
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

WINNER: a high speed high energy efficient Neural Network implementation for image classification / Antonietta, Simone
Domenico; Coluccio, Andrea; Turvani, Giovanna; Vacca, Marco; Graziano, Mariagrazia; Zamboni, Maurizio. - (2019), pp.
29-32. (Intervento presentato al convegno 2019 26th IEEE International Conference on Electronics, Circuits and
Systems (ICECS)) [10.1109/ICECS46596.2019.8965001].

Original

WINNER: a high speed high energy efficient Neural Network implementation for image classification

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICECS46596.2019.8965001

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2787904 since: 2020-03-17T09:32:10Z

IEEE

WINNER: a high speed high energy efficient Neural
Network implementation for image classification

Simone Domenico Antonietta, Andrea Coluccio
Giovanna Turvani, Marco Vacca, Mariagrazia Graziano, Maurizio Zamboni
Department of Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract—Nowadays, Neural Networks are often used in many
applications to solve very complex tasks like speech recognition
or image classification. In applications like image recognition,
time is a critical constraint and a Neural Network must be
able to correctly classify an image in a very short time: in
these cases, hardware accelerators are necessary. In this work, a
hardware implementation of a Neural Network is proposed. As
a reference model, AlexNet has been chosen and implemented
as an ASIC, by adopting an In-Memory computing design. The
concept of In-Memory is based on the idea of placing small
computational units near the memory element. This choice brings
to relevant benefits, reducing the bottlenecks coming from a
Von Neumann’s system (such as fetching latency and energy
inefficiency due to the communication between logic and mem-
ory). The architecture has been synthesized on a 45nm CMOS
technology and highlights remarkable results, with very high
frame-per-second (FPS) (comparable to binary neural network
implementations) combined with low values of Energy/FPS and
a maximum operating frequency of 281MHz. The system is also
partially reconfigurable, enabling the mapping of different kind
of neural networks.

I. INTRODUCTION

Recently, Deep Neural Networks have been used in almost
any kind of applications, because of their versatility: they are
able to perform complex tasks (such as speech recognition or
image classification), reaching good levels of accuracy. The
most used neural network model is a Convolutional Neural
Network (CNN), which represents an efficient way to classify
large amounts of data: one of them is AlexNet [1], that has
been chosen as reference pre-trained model. It is a deep
Neural Network made up by 8 main layers and used as
image classifier, allowing to recognize up to 1000 categories of
images, with a TOP-5 accuracy of 84.7%. Neural Networks are
quite slow if implemented on a software solution due to their
complexity, so an hardware accelerator can greatly improve
the performance.

In this paper a reconfigurable hardware implementation of
a Neural Network, focused on an In-Memory approach, is
presented. In a standard Von Neumann’s architecture, the CPU
spends a big part of its computational time waiting for the
data arriving from the memory, since the processor operates
at an higher speed than the memory by itself, causing a non-
negligible latency. By merging memory and computational
units in a Logic-In-Memory (LIM) solution, it is possible to
overcome these limitations: for this reason, the architecture
is called WINNER, acronym for Weight In Memory Neural
Network Embedded Ram. LIM/near-memory and classical

architectures are analyzed from several works like [2], [3]
based on a binarized approach and innovative technologies
(RRAMs) or [4] that implements a XNOR-Net in a Wide IO2
DRAM architecture, using stacked DRAM memories and a
logic layer to perform the computations. Other solutions, that
are not based on an In-Memory approach are considered, such
as Eyeriss [5], YodaNN [6] (ASICs) and [7] (FPGAs). Chain-
NN [8] implements a fixed-point neural network architecture
based on a chain of Processing Elements (PEs), reaching very
good perfomance. WINNER has been synthesized on a 45 nm
CMOS technology and state-of-the-art comparisons in terms
of frame-per-seconds (FPS) and cost function Energy/FPS are
proposed: our work reaches very high FPS (1326 FPS) and low
Energy/FPS (40uJ/FPS) values combined with a TOP-5 rate
of 84.7% (the same as [1]), opening the way for high speed
applications that require high accuracy. Our architecture is
reconfigurable, meaning that different kind of neural networks
can be implemented.

II. CONVOLUTIONAL NEURAL NETWORKS: ALEXNET

The neural network that we choose to implement is the
AlexNet, which is a deep convolutional neural network able
to classify complex RGB images of 227x227 pixels, winner
of the ILSVRC 2012 competition [1]. We choose this network
because, while it is not the actual best available, it has a
good trade-off between accuracy and complexity, so it is
particularly suited for an hardware implementation. AlexNet is
composed of several layers as shown in Fig. 1: Convolutional
(CONV), Max pooling (POOL), Cross-Channel Normalization
(CROSS) and Fully Connected (FC). There are 5 CONVs, 3
FCs and 3 POOLs following the first, the second and the fifth
CONVs. After the last FC layer, there is a 1000-way Softmax
computation, that has been approximated with Max function,
since WINNER is used only for inference purposes.

