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Abstract: Efforts in tissue engineering aim at creating scaffolds that mimic the physiological
environment with its structural, topographical and mechanical properties for restoring the function of
damaged tissue. In this study we introduce composite fibres made by a biodegradable poly(lactic acid)
(PLLA) matrix embedding bioactive silica-based glass particles (SBA2). Electrospinning is performed
to achieve porous PLLA filaments with uniform dispersion of bioactive glass powder. The obtained
composite fibres show in aligned arrays significantly increased elastic modulus compared with that
of neat polymer fibres during uniaxial tensile stress. Additionally, the SBA2 bioactivity is preserved
upon encapsulation as highlighted by the promoted deposition of hydroxycarbonate apatite (HCA)
upon immersion in simulated body fluid solutions. HCA formation is sequential to earlier processes
of polymer erosion and ion release leading to acidification of the surrounding solution environment.
These findings suggest PLLA-SBA2 fibres as a composite, multifunctional system which might be
appealing for both bone and soft tissue engineering applications.

Keywords: poly(lactic acid) (PLLA); bioactive glass; scaffolds; electrospinning; composite fibres

1. Introduction

Bone tissue continuously undergoes shape remodelling and repair at the microscale through
processes of local regeneration, which are regulated by growth factors, hormones and the action of
mechanical stresses. In reconstructive surgeries, the regeneration of bone and cartilage by autologous
cell transplantation after an injury or tumour removal is one of the most promising strategies in order
to reduce issues related to immunocompatibility and consequent immune rejection, as well as to
avoid potential pathogen transfer [1]. However, since autologous grafts are often poorly available, an
appealing approach is represented by the development of scaffold-based tissue engineering approaches
based on bioactive materials for restoring bone morphology and function [2].

Therefore, enormous efforts are being made to create engineered constructs that mimic the
physiological environment with its structural, topographical and mechanical properties. To this aim,

Nanomaterials 2019, 9, 182; doi:10.3390/nano9020182 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-3758-5199
https://orcid.org/0000-0002-7377-2955
https://orcid.org/0000-0002-4270-4861
http://www.mdpi.com/2079-4991/9/2/182?type=check_update&version=1
http://dx.doi.org/10.3390/nano9020182
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2019, 9, 182 2 of 15

various biomaterials, metals, natural or synthetic polymers and ceramics, have been investigated
but no single one was proved to show all the crucial features required for an optimal scaffold [3,4].
In this framework, a promising approach relies on composite biomaterials with osteoconductive and
osteoinductive capabilities, which might allow for osteogenesis stimulation while mimicking the
extracellular matrix (ECM) morphology [4,5]. Several studies have been focused on the addition of
inorganic and bioactive fillers, such as bioactive glasses, bioceramics or hydroxyapatite [6] in polymeric
constructs, with the aim to promote chemical links to bone tissue by forming hydroxycarbonate apatite
(HCA) layers as a result of ion leaching, in case of bioactive glass components, into the surrounding
physiological fluids. In this process, the precipitation of microcrystalline HCA onto the scaffold
surface [7] is due to a well-defined ion exchange mechanism between modifier ions (Na+ and Ca2+)
in the glass and hydronium ions (H3O+) in the surrounding fluid, thereby causing dissolution of the
glass network [8,9]. Compared to other bioactive materials, silica-based bioactive glasses are available
in different compositions, which exhibit remarkable osteoinductive behaviour since they feature ionic
dissolution products (Si4+, Mg2+, Ca2+) able to stimulate osteogenesis and angiogenesis [8,9]. In fact,
the potential angiogenic effects of silica-based bioactive glass has been recently highlighted, through
increased secretion of vascular endothelial growth factor involved in vascularization processes [10].
For these reasons, these materials are not only useful for bone tissue engineering but they might also
promote the regeneration of soft tissues as needed in wound healing [11].

