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Abstract—Compressed Sensing (CS) is an acquisition technique
able to reduce the operating cost (e.g., energy requirements) of a
signal processing system thanks to its capability of simultaneously
sampling and compressing an input waveform. Here we focus
on Electrocardiogram (ECG) signals acquired by means of a
custom designed acquisition board that exploits CS as early-
digital compression stage. We show that when CS acquisition
sequences are sparse ternary, i.e., with symbols {−1, 0,+1} and
designed to maximize their rakeness, it is possible to achieve a
reduction in the energy required for ECG signal compression
by a factor between 25 and 30 with respect to the standard
acquisition with independent and identically distributed random
sequences.

I. INTRODUCTION

The introduction of the Compressed Sensing (CS) paradigm
[1] paved the way for adopting resource-efficient Analog-to-
Information Converters (AICs) to replace standard Nyquist-
rate Analog-to-Digital converters (ADCs). Very interesting
applications are related to the acquisition of biomedical signals
[2], [3], [4], whose features allows CS to exploit its capability
to simultaneously sample and compress signals, thus opening
multiple energy saving possibilities. In particular, there is
a recent interest in applying CS to sensing nodes in ultra-
low power personal monitoring systems (PMS), in the effort
of reducing power consumption, extending battery life, and
enabling ubiquitous and long-term monitoring policies for the
future healthcare system.

This paper is focused on the application of the CS as an
early-digital compression stage for Electrocardiogram (ECG)
signals. More precisely, the scenario we consider is shown
in Fig. 1, where a battery-powered system collects data from
biosensors, compresses them via a microcontroller (MC),
and either stores them in a non-volatile memory (NVM) or
transmits them using a wireless protocol. In this context, CS
has been shown to be a very good candidate for lowering
power requirements with respect to state-of-the-art compres-
sion algorithms [5], [6].

Our work focuses on the impact of the CS-based compres-
sion algorithm running on the MC. Its main task is to reduce
as much as possible the rate of the output data, thus increasing
the energy saved when storing or transmitting it. At the same
time it must respect the constraint of preserving the quality of
the acquired signal and to be itself efficient in terms of energy
requirements and algorithm complexity. With these aims in
mind, among the several CS-based approaches proposed in
the literature we concentrate on that relying on rakeness. The
driving concept is to exploit the the statistical features of input
signals (i.e., the fact that their energy is localized in a certain
bandwidth) either to boost the achievable compression rate or
to increase signal reconstruction quality. Roughly speaking,
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Fig. 1. Block scheme of a typical biomedical monitor equipment.

this is not dissimilar to what we employed in (chaos-based)
DS-CDMA communication, where chip waveforms, spreading
sequence statistics and rake receivers taps were jointly selected
to collect (rake) as much energy as possible at the received side
[7][8]. CS rakeness-based approaches have also recently been
improved by allowing the design of sensing stages based on a
sparse matrix [9], which has shown to considerably improve
energy saving.

The paper is organized as follows. In Section II basic
concepts of CS, rakeness and sparse sensing are introduced.
In Section III shows the hardware architecture. Reconstruction
results, along with some energetic trade-off evaluations, are
provided in Section IV. Finally, we draw the conclusion.

II. CS FUNDAMENTALS

Let x ∈ Rn be an instance of a discrete-time signal, defined
by its n Nyquist-rate samples. Let also x be κ-sparse, i.e., a
proper orthonormal n-dimensional sparsity basis S ∈ Rn×n
exists, in which any instance x = Sξ is represented by
a vector ξ ∈ Rn with no more than κ � n non-zero
components. Under these assumptions, CS theory states [1]
that it is possible to overcome the limit imposed by Shannon
sampling and represent x using m < n measurements only
obtained via the linear projection of x over a sensing matrix
A ∈ Rm×n, that is

y = Ax+ ν = ASξ + ν (1)

where y ∈ Rm is a vector collecting the m measurements,
and ν is an additive disturbance term modeling non-idealities
and noise. According to (1), the j-th measurements is yj =
〈Aj,·, x〉, i.e., the scalar product between the j-th row Aj,· of
A and x. The possibility of retrieving x from y relies on some
properties of A [10] and the reconstructed signal x̂ = Sξ̂ is
obtained by solving the optimization problem