227x227x3 55x55x96

27x27x96

27x27x256

13x13x256 13x13x384 13x13x256

6x6x256

4096 4096

1000

IN
P

U
T

 I
M

A
G

E

C
O

N
V

C
R

O
S

S

C
O

N
V

C
R

O
S

S

C
O

N
V

C
O

N
V

C
O

N
V

P
O

O
L

P
O

O
L

POOL

F
U

L
L
Y

 C
O

N
N

E
C

T
E

D

F
U

L
L
Y

 C
O

N
N

E
C

T
E

D

F
C

Fig. 1. AlexNet model

The complexity of each layer can be measured by the total
number of multiplications and the number of neurons, that can
be computed as #neuronsith = (Dx×Dy×Dz)(ith+1). Dx, Dy

and Dz are the output feature maps (OFMAPs) sizes and ith
indicates the i-th layer. For the first CONV, the total number
of neurons is equal to #neurons1 = (55× 55× 96) = 290400.
More details about AlexNet model’s parameters are reported
in [1].

III. CIRCUIT ARCHITECTURE

Our architecture implements the whole neural network, in
such a way that a good trade-off between performance and
hardware requirements is reached.

A. Optimizing the number of neurons

In this paper, the term ”neuron” is intended as a computa-
tional block that performs the sum-of-products of the inputs
with the corresponding weights, following the Equation 1:

Y =

N∑
i=1

Ii ×Wi +Bias = σ +Bias (1)

where N is the total number of neuron’s inputs, Ii is the input,
multiplied by the corresponding weight Wi. Since neurons are
composed essentially of multiply-and-accumulate (MAC) PEs,
their quantity has to be optimized, considering:

• Area-delay trade-off: area has to be as low as possible
reducing the number of employed neurons, without de-
grading too much the performance;

• Neurons of the FC layer are the same PEs as CONV
layer’s ones, so the hardware can be reused;

• Good level of parallelization, in order to reach acceptable
FPS values.

From [1], the maximum number of filters employed per layer
are equal to 384: since each neuron represents an entire filter
computation (as shown in Fig. 2), by choosing 384 neurons, all
the kernels can be processed in parallel. However, in the tiny
example reported in Fig. 2, there are only 4 inputs defined by
the kernel size, while in AlexNet the maximum kernel size is
9216 (6×6×256, that is the dimension of the first FC input),
meaning that a single neuron should have at least 9216 fixed
point inputs: this is impracticable, and a trade-off between
number of inputs and parallelization has to be considered.

Fig. 2. Example of the correspondence between neuron and filter computa-
tion.

To reduce the complexity, in WINNER we have chosen a
number of inputs equals to 64, and for those layers which
require more than 64 contemporary inputs, the algorithm has
been serialized requiring #stepsneuron = #inputsneuron/64 steps
to be completed.

B. Architecture overview

As depicted in Fig. 3(a), WINNER is composed of two
blocks.

RAM

Fig. 3. WINNER architecture (a), Weight-Block (b) and IN/OUT-Block (c)
schemes

1) Weight-Block: this is the part of the architecture where
the neural computation is executed, which is shown in
Fig. 3(b). It contains all the 384 neurons with 64 input bytes
and 384 output bytes. Data are represented on 8 bits, in
particular Q8.0 for inputs/outputs, Q2.6 for weights and Q6.2
for FC results, where the notation Qx.y indicates the total
number of bits dedicated to the integer part (x) and fractional
part (y). Lastly, it contains also the CROSS layer, connected
to all the neurons’ outputs. Neurons require lots of resources
to be implemented: for this reason, in WINNER architecture
we have developed an optimized version of a neuron block,
which is reported in Fig. 4.

• Each neuron has 64 ”WordLines” (indicated as WLi in
Fig. 4). Each ”WordLine” is essentially a 2595 bytes
register. This number, if multiplied by 64 WLs and 384
neurons, gives the total number of stored weights inside
the architecture as #Stored weights = 384×64×2595 =
63774720. #Stored weights must be almost equal to the
total number of weights required to perform the entire
CNN algorithm, that in the AlexNet model are ∼ 60
millions [1]. The selectors (trapezoids indicated with 1©
in Fig. 4), implement a Wired-OR function and they
select the corresponding weight-set to be processed in
the current algorithm step.

