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Abstract In this paper we present a Semi-Lagrangian scheme for a regu-
larized version of the Hughes’ model for pedestrian flow. Hughes originally
proposed a coupled nonlinear PDE system describing the evolution of a large
pedestrian group trying to exit a domain as fast as possible. The original model
corresponds to a system of a conservation law for the pedestrian density and an
Eikonal equation to determine the weighted distance to the exit. We consider
this model in presence of small diffusion and discuss the numerical analysis of
the proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of
small diffusion on the exit time with various numerical experiments.
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1 Introduction

In the last decades crowd dynamics has attracted the attention of many re-
searchers in the scientific community. Starting from the field of applied physics
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and transportation research, the motion of pedestrian crowds raised more and
more interest in the applied mathematics community.
Mathematical models range from the microscopic level, where the individual
dynamics are described separately, to the mesoscopic and macroscopic level,
where the distribution with respect to their velocity and/or position in space
is considered.
Microscopic models are either force-based, such as the social force model pro-
posed by Helbing and co-workers [31] or lattice based like the cellular automata
models proposed in [13,9]. On the macroscopic level the evolution of the pedes-
trian density is usually described by a conservation law, see for example [34,
21,43,22,26]. In these models the velocity field may depend on the current
local density, a given external potential and physical constraints due to walls
and/or barriers. Recently mean field games, cf. [33,37], have been proposed
to model the evolution of large pedestrian crowds, see [36,25]. These models
can be derived from stochastic optimal control problems for multi-agent sys-
tems as the number of individuals tends to infinity. For a detailed overview on
different modeling approaches in pedestrian dynamics we refer to [6,24].
In 2002 R. Hughes proposed a macropscopic model for pedestrian dynamics in
[34], which is based on a continuity equation (describing the evolution of the
crowd density) and an Eikonal equation (giving the shortest weighted distance
to an exit). It is given by

∂tm(x, t)− div(m(x, t) f2(m(x, t))∇u(x, t)) = 0,

|∇u(x, t)| = 1

f(m(x, t))
,

(1)

where x ∈ Ω denotes the position in space, t ∈ (0, T ], T ∈ R+ the time and ∇
the gradient with respect to the space variable x. The function m corresponds
to the pedestrian density and u the weighted shortest distance to a target,
for example an exit. Hughes proposed different functions penalizing regions of
high density, the simplest choice being f(m) = 1−m where 1 corresponds to
the maximum scaled pedestrian density. In this work, we will assume that f
is a general smooth function.
System (1) is a highly nonlinear coupled system of partial differential equa-
tions. Few analytic results are available, all of them restricted to spatial dimen-
sion one. The main difficulty comes from the low regularity of the potential
u(x, t), which is only Lipchitz-continuous. For existence and uniqueness results
of a regularized problem in 1D and the corresponding Riemann problem we
refer to [27,2,3]. Different numerical strategies have been proposed to solve
the full 2D system: Huang et al. [32] proposed a WENO scheme for the conser-
vation law and a fast sweeping method for the Eikonal equation. Twargowska
et al. [49] compare the behavior of solutions to the Hughes’ model and a sec-
ond order model using extensive numerical experiments, which are based on a
mixed finite volume method. A generalization of the Hughes’ model in the case
of limited local vision was studied by Carrillo et al. [16] in spatial dimension
one and two.
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In this work we consider a modified version of (1), which served as the basis
for the 1D analysis presented by Di Francesco et al. in [27]. It corresponds to∂tm(x, t)− ε∆m(x, t)− div(m(x, t) f2(m(x, t))∇u(x, t)) = 0,

−ε∆u(x, t) + 1
2 |∇u(x, t)|2 =

1

2f2(m(x, t)) + δ
,

(2)

in Ω × (0, T ).
The regularization parameter δ > 0 prevents the blow-up of the cost when ap-
proaching the maximum density one. The diffusive terms allow to use standard
analytical techniques from nonlinear PDE theory, see [27]. Diffusive phenom-
ena have been observed and studied in pedestrian dynamics [50,38], giving an
additional justification of the modification considered.
System (2) has to be supplemented with suitable boundary and initial condi-
tions. We consider an initial density m0 of the agents satisfying that m0 ≥ 0,
m0 ∈ L∞(Ω) and the support of m0 is a subset of Ω. Note that rescaling the
density m0, and possibly modifying the function f in the equation, we can
assume that

∫
Ω
m0(x)dx = 1. This normalization is useful in order to pro-

vide a probabilistic interpretation of the Fokker-Planck (FP) equation in (2).
Possible boundary conditions for the pedestrian density m at the exit are:

– a given fixed outflow, corresponding to Neumann boundary condition,
– an outflux which depends on the pedestrian density, hence a Robin bound-

ary condition,
– or a prescribed pedestrian density, giving a Dirichlet boundary condition.