ξ̂ = argmin
ξ
‖ξ‖1 s.t. ‖ASξ − y‖2 < ε (2)
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where ‖ · ‖1 (‖ · ‖2) are the standard `1(2) norms, and ε
bounds the effects of ν. In other words, retrieving the input
signal is an ill-posed inverse problem, and ξ̂ is determined by
looking for the sparsest vector ξ that solves (1). According
to [10], the easiest way to ensure reconstruction is to draw
elements of A as independent and identically distributed (i.i.d.)
random variables. In this case, convergence is guaranteed [1]
if m ≥ O(κ log(n/κ)). Interestingly, a common hardware-
friendly choice [3], [4] is to draw elements of A by means of
an antipodal Bernoulli distribution, i.e., A ∈ {−1,+1}m×n
where −1 and +1 occur with the same probability. No
performance reductions are observed with respect to using
more complex (e.g., Gaussian) distributions [11].

When x is also localized, i.e., its energy is not distributed
uniformly in the signal space (as it is the case for many
biomedical signals), one can exploit rakeness-based CS [12][9]
to enhance signal reconstruction quality or reducing the num-
ber of measurements m.

More specifically, by defining the rakeness ρ as the expected
value of the energy measurement for any possible x and
any possible generic row Aj,·, i.e. ρ = E

[
|〈Aj,·, x〉|2

]
,

one improves CS by maximizing ρ under some constraints
necessary to preserve randomness of the rows of A. The
solution of the optimization problem is a relation between the
correlation matrix X of x and the correlation matrix A to be
used in the generation of the generic row Aj,·.

Note that this concept is perfectly compatible with the
design of an antipodal sensing matrix A and has also recently
been extended [9] also to the case of sparse ternary sensing
matrix, i.e. when A ∈ {−1, 0,+1}m×n. The energy cost of
computing (1) depends on m×n, but also on the value of the
elements of A. By setting zero elements in A, the correspond-
ing multiply-and-accumulate operations can be skipped. In this
sense, as shown in [9], the adoption of a rakeness-based sparse
A ensures at the same time extremely lightweight sensing with
excellent compression performance1.

III. HARDWARE ARCHITECTURE CONSIDERED

A custom designed ECG acquisition system has been used
to evaluate performance of the sparse ternary CS approach
described in the previous section.

The system is based on on a TI ADS1292 low-power analog
front-end for ECG connected to a TI EK-TM4C123GXL eval-
uation board, embedding a low-power low-cost ARM Cortex-
M4F MC, that controls the analog front-end and performs
signal compression.

Measurements are obtained according to the standard ECG
lead system. A fully differential input channel of the AD1292
is used to acquire the electric potential between the left arm
and the right arm (bipolar lead I, LA–RA). The differential
signal is internally amplified (by a factor of 6) and converted
to digital by mean of a 24-bit sigma-delta ADC with a
sampling frequency fs = 250Hz. The right leg drive circuit
is configured to sense the input and drive the body with the
inverted common-mode signal through the right leg electrode
with the aim of reducing the common-mode noise. Resolution

1The MATLAB c© framework developed in [9] is online available at
http://cs.signalprocessing.it/download.html along with a few demo examples.

is then reduced to 11 bits by simply discarding unused high-
significant bits and noisy low-significant ones.

This paper focuses on the compression aspects of the
system, and its main contribution is to show how a properly
designed sensing matrix A could reduce power requirements
of generic MC-based ECG compression system, considering
the Cortex-M4F processor as reference case.

To this aim, a proper optimized CS-based early-digital
compression stage is implemented on the ARM processor,
taking n = 256 successive ECG samples from the ADS1292
as input signal and a variable number m of measurement. A
simple but effective power consumption model has also been
devised, based on the observation that the ARM processor
consumes almost constant power which mainly depends on
the working frequency and the enabled internal peripherals.
Experimentally, with a system clock fclk = 16MHz and
all peripherals disabled, the observed current consumption
is Iavg ≈ 11.3mA. With this, we can estimate the en-
ergy required by the ARM for executing a code as E =
VddIavgNc/fclk, where Vdd = 3.3V and Nc is the number of
clock cycles. Even if this approach has some drawback (i.e.,
we are measuring the whole ARM consumption, including,
f.i., also the clock generation), we can still use it to identify
the saved energy with respect to a standard case.

