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Abstract—The balanced weighted orthogonal matching pursuit
(bWOMP) algorithm for recovering signals in compressed sensing
(CS) based system is presented as a specialized recovering tool
for Electrocardiograph (ECG) signals. Being based on the stan-
dard OMP approach, bWOMP is a lightweight reconstruction
algorithm both in terms of complexity and memory footprint.
Furthermore, the concept of weighting is introduced in the
algorithm by exploring a prior knowledge on ECG signals.
Experimental results show a performance increase of about 10
dB with respect to the standard OMP approach, and also an
increase with respect to the decoding approaches considered as
the state-of-the-art. In this case the gain could be as high as 4 dB
with respect to the best of currently known decoding approaches.

I. INTRODUCTION

Compressed Sensing (CS) is a recently introduced paradigm
[1] capable under some assumptions to perform a sub-Nyquist
sampling, i.e., to acquire an input signal with a number of
measurements smaller with respect to what expect according
to its bandwidth. This interesting feature, paired with a simple
sampling mechanism (projection of the input signal on a
set of typically random sampling waveforms) has received
increasing attention in particular in the area of biomedical
signal processing. Properties of these signals, in fact, allow
CS to exploit all its capabilities. A typical field of interest
is given by Body Area Sensor Networks (BASNs) [2], [3]
where many micro-power sensor nodes take advantage from
the very simple CS-based sensing architecture. This is why, in
the recent literature, efforts have concentrated on improving
CS acquisition (f.i. exploiting rakeness [4]1) and it is already
possible to find many biomedical signals acquisition systems
based on CS [7], [8], [9], [10].

Such as sampling advantage has a cost: the complexity of
the recovery stage, which typically relies on the solution of
a convex optimization problem [11]. Even if this may not be
critical (decoding in BASNs is executed on a central gateway
where energy is not an issue), reducing the energy required
for decoding is a trending topic and many reconstruction
algorithms have been proposed which allow a large reduction
in the computational cost. In particular, greedy algorithms [12],

1One exploits the statistical features of input signals to increase signal
reconstruction quality by suitably design matched acquisition sequence. This
is similar to what happens in (chaos-based) DS-CDMA communication, where
chip waveforms, spreading sequence statistics and rake receivers taps are
jointly selected to collect (rake) as much energy as possible at the received
side [5][6].

[13] are worth mentioning, which are based on an iterative
approach that generates an intermediate and approximate so-
lution converging, with a speed varying with the algorithm, to
the correct one after a number of steps.

Furthermore, some papers have recently proposed algo-
rithms specialized over a specific class of biosignals (ECG
f.i. as in [14], [15]). These approaches, exploiting some signal
statistical properties, are able to boost reconstruction quality.

The aim of this paper is to propose a new specialized
reconstruction algorithm, namely bWOMP, based on the stan-
dard Orthogonal Matching Pursuit (OMP) method developed
in [12], that is one of the fastest and simplest reconstruction
algorithm known [16], and modified to include specialization
for ECG signals. In detail, we exploit prior information on the
ECG signal statistic characterization as in the the Weighted `1
Minimization (WLM) method proposed in [15].The outcome is
an algorithm that is still as fast and simple as the original OMP
approach, but capable of increasing reconstruction quality
with respect to OMP (in average, of 10 dB) and also when
compared to WLM (in some cases up to 4 dB).

The paper is organized as follows. Section II introduces
the basic concepts of CS. In Section III we summarize the
OMP and the WLM decoding approach, and describe the
proposed bWOMP algorithm. In Section IV we show perfor-
mance results for ECG signal decoding. Finally, we draw the
conclusion.

II. CS FUNDAMENTALS

Let x ∈ Rn be an instance of a discrete-time signal, defined
by its n Nyquist-rate samples. CS can be used to sample x
under the following assumptions. First, let x be κ-sparse, i.e.,
a proper orthonormal n-dimensional sparsity basis S ∈ Rn×n
exists, in which any instance x = Sξ, where ξ ∈ Rn has
no more than κ � n non-zero components. We refer to the
κ non-zero components of ξ as the signal support. Then, let
A ∈ Rm×n be a sensing matrix such that A posses properties
required by CS theory [11] and B = AS.