Let T denote the common target/goal of the crowd, which is a subset of the
boundary i.e. T ⊂ ∂Ω. We set the pedestrian density to m = 0 at the target,
hence individuals immediately leave the domain. On the rest of the boundary
we impose homogeneous Neumann boundary conditions, i.e. individuals can
not penetrate the walls. For the Eikonal equation we set u = 0 at the target
and a suitable Dirichlet boundary condition on the rest of the boundary. The
above conditions can be summarized as follows:

m(x, 0) = m0(t), on Ω × {0},
m(x, t) = 0, on T × (0, T ),

u(x, t) = 0, on T × (0, T ),

u(x, t) = g(x) on ∂Ω \ T × (0, T ),

(ε∇m+ f2(m)∇um)(x, t) · n̂(x) = 0, on ∂Ω \ T × (0, T ),

(3)

where n̂ denotes the outer normal vector to the boundary, which is assumed to
be smooth. Since the theoretical analysis of (2)-(3) has been done in [27] in
1D with homogeneous Dirichlet boundary conditions, rather than tackling the
theoretical analysis of (2)-(3), in this work we focus on the efficient numerical
discretization.
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Connection of the Hughes’ model to mean-field games. The Hughes’ model can
be, at least formally, interpreted as a mean-field game. Consider a large group
of agents which wants to reach a target (or an exit) as fast as possible. The
cost of moving towards the exit is related to the local density and increases
in congested areas. This situation can be described by an optimal control
problem where the evolution of the agent density is constrained to a Fokker-
Planck equation. The optimal travel path towards the exit minimizes a cost
functional of the form

I(m,u) =
1

2

∫ T

0

∫
Ω

F (m)|u(x, t)|2dxdt+
1

2

∫ T

0

∫
Ω

E(m)dxdt.

The first term in I corresponds to non-linear transportation costs F = F (m),
which tend to infinity as m tends towards the maximum density. The nonlinear
function E = E(m) models active avoidance of congested area. The optimality
conditions of this parabolic optimal control problem correspond to a classic
mean-field game. If the final time T is large, the Hamilton-Jacobi equation will
equilbrate quickly. Hence the Hughes’ model can be interpreted as a partial
stationary limit equilibration of a classic mean field game in the case of low
densities. A major difference between the Hughes’ model and mean field games
is that in the latter agents anticipate the future behavior of the crowd. In
the Hughes’ model the optimal path towards the exit is calculated using the
current agent density at that time only, a more realistic assumption than in
mean-field game theory. The details of the connection between the two models
as well as the different behavior of solutions have been discussed by Burger
et al. in [12]. We also refer the reader to Section 2 for more details on the
dynamical interpretation of the equations in (2)-(3).

Semi-Lagrangian (SL) schemes have been successfully used to discretize Hamil-
ton-Jacobi-Bellman (HJB) equations, see [28] and the references therein. They
are based on approximating the characteristics of the problem. A SL scheme
has been presented in [19] to deal with linear FP equations and in [18] to deal
with continuity equations. It turns out that in this last special case the scheme
is equivalent to the scheme proposed in [43] in space dimension 1. However, in
dimension 2 the two schemes are different. In particular, the structure of the
SL scheme depends on the choice of the basis function. This flexibility allows
us to use the scheme in more general domains.
In this work, we use a SL scheme to numerically solve the stationary HJB
equation in (2). We propose an extension of the scheme in [19] in order to deal
with nonlinear FP equations posed on a bounded domain.

One of the main advantages of SL schemes is that they are explicit and allow
large time steps. This is of special relevance since we are interested in the
behavior of the solutions for arbitrary values of the horizon T which can be
large (for example, if we are interested in the evacuation time). Moreover the
SL discretization allows us to run stable simulations for small regularization
parameters, closer in the spirit to the original hyperbolic system proposed by
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Hughes. On the other hand, since ε > 0, popular methods to solve Hamilton-
Jacobi-Belmann equations such as Fast Marching [47,51] and Fast Sweeping
methods [52] cannot be used.