In fact, 45S5 Bioglass®has been largely used as inorganic phase in polymer foams and matrices to
realize porous composites [12–16]. Silicate [17], borate [18] and phosphate-based glasses [19,20] have
been recently tested in bulky bioresorbable polymeric sponges or polymer-coated scaffolds. A number
of nano- and micro-fabrication technologies allow these systems to be processed as biocompatible and
biodegradable fillers in polymers retaining higher surface-to-volume ratio and interconnected porous
networks to better support tissue ingrowth and vascularization. In the last years, the electrospinning
technology has been largely developed and notable progress has been made to realize biomimetic
porous scaffolds designed for tissue engineering and for drug delivery [21–23]. Electrospinning
is a versatile technique, which allows for the fabrication of polymer, ceramic or nanocomposite
fibres with diameter ranging from a few tens of nanometres to a few micrometres, which strongly
resemble the morphology of the native ECM and provide a networked architecture suitable for cell
attachment [22–25]. Various different structures, morphologies and compositions can be achieved
in fibres, to make them suitable for different tissue applications including vascular, bone, neural
and tendon or ligament [21,25,26]. Particularly, fibres with nanocomposite materials and complex
internal [27] or surface [28,29] nanostructures can be electrospun by blends of polymers or from
colloidal solutions [30,31].

In this work we introduce nanocomposite electrospun fibres embedding silica-based bioactive
glass (SBA2). SBA2 belongs to the SiO2–Na2O–CaO–P2O5–B2O3–Al2O3 class of systems, previously
investigated as component of antibacterial and bioactive, bulky bone cements [7,32,33]. The FDA-approved
polymer, poly(lactic acid) (PLLA), is chosen as matrix because of its excellent biocompatibility and
biodegradability, already assessed in clinical treatments [1], as well as for its excellent processability
with electrospinning [34]. The obtained PLLA-SBA2 fibres are characterized in their morphology
and in their chemical and mechanical properties. The addition of inorganic particles in a polymeric
matrix [35–38] leads to composites with varied mechanical properties, depending on the filler size
and on their dispersion in the organic phase [35,36,38], as well as on the fabrication parameters,
including the solvent used for electrospinning [38]. Additionally, acellular, in vitro bioactivity and
cell viability are investigated, evidencing the biocompatibility of the PLLA-SBA2 fibrous composites.
Overall, dispersed silica-based bioactive glass in resorbable polymeric composites with microscale
texturing are highly promising systems for supporting cell cultures as well as for the development of
biomedical applications. The novelty of this work is represented by the successful incorporation of
SBA2 in electrospun PLLA fibres, not reported previously in literature and also on the correlation of
the nanopores on the fibres surface with fibres degradation and bioactive glass particles release.
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2. Materials and Methods

2.1. Bioactive Glass Synthesis and Characterization

The SBA2 glass has the following nominal composition (mol %): 48% SiO2, 18% Na2O, 30%
CaO, 3% P2O5, 0.43% B2O3, 0.57% Al2O3 and was synthesised by melt-quenching route, as detailed
elsewhere [7,32,33]. Briefly, reagent-grade reactants [SiO2, Na2CO3, CaCO3, Ca3(PO4)2, H3BO3 and
Al2O3] were melted in a platinum crucible at 1450 ◦C for 1 h (Carbolite HTF 1800, CARBOLITE
GERO, Neuhausen, Germany), the melt was then quenched in water to obtain a frit. The frit was
ball milled in aqueous medium. The grain size distribution of milled SBA2 was estimated using
a particle size analyser (Sympatec Helos H0621, kindly performed at CERICOL Research Centre,
Sovigliana, Vinci (Firenze), Italy); the specific surface area (SSA) of milled SBA2 was assessed by
using the Brunauer-Emmet-Teller (BET, ASAP2020Plus-Micromeritics, Aachen, Germany) method [39].
The obtained glass powder was analysed morphologically and compositionally by scanning electron
microscopy (SEM, FEI QUANTA INSPECT 200, Eindhoven, The Netherlands) and energy dispersive
X-ray spectrometry (EDS) (EDAX PV 9900, Weiterstadt, Germany). Thermal properties were
determined by differential thermal analysis (DTA–404 PC instrument, Netzsch, Selb, Germany),
in a temperature range of 20–1300 ◦C, using a heating rate of 10 ◦C/min and high-purity alumina
as reference.

