42 - 8.40)b 4.91 (1.80 - 7.26)b

PSA <= 4 26 105
4<PSA<=16 79 123
PSA>16 15 14

Gleason Score
GS6 25 10
GS7 22 40
GS>7 13 18

Risk class
PCa low risk 21 9
PCa intermediate 
risk

24 36

PCa high risk 15 23

aOnly Heparin-collected HD are reported. Other 18 EDTA-collected HD were analysed by microar-
rays but they were not included in the classifier construction.

bMedian (1st -3rd quartile)
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Legends to Figures

Fig.  1:  (A) Red curve:  log2PSA distribution density in  the cohort  of 430 BPH or PCa patients

available at the San Giovanni Battista hospital of Turin. Black curve: log2PSA distribution density

in a large cohort of nearly 14,000 not symptomatic men over 50 who tested their PSA levels at our

Foundation  from 2012  to  middle  2018,  within  a  voluntary  adhesion  context.  The  value  of  4,

corresponding to PSA = 16, is highlighted. (B) Box-plots for log2PSA values in the 138 plasma

sample cohort profiled with microarrays, divided according to risk class. Age was homogeneously

distributed among classes. 414nm/385nm absorbance ratio was < 2 for all samples and HS < 0.057

for  82%  of  them.  Dunnett  corrected  p-values  for  comparisons  between  low-risk  PCa  or

intermediate-risk  PCa  and  BPH are  equal  to  0.99  and  0.91,  respectively,  and  for  comparisons

between HD or high-risk PCa and BPH are <0.001. 

Fig. 2: (A) Volcano plot showing log2fold-changes (x axis) and –log10p-values (y axis) of the miR

probes analyzed, highlighting up-regulated (red circles) and downregulated (blue circles) miRs in

the comparison between PCa (n=60) and BPH+HD (n=60). For miRs with more than one probe, the

one with lower p-value is highlighted. (B) Unsupervised hierarchical clustering of the expression

matrix of 120 plasma samples (columns) and the 10 miRs (rows) that are differentially expressed

between  PCa  and  BPH+HD.  Squares  represent  microarray  log2  intensities  after  row  median

centering and division by standard deviation. Euclidean distance and average linking were applied.

(C) Box-plots  of log2 intensities for miR-103a-3p  in the discovery cohort,  according to sample

class. (D) Box-plots of log2 intensities for let7a-5p in discovery cohort, according to sample class.

Dunnett corrected p-values for comparisons of each sample class with HD are all higher than 0.05,

except for intermediate-risk PCas (0.0096 and 0.0482 for miR-103a-3p and let-7a-5p, respectively).

Dunnett corrected p-values for comparisons of each sample class with BPH are all higher than 0.05,

except for intermediate-risk PCas (0.0197 and 0.0276 for miR-103a-3p and let-7a-5p, respectively).
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Fig.  3: Decision  tree  of  the  final  classifier  developed  in  the  discovery  set  and  applied  to  the

validation set.

Fig. 4:  ROC curve for PSA (dotted line) or the final classifier (continuous line) in the discovery

cohort of 120 samples (AUC PSA = 0.62, C.I.=0.53-0.73; AUC final classifier = 0.68, C.I.=0.59-

0.78). Asterisks correspond to the thresholds for PSA (4ng/ml) and for the final classifier (2.02).

Sensitivity, specificity, accuracy, PPV and NPV of the final classifier are 87%, 35%, 68%, 57% and

72%, respectively, all higher than those given by PSA alone. 

Fig.  5:  Box-plots  of  –DCt  values  for  miR-103a-3p (A)  and let7a-5p (B),  showing  statistically

significant up-regulation for both miRs (log2fold-change > 1 and Benjamini-Hochberg corrected t-

test p-value < 0.05).

Fig.  6:  (A)  Log2PSA in  the  242 sample  validation  cohort,  according  to  sample  class.  Dunnett

corrected p-values for comparisons between HGPIN/ASAP or PCa low-risk and BPH are equal to 1,

for  comparison between  intermediate-risk  PCa  and BPH is  equal  to  0.99  and  for  comparisons

between HD or high-risk PCa and BPH are less than 0.0001. (B) Box-plots of –DCt values for miR-

103a-3p  in the 242 sample validation cohort, according to sample class. (C) Box-plots of –DCt

values for let7a-5p in the 242 sample validation cohort, according to sample class.

Dunnett corrected p-values for comparisons of each sample class with HD are all less than 0.0001,

while comparison with BPH yielded statistically significant p-values only for HD (<0.0001, both

for miR-103a-3p and let-7a-5p).

Fig. 7: (A) ROC curve for PSA (dotted line) or the final classifier (continuous line) in the validation

cohort of 242 samples (AUC_PSA = 0.74, CI = 0.68 - 0.80; AUC_final classifier = 0.76, CI = 0.70 -
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0.82). Asterisks correspond to the thresholds for PSA (4ng/ml) and for the final classifier (2.02).

Sensitivity, specificity, accuracy, PPV and NPV of the final classifier are 82%, 57%, 64%, 43%,

89%, respectively. (B) ROC curve for PSA (dotted line) or the final classifier (continuous line) in

the validation cohort, considering 105 samples with PSA≤4 ng/ml (AUC_PSA = 0.79, 95% C.I. =

0.59 - 0.98; AUC_final classifier = 0.86, 95% C.I. = 0.77 - 0.95). (C) ROC curve for PSA (dotted

line) or the final classifier (continuous line) in the validation cohort, considering 123 samples with

4<PSA<=16 ng/ml (AUC_PSA = 0.47, 95% C.I. = 0.36 - 0.57; AUC_final classifier = 0.6, 95% C.I.

= 0.43 - 0.70).
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