Three different sensing strategies, all based on either an
antipodal or sparse ternary sensing matrix, were implemented
to evaluate the achievable gain. The first reference approach
is the standard CS characterized by a non-sparse antipodal
sensing matrix. Given the Cortex architecture, the most conve-
nient implementation has been identified in storing the generic
elements Aj,k of the sensing matrix as 32-bit integer values,
and computing with a simple loop

yj = 〈Aj,·, x〉 =
n−1∑

k=0

Aj,kxk (3)

The memory footprint of this approach is inefficient (especially
since Aj,k ∈ {−1, 1}) and dominated by the storing of A
(4nm bytes required). However, the execution of the loop in
(3) is pretty fast, taking advantage both from the multiply-
and-accumulate ARM hardware instruction and from the 32
bit data alignment. The value of Nc in the evaluation of y
depends on m and on n.

The second approach is the non-A-sparse antipodal
rakeness-based sensing. From a computational point of view,
there is no difference with respect to the standard CS case.
Also in this case Nc depends on m and n. The correlation
matrix A used to generate the generic row Aj,· maximizing
rakeness has been computed by estimating X as in [4].

The last considered case is the A-sparse rakeness-based
approach.

Since A is a sparse matrix with Aj,k ∈ {−1, 0, 1}, (3) can
be reduced to

yj = 〈Aj,·, x〉 =
∑

k∈K+
j

xk −
∑

k∈K−
j

xk (4)

where K+
j = {k |Aj,k = 1} and K−j = {k |Aj,k = −1}

are the index sets of the non-null elements of Aj,·. Let us
indicate with d the number of non-null elements for each
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Fig. 2. Performance in terms of ARSN as a function of m for the standard CS,
the non-sparse antipodal rakeness-based CS and the sparse ternary rakeness-
based CS for different values of d.

yj , i.e., |K+
j | + |K−j | = d, ∀j. Clearly, the complexity of

computing (4) is much lower than (3) since only d operations
(either additions or subtractions) instead of n are required. The
value of Nc in this case depends on m and d instead of m
and n. This case presents a considerable saving also from the
memory footprint point of view. The storing of a row of A is
dominated by memorizing both K+

j and K+
j , that can share d

memory cells with at least log2 n bits (i.e., d bytes in our case
where n = 256). Therefore, memorizing the entire A requires
in this case only md bytes.

IV. RESULTS

Performance in terms of reconstruction quality for the
different encoding methods were evaluated by reconstructing
the signal with the SPGL1 toolbox2.

For comparison, we use the Average Reconstruction SNR
(ARSNR), defined as the average observed value of the
reconstruction SNR

RSNR = 20 log10

( ‖x‖2
‖x− x̂‖2

)

Provided values of ARSNR have been computed by averaging
over 500 different combinations of x and A.

Results are shown in Figure 2 as a function of m. The
standard CS (Std-CS) and the binary antipodal non-A-sparse
rakeness-based CS are considered along with many ternary
sparse cases with different values of d (Rak-CS). As expected
from [9], all rakeness-based sparse approaches achieve per-
formance between that of the standard CS and of the non-
sparse rakeness-based CS. Worth stressing that performance
for d = 16 is already almost superimposed to the upper limit
given by the non-sparse antipodal rakeness case. This high-
lights how the introduction of the sparse rakeness approach
can have an almost negligible cost in terms of performance
reduction.

In order to highlight the advantage in terms of energy
saving, we introduce two additional figures of merit related
to the amount of information and of energy required to ensure
a given quality of service. Let us focus on ARSNR = 20.9 dB,

2online available at https://www.math.ucdavis.edu/∼mpf/spgl1/

TABLE I
VALUE OF m REQUIRED FOR ACHIEVING THE TARGET SERVICE QUALITY
ARSNR = 20.9 dB FOR RAK-CS, WITH THE CORRESPONDING VALUE OF

BIT SAVING RATE (BSR) AND ENERGY SAVING RATE (ESR).

d mmin BSR ESR

sparse 4 148 1.13 41.27
sparse 8 129 1.20 30.85
sparse 10 98 1.48 33.71
sparse 12 90 1.61 31.38
sparse 16 83 1.75 27.28
sparse 20 85 1.60 22.23

non-sparse 256 85 1.51 1.51

that is the value we obtain in the Std-CS when using m = 128,
i.e., half of the measurements with respect to the Nyquist
approach. This is typically considered a good working point
in CS-based ECG encoding [5]. The number of measurements
m required to ensure this ARSNR depends on the encoding
strategy, and can be found in Table I.