• Parallel Prefix Units (PPUs) (boxes indicated by 2© in
Fig. 4) implement a radix-2 modified Booth encoding
procedure to compute the multiplication of the results.

• Adders (3© in Fig. 4) are used to sum two WL contri-
butions together to evaluate the intermediate convolution
result. Each partial sum coming from 3© blocks, is added
in a final adder tree to provide the partial convolution
result. Lastly, an accumulation adder computes the final
result, by performing a selection with the multiplexer (in-
dicated as 4© in Fig. 4) between σ and Bias, depending on

the evaluation step, to compute the final result expressed
in Equation 1.

Fig. 4. WINNER neuron, an optimized version of a neuron

The CROSS layer, reported in Fig. 3(b), has a very complex
formula for an hardware implementation, so an approximation
has to be considered. From [1], it is equal to:

ycross =
x(

K + α×
∑n

i=1 x
2
i

WCS

)β (2)

where x is the input element, [K,α, β] are constants (usually
equal to [2, 0.0001, 0.75] respectively), WCS is the window
channel size (in AlexNet, it is equal to 5) and n is 5 [1]. By
performing the Taylor series of the term (1+x)β , a near-zero
approximation is provided:

ycross ∼ 1 + β · x+
β · (β − 1)

2
· x2 (3)

This approximation is good only in the range [0, 1.5], other-
wise the curve diverges from its original behavior. However, by
performing extensive simulations with multiple batches, it has
been demonstrated that only 5% of values above 1.5 threshold
are present, so this approximation does not heavily affect the
accuracy in our hardware implementation, which remains the
same as the original paper [1].

2) IN/OUT-Block: this is the part of the architecture shown
in Fig. 3(c), where the inputs/outputs of each layer are stored.
It provides all the signals to the Weight-Block and can perform
POOL and Zero Padding operations if required. It is made
by a simple RAM divided into two identical banks. Bank
0 stores the inputs, while the Bank 1 stores the outputs.
The address bank selector selects the Bank for read/write
operations, depending on the execution step.

IV. RESULTS

The procedure used to estimate the performance starts with
a circuit synthesis with Synopsys Design Compiler and a func-
tional simulation with Modelsim, that writes on a SAIF file

all the informations regarding the switching activity of each
node of the network. This procedure enables a more precise
estimation, instead of considering the worst case maximum
activity equal to 1. The technology used is the Nangate CMOS
45nm. Synthesis procedure indicates also the critical path
delay, which results equal to 3.55ns, meaning that WINNER is
able to reach up to 281MHz as maximum operating frequency.
In the design, RAMs are synthesized as registers, so the power
and area obtained represent an overestimation of a real case,
with a more correct model of the memories.

1) In/Out-Block characterization: in Fig. 5 are reported the
main contributions to the area and power into the In/Out-
Block. Considering the area graph in Fig. 5(a), the most
important parts are the logic, composed of the circuit that
establishes the output selection, and the comparators, forming
together the POOL. As expected, the RAM part has an
irrelevant contribution in terms of area, since in the In/Out
block only inputs/outputs are stored. Regarding the power
distribution in Fig. 5(b), the main contribution is given by the
comparators because of their complexity and, secondly, by the
logic layer. RAM’s contribution is only 4% of the total power,
that can be further reduced if a more real memory model is
employed.

2) Weight-Block characterization: A single neuron’s power
and area are evaluated. In Fig. 6(a), the main area contribution
is given by the selectors, since 64 of them are required with
2595 inputs of 1 byte each, as discussed in subsection III-B.
They have also an important power contribution, secondly
only to RAM, according to Fig. 6(b). The computational
part (composed of PPUs and adders) and the CROSS layer
introduce small overheads in terms of power (27% and <1%
respectively).

(a) (b)

Fig. 5. Power and Area of the In/Out Block internal components

(a) (b)

Fig. 6. Power and area of the Weight-Block internal components. Only one
neuron is considered in this estimation.