With this, it is possible to get a representation of x by
means of m < n measurements only, by means of the linear
projection of x over a sensing matrix

y = Ax+ ν = Bξ + ν (1)

where y ∈ Rm is a vector collecting the m measurements,
and ν is an additive disturbance term used to model non-
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Algorithm 1 Pseudocode for OMP.
Require: y ∈ Rm vector of measurements
Require: B = AS ∈ Rm×n sensing operator in the sparse domain
ξ̂0 ← empty vector {initial guess}
r0 ← y {error in reproducing measurements from initial guess}
Φ0 ← empty matrix
i← 1
repeat
j = arg max

k
|〈ri−1, bk〉| {look for the most correlated row of B}

Φi ← [Φi−1 bj ]

ξ̂i = arg min
ξi∈Ri

‖y −Bξi‖2
ri ← y −Bξ̂i {new error in reproducing measurements}
i← i+ 1

until convergence
ξ̂ is the sparse vector whose non-null elements are given by ξ̂i

idealities such as the quantization error or the signal noise.
The decoding stage takes the m measurements and reconstruct
the input signal as x̂ = Sξ̂, where ξ̂ is the solution of the
optimization problem

ξ̂ = arg min
ξ
‖ξ‖1 s.t. ‖Bξ − y‖2 < ε (2)

where ‖ · ‖1 and ‖ · ‖2 are the standard `1 and `2 norms, and
ε bounds the effects of ν. Such an approach is called basis
pursuit with denoising (BPDN). In other words, ξ̂ is found by
looking at vectors ξ that solve (1) with a proper tolerance.
Being an ill-posed problem, multiple solutions exists; CS
states that the correct one is the sparsest [11]. Sparsity is
generally promoted by the `1 norm instead of the typically
computationally intractable count of non-zero components
given by `0 norm.

The interest in CS is mainly due to the fact that, in order to
ensure the required properties of A, it is enough to randomly
draw its elements as independent and identically distributed
random variables. In this case, correct reconstruction is guar-
anteed if m ≥ O(κ log(n/κ)) [1].

III. SIGNAL RECOVERY TECHNIQUES

A. OMP and the Greedy Recovery Approach

Solving (2) is a computationally complex task. To allow
simpler signal reconstruction, many algorithms have been
proposed relying on greedy approaches that iteratively promote
sparsity by observing intermediate and approximate solutions.
Despite being less rigorous than any straightforward approach,
they ensure a lower complexity and hence lower computational
costs, with an asymptotic solution that, given some assump-
tions, is a very good approximation of the real one.

In this paper we consider Orthogonal Matching Pursuit
(OMP) introduced in [12]. This is one of the most common
iterative approaches, due to its low cost both in terms of
complexity (i.e., energy) and memory footprint [16].

The working principle can be summarized as follows. Let
us indicate with bj the j-th column of B = AS, and with
ξ̂i ∈ Ri and ri = y−Bξ̂i ∈ Rn the approximate intermediate
solution at the i-th step and the residual error between actual
measurements and that generated by ξ̂i, respectively. Let also

Algorithm 2 Pseudocode for bWOMP, where the differences with respect to
OMP have been highlighted.
Require: y ∈ Rm vector of measurements
Require: B = AS ∈ Rm×n sensing operator in the sparse domain
ξ̂0 ← empty vector {initial guess}
r0 ← y
Φ0 ← empty matrix
i← 1
repeat

j = arg max
k

∣∣(1− γ)〈ri−1, bk〉+ γ〈ri−1, wk,kbk〉
∣∣

Φi ← [Φi−1 bj ]

ξ̂i = arg min
ξi∈Ri

‖y −Bξi‖2
ri ← y −Bξ̂i {new error in reproducing measurements}
i← i+ 1

until convergence
ξ̂ is the sparse vector whose non-null elements are given by ξ̂i

be Φi ∈ Rn×i a matrix for temporary data. By pursuing ri →
0, we get the desired solution.