2.2. Electrospinning

PLLA (molecular weight 85−160 kg mol−1, Sigma-Aldrich, Munich, Germany) was dissolved
in a mixture of dichloromethane and acetone (80:20 v/v) at a concentration of 20% (w/v) at room
temperature. The solution was stirred overnight, then SBA2 was added with a concentration of
7% w/v. The resulting suspension was vigorously mixed and then stirred again overnight to obtain a
homogeneous dispersion of SBA2 in the polymer solution. The solution was put in an ultrasound bath
for 1 hour prior the electrospinning with the aim to reduce SBA2 clustering and then transferred in a
1 mL syringe. The spinning process was performed by a 21G stainless steel needle and a syringe pump
(Harvard Apparatus, Holliston, MA, United States) with feeding rate 0.8 mL h−1 and by applying a
positive high-voltage of 12 kV (EL60R0.6-22, Glassman High Voltage, XP Power, Milano, Italy) between
the needle and a metal collector. Random fibre mats were collected on a static grounded 10 × 10 cm2

collector meanwhile aligned fibre mats were collected on a grounded disk (8 cm diameter, 1 cm
thickness) rotating at a speed of 5000 rpm, maintaining constant all the other processing parameters.
The air relative humidity and temperature during the electrospinning process were about 40% and
20◦C, respectively. The needle-collector distance was adjusted to 15 cm. Neat PLLA fibres were
fabricated as reference material by using identical set-up parameters.

2.3. Morphology and Mechanical Properties of PLLA-SBA2 Fibres

PLLA-SBA2 electrospun fibres were sputtered with gold by using a Sputter Coater (Q150T,
Quorum Technologies, Darmstadt, Germany) and then inspected by SEM and energy dispersive X-ray
spectrometry (EDS) (Auriga 0750, ZEISS, Jena, Germany). Average fibre diameters were calculated
by analysing a total of at least 100 fibres for each sample, using the software ImageJ [40]. Regarding
mechanical properties, as reported by Ricotti et al. [41], mechanical differences in uniaxial aligned
arrays are more pronounced. Thus, aligned fibre mats were used in this paper to investigate more
specifically the mechanical properties of PLLA-SBA2 composite fibre mats. Mechanical properties of
random and aligned composite fibres mats at room temperature were investigated by uniaxial tensile
strength tests using a universal testing machine (K. Frank GmbH, Mannheim, Germany). Each sample
was cut into a rectangular shape (with cross-section area of 5 × 4 mm2) using a paper square framework
and its thickness is measured by using a digital micrometre (0.02–0.06 mm). Then measurements
were carried out at a crosshead speed of 10 mm/min using a 50 N load cell, according to a previous
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study [42] and the resulted stress-strain curves are used to obtain Young’s modulus, elongation at
break and tensile strength.

2.4. Degradation studies

The degradation behaviour of composite fibres was investigated by immersion in Dulbecco’s
phosphate buffered saline (DPBS, Sigma-Aldrich, Munich, Germany) medium at pH 7.4. Resulting pH
values were measured instantly after the immersion of the sample and for different time points, up to
21 days, at 37 ◦C by using a pH meter (HD8705, Delta OHM, Padova, Italy). The pH measurements
of different solutions were correlated to the dissolution of ions in the incubation media. In addition,
the degradation of PLLA-SBA2 fibres in physiological solutions was assessed by measuring the weight
loss [23] for dried fibrous mats after 21 days of DPBS incubation. The percentage of weight loss, WL %,
was computed as 100 × (W0 − Wr)/W0, where W0 and Wr are the initial and the residual weight of
the sample, respectively.

2.5. Acellular Bioactivity

The acellular bioactivity of PLLA-SBA2 fibres, related to the surface deposition of HCA layers,
was evaluated by immersing the samples inserted in scaffold holders (CellCrownTM 24, Scaffdex,
Sigma Aldrich, Munich, Germany) in simulated body fluid (SBF) solution [43] for 1, 7, 14 and 21 days
at 37 ◦C, on an oscillating tray in an incubator. A falcon tube with only SBF was used as control.
After each time point, samples were washed with distilled water, dried at room temperature before
SEM-EDS characterization and Fourier Transform Infrared Spectroscopy (FTIR) analysis in attenuated
total reflectance (ATR) mode. PLLA neat fibres were considered as control. FTIR spectra were recorded
by a spectrometer (IRAffinity-1S, Shimadzu, Kyoto, Japan), repeating 32 scans over the wavenumber
range 4000–500 cm−1, with a resolution of 4 cm−1.