This paper is structured as follows: in Section 2 we introduce the necessary
preliminaries, including the trajectiorial interpretation of both equations, to
present and study the SL discretizations in Section 3. In Section 4 we illustrate
the influence of the diffusivity on different performance parameters, such as
the evacuation time of the crowd or the formation of congestions.

2 Preliminaries

In this section we recall the stochastic optimal control interpretation of the
HJB as well as the probabilistic interpretation of solutions of FP equations
and introduce some notations used throughout this paper.

Let Ω ⊂ Rd denote a bounded domain with a smooth boundary ∂Ω. Assume
that the common target of the crowd is on part of the boundary ∂Ω, hence
T ⊂ ∂Ω.

Let us consider a probability space (Ω,F ,F,P) (where F is a σ-algebra,
P is a probability measure on F , F := (Fs)s≥0 is a filtration in (Ω,F), i.e.
Fs ⊆ F for all s ≥ 0 and Fs1 ⊆ Fs2 for all 0 ≤ s1 ≤ s2). We assume that F
satisfies the usual hypothesis (see e.g. [44]). We denote by E the expectation
operator in this probability space.

Trajectorial interpretation of the HJB equation. It is well known that the clas-
sical solution u of the first equation of (2) can be represented as the value
function of an associated stochastic optimal control problem, which we recall
now. Given a process α adapted to F (i.e. α(s) is Fs-measurable for all s) and
satisfying that E

(∫ s
0
|α(r)|2dr

)
<∞ for all s ≥ 0 (we say that α is admissible),

and x ∈ Ω, we define

yx,α(s) = x+
∫ s
0
α(r)dr +

√
2εW (s) for all s > 0,

and τx,α := inf{s > 0 ; yx,α(s) ∈ ∂Ω},
(4)

where W is a d-dimensional Brownian motion adapted to F. Note that the
time τx,α, which corresponds to the first time the trajectory yx,α leaves the
domain Ω, is a stopping time for the filtration F (i.e. {τx,α ≤ s} ∈ Fs for all
s). Let us fix t ∈ [0, T ]. Classical results in stochastic control theory (see e.g.
[29]) imply that, if m(·, t) is regular enough, then

u(x, t) = inf
α

{
E
(∫ τx,α

0

[
1
2 |α(s)|2 + (2f2(m(yx,α(s), t)) + δ)−1

]
ds

+g(yx,α(τx,α))
)}

,

(5)
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and the optimal feedback law is given by α∗(x, t) = −∇u(x, t) for all s ≥ 0.
The function g is supposed to be strictly positive and taking sufficiently large
values on ∂Ω \ T to incite that agents move towards the target T .
The dependence on the time variable t, seen as a parameter in (5), merits some
additional comments. Indeed, the dependence of u on t is due exclusively to
the local density m(x, t) on the right-hand-side of the HJB equation. This
implies that the trajectories yx,α(·) in (4) are fictive in the sense that in the
optimization process agents take into account the current pedestrian distri-
bution m(·, t) only. This a fundamental difference to mean field game models
(see [37,36,12]) and mean field type control problems (see [7,20]), in which
individuals anticipate the future dynamics of the crowd.

Trajectorial interpretation of the nonlinear FP equation. The trajectorial in-
terpretation of the nonlinear FP equation is provided through stochastic dif-
ferential equations of McKean-Vlasov type (or mean field type), see [39–41,
48]. More precisely, let us consider the Stochastic Differential Equation (SDE)

dX(t) = b(X(t), µ(X(t), t), t) dt+
√

2ε dW (t), for all t ≥ 0,

X(0) = X0,
(6)

where b : Rd × R × R+ → Rd is a regular vector-valued function, X0 is a
random vector in Rd, independent of the Brownian motion W (·), with density
m0, and µ(·, t) is the density of X(t). It can be shown (see [35]) that (6) admits
a unique solution and that µ is the unique classical solution of the nonlinear
FP equation

∂µ(x, t)− ε∆µ(x, t) + div(b(x, µ, t)µ(x, t)) = 0 in Rd × [0,∞[,

µ(·, 0) = m0(·) in Rd.
(7)