In detail, starting with Φ0 an empty matrix, ξ̂0 an empty
vector and r0 = y, in each iteration OMP looks for the
column of B that is the most strongly correlated with ri−1.
Indicating with j the index of this column, bj is simply found
by looking for the largest (in module) scalar product 〈ri−1, bk〉,
k = 1 . . . n, or equivalently by looking for the element with
largest value (in module) of the vector B>ri−1. Then, bj is
added as the i-th column of the auxiliary matrix Φi, and ξ̂i
is computed as the vector that minimizes ri as solution of a
least squares problem. When convergence is achieved, ξ̂ ∈ Rn
is simply obtained as the sparse vector whose non-null entries
are the elements of ξ̂i taken in the correct order.

The pseudocode for OMP can be found in Algorithm 1,
while a more detailed description in [12].

Interesting, from a computational point of view the OMP
code could be simplified observing that ri is always orthogonal
to Φi. As a consequence, the least squares minimization prob-
lem in each step can be solved with marginal computational
cost by using a modified Gram-Schmidt algorithm exploiting
a companion system regulated by the orthonormalized matrix
Φ̂i that has to be constructed step by step along with the Φi.

B. WLM and the Adapted Recovery Approach

Many different reconstruction algorithms specialized over
a proper class of signals have been proposed so far in the
literature with the aim of increasing reconstruction quality
using some priors on the signal.

In this paper we focus on the Weighted `1 Minimization
(WLM), that is a decoding algorithm specialized for ECGs
proposed in [15] and based on prior information on ECG
statistic characterization. In more detail, in the WLM approach
the optimization problem (2) is replaced by

ξ̂ = arg min
ξ

1

2
‖Bξ − y‖22 + λ‖Wξ‖1 (3)

where λ is a normalization value (set to λ = 0.1 according
to authors’ suggestion) and W is an n × n diagonal matrix
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Fig. 1. bWOMP reconstruction performance in terms of ARSNR as a function
of m, for a few values of γ.
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Fig. 2. bWOMP reconstruction performance in terms of ARSNR as a function
of γ, for a few values of m.

whose entries are related to the probability of each column of
S to be included in the support of an ECG signal [15].

The intuition is to minimize both quantities ‖Bξ − y‖22
(that is constrained in (2) by ε), and ‖Wξ‖1, that is the `1
norm of ξ weighted by W . The parameter λ set the trade-off
between the two quantities to be minimized. As shown in [15],
the approach is capable of outperforming many other known
decoding approaches.

C. The Proposed bWOMP Approach

We propose in this section the balanced weighted OMP
approach. The basic idea is the same as in WLM: give to
components of S that are more frequently observed in signal
representation a better chance to be present in the recon-
structed signal, but using an iterative reconstruction algorithm
as simple as OMP.

This is obtained with a very small and computationally
negligible modification of the original OMP algorithm. In
detail, instead of looking for the column of B that is the
most strongly correlated with ri−1, we introduce the weighting
concept by means of a diagonal matrix W as in WLM, and
compute the column of B to be added as

j = arg max
k
|(1− γ)〈ri−1, bk〉+ γ〈ri−1, wk,kbk〉|

where wk,k is the (k, k)-th elements of W , or more practically
by looking at the largest elements (in module) of the vector

(1− γ)B>ri−1 + γWB>ri−1

where in both cases γ is a parameter regulating the importance
of the W matrix in the choice. Note that γ = 0 is the standard
OMP approach.

IV. RESULTS

In this section, by means of results of Montecarlo sim-
ulations, we analyze performance of the proposed bWOMP
approach and compare it with that of other state-of-the-art CS
reconstruction algorithms.