A. Comparison with the state-of-the-art
A comparison with the state-of-the-art implementations of

the AlexNet is presented. The WINNER architecture is able

to process a frame in a very short time (0.75ms). To evaluate
performance, a cost function Energy/FPS is considered: it
indicates how efficient the architecture is to minimize the
energy, so it should be as low as possible. Table I summarizes
the performance of our architecture, compared with state-
of-the-art implementations of the AlexNet neural network.
The comparison is made with very different implementations,
some of them use a fixed point representation [5][7][3][8],
some others a floating point representation [7]. Also, binary
implementations are analyzed [3][4][6] and other ones are
based on emerging technologies [3]. As can be seen from
the results in Table I, our architecture is the third fastest
implementation, overcome only by binary implementations
that trade speed for lower accuracy. Fig. 7 depicts the relative
energy efficiency of each architecture, where the function
f on the y-axis is used to obtain a more clear graphical
comparison, in fact it transforms the values of Energy/FPS
in percentages relative to the XNOR-POP [4], which has the
highest efficiency according to Table I. In Fig. 7, WINNER
has the fourth highest value: two binary implementations are
better, but at the cost of accuracy and the only non-binary
architecture that has a better value is the Chain-NN [8], that is
however considerably slower. As can be seen, WINNER has
around 70% the relative energy efficiency of the XNOR-POP
[9], while having better accuracy of 84.7%. Overall our
architecture is ideal for all the applications that require an
high acquisition speed while maintaining a very good energy
efficiency. Furthermore, results can be greatly improved by
scaling the technology.

Fig. 7. Relative efficiency comparison. In the plot, the values have been
rescaled in percentage; 100% value indicates that the architecture has the
highest efficiency. The absolute values are indicated over each bar. For
example, WINNER has 70% efficiency compared to the XNOR-POP [4].

TABLE I
STATE-OF-THE-ART PERFORMANCE COMPARISON WITH ALEXNET
MODEL. PROCESS TIME IS RESCALED TO BATCH SIZE EQUAL TO 1.

Architecturea Process time[ms] FPS[1/s] Energy[mJ/frame] Impl.b

Intel XEON E5-2637 [7] 195.00 5.0 25400.00 *
GPU1 [7] 1.30 769.0 325.00 *
GPU2 [3] 90.00 11.1 324.00 **
GPU3 [3] 0.73 1369.9 237.25 **

SOT MRAM [3] 10.70 93.5 0.31 **
XNOR-POP [4] 0.29 3390.0 0.66 **

YodaNN [6] 2000.00 0.5 0.35 **
Eyeriss [5] 28.825 34.7 8.01 ***
FPGA1 [7] 21.61 46.3 402.00 ***
FPGA2 [7] 20.10 50.0 384.00 ***
FPGA3 [7] 2.56 391.0 77.00 ***
FPGA4 [3] 5.94 168.4 27.92 ***

Chain NN [8] 3.07 325.4 1.74 ***
Our Work 0.75 1326.5 52.77 ***

aGPU1 = GTX Titan X, GPU2 = NVIDIA Jetson TK1, GPU3 = NVIDIA
Tesla K40, FPGA1 = Virtex-7 VX485T, FPGA2 = Stratix-V GSD8, FPGA3

= Virtex-7 VC709, FPGA4 = Xilinx Zynq-7000
bImpl. implementation type. *, ** and *** indicate floating point, binary

approximation and fixed point architectures respectively.

V. CONCLUSIONS

We have developed an innovative hardware implementation
of an AlexNet based on an In-Memory approach. The archi-
tecture reaches very good values of Energy/FPS, FPS (this last
one is comparable to a binary neural network approximation)
and accuracy. By scaling the technology, performance can
be greatly improved. As a future work we are trying to
modify this architecture, enabling the implementation of other
neural networks, keeping at the same time high FPS and high
efficiency in terms of energy and accuracy.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[2] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang. Binary convolutional
neural network on rram. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 782–787, Jan 2017.

[3] D. Fan and S. Angizi. Energy efficient in-memory binary deep neural net-
work accelerator with dual-mode sot-mram. In 2017 IEEE International
Conference on Computer Design (ICCD), pages 609–612, Nov 2017.

[4] L. Jiang, M. Kim, W. Wen, and D. Wang. Xnor-pop: A processing-in-
memory architecture for binary convolutional neural networks in wide-
io2 drams. In 2017 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), pages 1–6, July 2017.

[5] Y. Chen, T. Krishna, J. Emer, and V. Sze. 14.5 eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. In
2016 IEEE International Solid-State Circuits Conference (ISSCC), pages
262–263, Jan 2016.

[6] R. Andri, L. Cavigelli, D. Rossi, and L. Benini. Yodann: An ultra-low
power convolutional neural network accelerator based on binary weights.
In 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 236–241, July 2016.

[7] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli
Wang. A high performance fpga-based accelerator for large-scale convo-
lutional neural networks. In 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–9, Aug 2016.

[8] S. Wang, D. Zhou, X. Han, and T. Yoshimura. Chain-nn: An energy-
efficient 1d chain architecture for accelerating deep convolutional neural
networks. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2017, pages 1032–1037, March 2017.

[9] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016.