Therefore, if we set

b(x,m, t) := −∇u(x, t)f2(m(x, t)) (8)

and working on Rd instead of Ω, equation (6) provides a formal probabilistic
interpretation of the second equation in (2) with m(·, t) being the density of
X(t). Let us point out that the interpretation is a priori only heuristic since u
depends implicitly on m. Therefore the definition of b in (8) does not actually
fit the framework of [35], where the dependence on the density is explicit.
The probabilistic interpretation sketched above is the basis of our SL scheme
to solve (2), presented in the next section. To include boundary conditions
in the FP equation in (2) we reflect the discrete trajectories at ∂Ω \ T and
truncate them at T , see [11,30].
Finally, note that in contrast to Mean Field Games, the model considered in
this work does not impose dual boundary conditions for the HJB and the FP
equation.
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3 The numerical scheme

In this section we propose a SL scheme to approximate the solution of (2). The
crucial point is the discretization of the nonlinear FP equation, which is based
on the fact that its solution is a measurable selection of the time-marginal
densities of the diffusion defined by (6) (see [35]). We will first propose a
SL scheme for a general nonlinear FP equation with smooth coefficients and
a given velocity field depending explicitely on the density of the underlying
stochastic process. We will prove that our scheme is consistent in an appropri-
ate sense. The main feature of the scheme, which can be seen as an extension
to the nonlinear case of the scheme proposed in [19,17], is that it is explicit
and, at the same time, allows large time steps. This is not the case for e.g.
explicit finite-difference schemes where the consistency property is achieved
under the classical parabolic CFL condition.

In the case of system (2) the velocity field in the nonlinear FP equation depends
implicitly on the density m through the solution u of the HJB. Therefore, in
order to find an approximation of the velocity field we must solve the station-
ary HJB equation at each time step. This is done in Section 3.2, where an
adaptation of the fully-discrete scheme proposed in [15], taking into account
the Dirichlet boundary condition is presented. Finally, in Section 3.3 we merge
both schemes to provide the fully-discrete scheme for (2).

Let us begin by introducing some standard notation. For simplicity, we suppose
that Ω = (0, L)d. Even if this set Ω (and also the domains considered in the
numerical simulations) has not a smooth boundary, we prefer to work on a
square domain in order to simplify the scheme. Given a time step ∆t > 0
and a space discretization parameter ∆x > 0, let M ∈ N and N ∈ N be
such that M∆x = L and N∆t = T . Let us set (xi, tk) := (i∆x, k∆t), where
i ∈ {0, . . . ,M}d and k = 0, . . . , N . For a given A ⊆ Ω we set G∆x(A) := {i ∈
{0, . . . ,M}d : xi ∈ A} and call B(G∆x(A)) and B(G∆x,∆t(A)) the spaces of
grid functions defined on {xi : i ∈ G∆x(A)} and {(xi, tk), i ∈ G∆x(A), k =
0, . . . , N} respectively.

Given a standard uniform triangulation ofΩ with vertices belonging to G∆x(Ω),
we denote by {βi ; i ∈ G∆x(Ω)} the set of P1-basis functions associated to
this triangulation. We recall that βi are continuous functions, affine on each
simplex and βi(xj) = δij for all j ∈ G∆x(Ω) (where δi,j denotes the Kronecker
symbol). Moreover, the functions βi have compact support and satisfy that
0 ≤ βi ≤ 1 and

∑
i∈G∆x(Ω) βi(x) = 1 for all x ∈ Ω. We consider the following

linear interpolation operator on Ω

I[u](·) :=
∑

i∈G∆x(Ω)

u(xi)βi(·) for u ∈ B(G∆x(Ω)). (9)
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3.1 A Semi-Lagrangian scheme for a nonlinear Fokker-Planck equation

In this section we propose a SL scheme to numerically solve the following
nonlinear FP equation{

∂tm− ε∆m+ div(mb(x,m, t)) = 0 in Rd × (0, T ),

m(·, 0) = m0(·) in Rd,
(10)

where b : Ω × R × [0, T ] → Rd is a given smooth vector field, depending on
m. By an abuse of notation we denote by m0 the smooth initial datum, now
defined on Rd with compact support.

In order to formally derive the scheme, we multiply the first equation in (10)
by a smooth test function φ with compact support and integrate by parts to
get: ∫

Rd
φ(x)m(x, tk+1)dx =

∫
Rd
φ(x)m(x, tk)dx (11)

+

∫ tk+1

tk

∫
Rd

[b(x,m(x, t), t) · ∇φ(x) + ε∆φ(x)]m(x, t)dxdt.