In all cases the simulation setting is the following. The input
signal is a synthetic ECG generated as in [17], with an average
heart-rate of 60 bpm, sampled at 360 Hz. The signal is then
quantized using 11 bits in order to better emulate a realistic
system.

The quantized ECG signal is then encoded by a CS system
using n = 512 and different values of m. A is a random
antipodal matrix where +1 and −1 occur with the same
probability. Finally, signal has been reconstructed using the
algorithms under test. The sparsity basis considered in recon-
struction is the Symlet-6 wavelet basis, allowing us to use the
weight matrix W computed as in [15].

As the main figure of merit to express reconstruction quality,
we use Average Reconstruction SNR (ARSNR), defined as the
average observed value of the reconstruction SNR

RSNR = 20 log10

( ‖x‖2
‖x− x̂‖2

)

over all the different simulated instance. Provided values of
ARSNR has been computed by averaging over 500 different
combinations of x and A.

Figure 1 shows the ARSNR achieved by bWOMP as a
function of m for different values of γ. The case γ = 0 (OMP
decoding) has been included. bWOMP shows an outstanding
advantage with respect to OMP, with performance better than
10 dB and more for all values of m for which ARSNR has
not reached the saturation level imposed by the input signal
quantization noise. Interestingly, γ = 0.125 ensures better
performance with respect to any other value.

The optimum γ value is confirmed by Figure 2, showing
the ARSNR achieved by bWOMP as a function of γ for
different values of m. All the plots in the figure present a non-
monotonic behavior, with a maximum achieved for γ ≈ 0.125.

An example of the ECG signal reconstructed by bWOMP
with γ = 0.125 and m = 140 is depicted in Figure 3, with
RSNR = 42.4 dB.

Finally, we propose in Figure 4 the performance comparison
between bWOMP and the decoding approaches currently



4

This is the author’s version of the article that has been presented at IEEE BioCAS2017
The editorial version of the paper is available at http://dx.doi.org/10.1109/BIOCAS.2017.8325143

For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org
Copyright (C) 2017 IEEE. Personal use is permitted.

1

0 1 2 3 4 5 6 7

0

0.5

1

time [s]

am
pl

itu
de

input ecg reconstructed ecg

Fig. 3. Five consecutive windows of input signal (dotted line) with the
corresponding reconstructed signal by bWOPM (solid line). Reconstruction
refers to m = 140 that correspond to a compression ratio equal to 3.66.
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Fig. 4. Performance comparison in terms of signal reconstruction quality
for the basic pursuit with denoising (BPDN), block sparse Bayesian learning
(BSBL), weighted `1 minimization (WLM) and weighted OMP (bWOMP)
approaches.

considered as the state-of-the-art for ECG signals. In detail,
we have considered the BPDN problem solved by means of
the SPGL1 toolbox2, and the two adapted recovery approaches
BSBL and WLM. The Block Sparse Bayesian learning (BSBL)
is an approach proposed in [14] that exploits the block sparsity
hypothesis to correctly decode signal in ECG applications.
In the comparison, the value γ = 0.125 has been used for
bWOMP.

The advantage of bWOMP with respect to the standard,
signal-agnostic BPDN and the adapted BSBL is remarkable.
Furthermore, bWOMP also outperforms WLM. For small and
large values of m there is a minor advantage, that however
grows to 4 dB for intermediate m values.

V. CONCLUSION

In this paper a reconstruction algorithm for CS systems,
namely bWOMP, is introduced as an approach adapted for
ECG signals. Being based on the iterative and greedy OMP

2online available at http://www.cs.ubc.ca/∼mpf/spgl1/

algorithm, it presents low computational complexity and mem-
ory footprint. However, at the same time exploits a prior
on the statistics of ECG signals similar to that used in the
WLM approach. With this, bWOMP is shown to increase
performance in signal decoding quality, in average, by 10 dB
with respect to the standard OMP. Furthermore, performance
are also improved with respect to the WLM, with an increase
evaluated in up to 4 dB.
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