2.6. Cell Cultures

PLLA-SBA2 fibres were disinfected under an ultraviolet lamp for 1 h. Murine-derived stromal
cells ST-2 (obtained from Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH, Braunschweig, Germany), were cultured to confluence in 75 cm2 culture flasks in
Roswell Park Memorial Institute medium (RPMI 1640) (GibcoTM, Thermo Fisher Scientific, Schwerte,
Germany) containing 10% foetal bovine serum (FBS; Lonza) and 1% penicillin/streptomycin (Lonza)
at 37 ◦C and 5 % CO2. Before seeding, cells were detached using Trypsin in DPBS (Sigma Aldrich,
Munich, Germany), stained with 0.4% (v/v) trypan blue solution and counted using a Neubauer
chamber (VWR). Then, ST-2 cells were seeded onto the electrospun scaffolds (including neat PLLA
fibres as control) with a density of 2 × 104 cells/cm2. All samples were assayed in triplicate and each
sample was incubated in the same RPMI medium described above. Cells were cultured for 7 days
renewing the culture medium once after 3 days of culture. Viability analyses of ST-2 cells on composite
fibres was assessed after a cultivation period of 1 day and 7 days by using a WST-8 assay (Cell Counting
Kit-8, Sigma Aldrich, Munich, Germany), which is based on the conversion of tetrazolium salt to highly
water-soluble formazan by mitochondrial enzymes of viable cells. At each time point, the culture
medium was removed from each sample and each well with samples and cells was washed with DPBS
and added with a solution of 10% WST-8 reagent in colourless medium. After an incubation period of
3 hours at 37 ◦C and 5% CO2, the solution was transferred into a 96 well plate to measure absorbance
at 450 nm by using a microplate Elisa reader (PHOmo Elisa reader, Autobio Diagnostics Co. Ltd.,
Zhengzhou, China).

To investigate cell morphology, a preliminary evaluation was provided by SEM analysis after
1 day and 7 days of culture. Samples were fixed by using a solution containing paraformaldehyde,
glutaraldehyde, sodium cacodylate trihydrate and sucrose (Sigma Aldrich, Munich, Germany).
Subsequently, samples dehydration was achieved by using a series of aqueous ethanol solutions.
The samples were then dried in a critical point drier (Leica EM CPD 300, Leica, Wetzlar, Germany) and
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sputtered with gold. The cytoskeleton organization and nucleus morphology of cells on PLLA-SBA2
fibres were studied after 1 day and 7 days following seeding by staining with rhodamine phalloidin
and DAPI (ThermoFisher Scientific, Schwerte, Germany). Briefly, samples were fixed by using a
fixation solution containing 1,4-piperazinediethanesulfonic acid buffer, ethylene glycol tetraacetic
acid, polyethylene glycol, paraformaldehyde, DPBS and sodium hydroxide (Sigma Aldrich, Munich,
Germany), washed with DPBS and immersed in a permeabilization buffer for intracellular staining.
400 µL of a 8 µL/mL DPBS solution of rhodamine phalloidin was added in each well containing
samples, then kept for 1 hour at 37◦C. After the removal of the dye, samples were vigorously
washed with DPBS and 400 µL of a 1 µL/mL DPBS solution of DAPI was added to each well. Then,
samples were washed in DPBS and analysed with a fluorescent microscope (Axio Scope A1, Zeiss,
Jena, Germany).

2.7. Statistical Analysis

Each experiment was repeated three times. All results of cell viability and average fibre diameter
were expressed as (mean ± standard deviation) and a one-way analysis of variance (ANOVA) was
used for statistical analysis. A P value < 0.05 was considered statistically significant.