Let us consider the number of bits needed by each encoding
strategy for achieving the desired ARSNR. This is simply
given by mby , where, however, also by depends on the coding
as detailed in the following.

In the sparse approach regulated by (4), only d terms are
present in the sum. In order to cope with the worst case we
need to use by = bx + dlog2 de, where d·e is the smallest
integer not smaller than its argument, and where bx = 11bit
is the precision used to encode input signal samples.

Conversely, when considering a non-sparse approach each
measurement is evaluated as in (3), i.e., as the sum of n terms.
Since n = 256 is large enough to assume that the central
limit theorem holds for (3), yj can be approximated as a
normal random variable with standard deviation σy =

√
nσx,

where σx is the standard deviation of the input signal [11].
Thanks to this, we limit ourselves to ensure conversion in
the range [−4σy, 4σy]. If this assumption holds we can set
by = log2(4

√
nσx) ≈ bx + log2

√
n+ log2 4 = 17 bits.

Consider the standard CS as reference case. The correspond-
ing total number of bits used for encoding a signal with the
target quality mentioned above is m(bx+log2

√
n+2) = 2176

bits, and the energy required for the evaluation of y, computed
as VddIavgNc/fclk is ≈ 614µJ. We can then introduce as
figures of merit the Bit Saving Ratio (BSR) and the Energy
Saving Ratio (ESR) as the reduction achieved by the (sparse)
rakeness approach with respect to the reference case in terms,
respectively, of number of bits and energy required for encod-
ing. All values are shown in Table I.

Looking at Table I, it is interesting to note that, while the
lower d, the larger the advantage in terms of ESR, it is possible
to identify an optimum point for BSR in d = 16. Here, the
number of bit required for the coding is even smaller than that
required by the non-sparse rakeness approach. An example of
an ECG signal acquired by the designed architecture, encoded
with d = 16 and reconstructed by means of the SPGL1 toolbox
is depicted in Figure 3.

As a final comment, despite being computed on a particular
hardware, the proposed dimensionless values of BSR and ESR
can be in principle extended to have general validity for CS-
based ECG sensing system relying on a similar architecture.
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Fig. 3. Short example (about 6.5 s) of an ECG signal reconstructed after being encoded with the sparse rakeness approach with d = 16.
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Fig. 4. Overall saving rate (OSR) for a generic system as a function of α.

Let us assume that ECS
std is the energy required for computing

measurements in a standard CS approach. Given the ESR, in a
rakeness approach energy is reduced to ECS

std/ESR. Indicating
with ED

std the energy for the measurements dispatch (either
transmission or storage) in the standard CS approach, and
assuming that this energy is proportional to the encoded bits,
when considering a rakeness approach we need ED

std/BSR.
Of course, the overall energy requirement is mainly due by

the sum of the two contributions.
Evaluating ED

std is a non-trivial task, and out of the scope
of this paper. Typically, ED

std is very small in case we save
data into a NVM, much larger when considering a short-range
wireless protocol, and even larger if a long-range transmission
is considered. Here, we simply assume that ED

std = αECS
std,

with α a proper constant to be evaluated for each specific case.
The overall energy for computing and sending measurements
can therefore be expressed as (1+α)ED

std in the standard CS,
and as (1/ESR + α/BSR)ED

std in the rakeness case. With
this, we can define the Overall energy Saving Rate (OSR) as

OSR =
1 + α

1/ESR + α/BSR

The OSR value is plotted in Figure 4 as a function of α
for some typical cases. For small values of α, the energy is
dominated by computing measurements, and the case d = 4
due to the high ESR ensures a gain up to 40. As α increases,
BSR gains in importance, and other values of d ensure the
highest OSR. When α further the increases, overall energy is
dominated by the transmission cost, and the case m = 16,
ensuring the highest BSR, is the optimum one. Note that,

for any value of α, the sparse ternary rakeness CS approach
outperforms the antipodal non-sparse rakeness CS.

V. CONCLUSION

In this paper, a practical example of the advantage in
terms of energy saving when adopting sparse ternary rakeness
approach in a CS-based ECG acquisition system is considered.
When real ECG signals are taken into account, the gain in
terms of energy saved for signal encoding is more than 20.
The gain when considering the overall system including data
storing or transmission depends on the energy required by the
latter, but with a simple model it is possible to show that there
is always an advantage with respect both to the standard CS
approach and to the non-sparse rakeness approach.
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