3. Results and Discussion

The BET analysis evidenced a SSA of 11.6 m2/g, the particle size analysis showed a non-symmetric
distribution with a mode grain size of 2 µm; characteristic particle sizes are d50 = 2.0 µm and
d90 = 4.4 µm, with 94% of grain sizes below 5 µm and the residual 4% below 9 µm.

Figure 1 shows the morphology (a, b) and the compositional analysis (c) of SBA2 glass
powders. The powders display the typical sharp-cornered morphology of ball-milled glass.
Moreover, as previously mentioned, the majority of SBA2 powders showed a grain size <5 µm.
In addition, the performed DTA analysis evidenced a glass transition temperature of about 550 ◦C,
the crystallization onset at 600 ◦C, a crystallization peak at 655 ◦C and a melting temperature of
1220 ◦C.
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Figure 1. Scanning electron microscopy (SEM) (a,b) and energy dispersive x-ray spectrometry (EDS)
(c) analysis of SBA2 powders after milling process. Scale bars: 40 µm (a), 10 µm (b).

The electrospinning process of PLLA-SBA2 is carried out by adjusting the voltage bias as well as
the solution flow rate to obtain almost bead-free fibres. The morphology of neat PLLA and composite
fibres is shown in SEM micrographs in Figure 2. Composite fibres exhibit a quite homogeneous
distribution of embedded SBA2 particles (arrows in Figure 2b).

The SBA2 incorporation also leads to an increase of the overall roughness in the electrospun mats.
Interestingly, the average diameter of PLLA-SBA2 filaments is around one half of fibres without SBA2
(Table 1), similarly to previous findings on composite fibres made by PCL and commercially available
Bioglass®(45S5) particles [42]. This effect might be explained due to the change of intrinsic solution
properties, including rheology and conductivity, of the polymeric solutions after the addition of SBA2
particles [44]. In addition, the physical effect of particles in the electrified solution is associated to the
onset of enhanced whipping and varicose instabilities, which affect the morphology of the ultimately
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deposited fibres [45], as shown by the local increase of filament radius in the composite fibres close to
the particles. The resulting excess mass due to local polymer accumulation leads to the here found
decrease of diameter along the rest of the fibre length due to the overall polymer mass conservation.
Furthermore, we find that both the types of fibres display cylindrical shape and high surface porosity,
with pore size around 100 nm (Figure 2c,d), which is characteristic of PLLA electrospun with highly
volatile solvents [28] and expected to favour cell attachment. Indeed, it is known that both micro-
and nanoporosity play an important role in protein adhesion and cell function [46]. In addition,
the incorporation of the bioactive glass particles in PLLA-SBA2 fibres is confirmed by SEM-EDS
analysis as shown in Figure 3 and Figure S1.
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Table 1. Average diameters, minimum and maximum values measured for the transversal size of neat
polymeric and composite fibres.

Sample Average Fibre Diameter
(µm)

Minimum Fibre
Transversal Size (µm)

Maximum Fibre
Transversal Size (µm)

PLLA 2.0 ± 0.2 1.0 3.9
PLLA-SBA2 1.0 ± 0.2 0.3 2.5
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The mechanical properties of the polymeric and composite fibres mats, determined from their
stress–strain curves, are summarized in Figure 4, in terms of Young’s modulus (Figure 4a), elongation at
break (Figure 4b) and tensile strength (Figure 4c) for either randomly oriented and aligned electrospun
samples. Particularly, in uniaxially aligned arrays, in which the fibres and to some extent polymeric
chains [47–51] are oriented along the traction axis, mechanical differences between composite and neat
PLLA are more pronounced [49]. The elastic modulus of PLLA-SBA2 fibres is found to be (34 ± 5)
MPa, significantly higher than the value measured for pristine PLLA fibres, (20 ± 2) MPa, just for the
aligned fibres. Correspondingly, PLLA-SBA2 exhibits a relatively lower elongation at break (15 ± 2%)
compared to the value of PLLA samples in the same alignment conditions (20 ± 2%), as well as higher
tensile strength (11 ± 1 MPa), compared to (7 ± 1) MPa. The mechanical behaviour of the composites
tightly depends on the interaction at the polymer-bioactive glass interface and on the homogeneity of
the dispersion of glass particles in the fibres, which if poor would lead to agglomeration in clusters [51].
The present findings in terms of increased elasticity and concomitant reduction of the elongation at
break and tensile strength are indicative of a reinforced fibre system where inorganic fillers lead to
embrittlement of the fibres [39,52].
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Figure 4. Young’s modulus (a), elongation at break (b) and tensile strength (c) of random and aligned
fibres. Results are expressed as (mean ± standard deviation). Bars show statistically significant
differences (p < 0.05). In the inset of (a) and (c) a zoom view of the properties of randomly oriented
fibres is reported.

The analysis of both PLLA-SBA2 and PLLA fibres, performed by collecting SEM micrographs of
samples soaked in SBF solution, evidences polymer degradation starting from the 7th day following
incubation, resulting in cracks and points of break in the surface of fibres. As highlighted in SEM
micrographs in the top of Figure 5, in PLLA-SBA2 fibres this degradation leads to a progressively
increasing exposure of glass particles to the surrounding microenvironment. In order to investigate the
resulting bioactive glass dissolution from PLLA cracks propagating along the nanopores on the fibre
surface, we perform further in vitro degradation studies, incubating the composite scaffolds in DPBS
in physiological conditions (at pH = 7.4 and 37 ◦C), as showed in Figure S2c. During the immersion
in DPBS for 21 days, the corresponding changes of the solution pH was monitored, as displayed
in Figure 5 together with corresponding SEM micrographs at each time point. PLLA fibres clearly
undergo acid hydrolysis in the solution which leads to a decrease of pH, whereas for the composite
fibres this trend is overcome by the release of SBA2 dissolution products into the solution. The pH
increase related to bioactive glass dissolution products have been already investigated in several
medium by Cerutti et al. [52]. This increased pH associated with the dissolution-precipitation of
bioactive glass is known to affect various cellular processes, being correlated with increased metabolic
activity and proliferation rate in mammalian cells [53]. Our data on pH variations are also supported
by the corresponding measurements of sample weight loss, performed after 21 days, which is found to
be 2.2% of the initial weight for neat PLLA fibres and 9.7% for PLLA-SBA2 fibres.
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Change in the pH of DPBS solution for PLLA and PLLA-SBA2 fibres, which is associated to the acid
hydrolysis of the polymer components and to the release of SBA2 into the solutions at 0, 1, 7, 14, 21 days
from incubation and the relatives SEM micrographs at high magnification of composite and polymeric
fibres along soaking experiments in SBF at the same time point (scale bar = 2 µm).

The acellular bioactivity of the electrospun fibres is evaluated by exploring the formation of HCA
on their surfaces upon soaking in SBF, at 37 ◦C for different time periods. The bioactivity of PLLA-SBA2
fibres can be clearly appreciated when a large quantity of HCA with typical cauliflower-like
morphology is found nearby the electrospun filaments (rightmost SEM micrographs in the top of
Figure 5). Neat fibres, instead, do not lead to HCA formation. These findings are supported by EDS,
detecting high Ca and P peaks belonging to HCA (Figure 6) with Ca/P ratio of 1.9, as well as by
FTIR analysis (Figure 7). Indeed, FTIR spectra of PLLA-SBA2 fibres following incubation feature two
new peaks at 600 cm−1 and 560 cm−1 corresponding to HCA-associated P–O groups asymmetric
bending [54] and the increase in intensity of the peak centred at 960 cm−1 ascribable to the contribution
of Si-OH symmetric stretching characteristic of the bioactive glass after immersion in SBF [54,55].

The formation of HCA following immersion in SBF solution confirms that the incorporation
of the bioactive glass particles in the PLLA filaments is not preventing the characteristic bioactivity
of this specific composition of bioactive glass to be highlighted [32]. In addition, the formation
of HCA after 21 days suggests this class of scaffolds not only as useful systems for bone tissue
engineering but also for soft tissue repair applications, because release of ions is detected since
the earliest time point, as evidenced by the pH variation in the degradation studies. In particular,
these fibrous architectures would be highly suitable for the release of therapeutic ions embedded in
the bioactive glass structure, occurring without simultaneous damage in the fibrous structure of the
scaffolds. Indeed, the double-scale temporal dynamics exhibited by the two mechanisms might be
highly advantageous for wound healing processes, where the composite can still provide mechanical
support while serving as reservoir of therapeutic ions [56]. The ability to modulate ion release through
bioactive glass composition engineering, in relation to the addressed cell type, might be especially
important in this respect. This relevance is also suggested by previous works that emphasized the
influence of ion release in stimulating vascularization and triggering the production of angiogenic
growth factors during soft tissue repair [57,58]. Other application fields potentially benefiting from
interplaying ionic release and gradual morphological changes in composite scaffolds include the
development of biomedical materials able to modulate the inflammatory response [59], to control cell



Nanomaterials 2019, 9, 182 9 of 15

proliferation [11], to support the regeneration of the peripheral nerve and the treatment of relevant
pathological conditions such as chronic osteomyelitis [60–62]. The smart combination of biologically
active ion release and nanotopography has been highlighted for tissue engineering [63].
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Figure 7. Fourier transform infrared (FTIR) spectra of neat PLLA (PLLA_d0) and composite scaffolds
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Finally, we investigated the biocompatibility of PLLA-SBA2 fibres using a murine-derived ST2
stromal cell line. The morphology of cells, inspected by SEM, was found to be affected by the fibrous
structure of the scaffold, with significant cells elongation along the directions of supporting fibres
as shown in Figure 8. The cytoskeleton actin and the nuclei of cultured cells were also analysed by
immunofluorescence microscopy (Figure 9). Overall, cells adhesion was efficient on the nanocomposite
filaments embedding bioactive glass particles. In previous works, in vitro cytotoxicity tests of SBA2 in
PMMA-based cement were accomplished using the indirect contact method [33]. Here, the cell viability
is directly evaluated at 1 and 7 days after seeding. WST-8 assays highlight, for absorbance detected at
450 nm at day 1 for cultures on PLLA fibres, an almost double value compared to those measured for
cultures on PLLA-SBA2, results shown in Figure 10. This result correlates well with the increase of
the pH value found during degradation studies, namely with the release of ions from the bioactive
glass particles. Indeed, it is known that the alkalinisation of the medium can influence significantly
cell metabolism [64] and can consequently induce distinct phases in cell cycling on composite and
neat fibres, respectively, as also suggested by previous reports focused on the behaviour of human
osteoblasts exposed to the ionic dissolution products of bioactive glass [65,66].

At day 7 after seeding the values of absorbance measured on PLLA fibres and on PLLA-SBA2
fibres become comparable, as shown in Figure 10, evidencing that the initial conditions of pH changes
do not affect cell viability at longer timescales. ST2 cells cultured on composite fibres generally exhibit
a relatively lower cell density following seeding, then reaching cell densities comparable to those on
PLLA fibres after 7 days. Indeed, despite a significant difference in cell density immediately after cell
seeding, these results evidence the ability of PLLA-SBA2 fibres to providing an effective and viable
environment for subsequent scaffold colonization.
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4. Conclusions

This study investigated the potentiality of electrospun PLLA-SBA2 fibres as potential scaffold
material for tissue engineering. The bioactive glass (SBA2) micro-sized powder was effectively
incorporated in electrospun polymer filaments and the obtained composite system was characterized
in terms of morphology and mechanical properties. The acellular bioactivity and biocompatibility
of the PLLA-SBA2 fibres was assessed and HCA deposition after 21 days of immersion in SBF was
found to be promoted by the embedded bioactive glass particles at a later stage compared with ion
release, suggesting this system as multifunctional scaffold appealing for both bone and soft tissue
engineering applications.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/2/182/s1,
Figure S1: EDS analysis performed on PLLA-SBA2 sample before (top) and after 21 days of immersion in SBF
solution (bottom), Figure S2: SEM micrographs of neat PLLA fibers (a), composite PLLA-SBA2 fibers (b), composite
fibers after 7 days in DPBS (c) and 21 days in SBF (d).
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