We first approximate (11) as∫
Rd
φ(x)m(x, tk+1)dx =∫

Rd
[φ(x) +∆tb(x,m(x, tk), tk) · ∇φ(x) +∆tε∆φ(x)]m(x, tk)dx.

Note that the right hand side corresponds to a Taylor expansion. Hence we
write

∫
Rd
φ(x)m(x, tk+1)dx =

1

2d

d∑
`=1

∫
Rd

[φ(x+∆tb(x,m(x, tk), tk) +
√

2dε∆te`)]m(x, tk)dx+

1

2d

d∑
`=1

∫
Rd

[φ(x+∆tb(x,m(x, tk), tk)−
√

2dε∆te`)]m(x, tk)dx.

Here e` denotes the `-th canonical vector in Rd.
We define

Ei = [x1i − 1
2∆x, x

1
i + 1

2∆x]× . . .× [xdi − 1
2∆x, x

d
i + 1

2∆x],

mi,k := 1
(∆x)d

∫
Ei
m(x, tk)dx.

(12)
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Approximating the integrals of the form
∫
Ej
c(x)m(x, tk′)dx by the standard

sums (∆x)dc(xj)mj,k′ , where c is a smooth function, j ∈ Zd and k′ = 0, . . . , N ,
we get∑
j∈Zd

φ(xj)mj,k+1 = (13)

1

2d

d∑
`=1

∑
j∈Zd

φ(Φ`,+j,k [m(xj , tk)])mj,k +
1

2d

d∑
`=1

∑
j∈Zd

φ(Φ`,−j,k [m(xj , tk)])mj,k,

where, for µ ∈ R, j ∈ Zd, k = 0, . . . , N − 1 and ` = 1, . . . , d, we have defined

Φ`,±j,k [µ] := xj +∆t b(xj , µ, tk)±
√

2dε∆te`. (14)

Given i ∈ Zd and setting φ = βi in (13), we have

mi,k+1 =
1

2d

∑
j∈Zd

d∑
`=1

(
βi(Φ

`,+
j,k [m(xj , tk)]) + βi(Φ

`,−
j,k [m(xj , tk)])

)
mj,k. (15)

Finally, since mi,k ' m(xi, tk), setting mk = (mi,k)i∈Zd , (15) gives the fol-
lowing explicit scheme for mi,k:

mi,k+1 = G(mk, i, k) ∀ k = 0, . . . , N − 1, i ∈ Zd,

mi,0 =

∫
Ei
m0(x)dx

(∆x)d
∀i ∈ Zd,

(16)

in which the nonlinear operator G is defined by

G(w, i, k) :=
1

2d

∑
j∈Zd

d∑
`=1

(
βi

(
Φ`,+j,k [wj ]

)
+ βi

(
Φ`,−j,k [wj ]

))
wj , (17)

for every w ∈ B(Zd). Because of the explicit in time discretization the scheme
is well-defined. Given the solution mi,k of (16), we associate the function
m∆x,∆t : Rd × [0, T ]→ R defined as:

m∆x,∆t(x, t) := mi,k if x ∈ Ei and t ∈ [tk, tk+1[, i ∈ Zd, k = 0, . . . , N. (18)

Note that the scheme is conservative by definition, i.e.∫
Rd
m∆x,∆t(x, tk)dx = (∆x)d

∑
i∈Zd

mi,k =

∫
Rd
m0(x)dx for all k = 1, . . . , N.

We extend (17) to B(Zd)× Rd × [0, T ] by defining

G∆x,∆t(v, x, t) := G(v, i, k) if x ∈ Ei
and t ∈ [tk, tk+1[, i ∈ Zd, k = 0, . . . , N − 1.

Following similar computations as in the derivation of the scheme, we can prove
that (16) is consistent. The consistency result in the following Proposition is
called weak in order to underline consistency to the weak formulation of (10).
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Proposition 1 (Weak consistency) Assume that m : Rd × [0, T ] → R+

satisfies:

•
∫
Rd m(x, t)dx is uniformly bounded in [0, T ].

• For all t ∈ [0, T ], m(·, t) ∈ C2(Rd) and for all x ∈ Rd, m(x, ·) is Lipschitz
with a Lipschitz constant independent of x.

Set mi,k and m∆x,∆t as in (12) and (18). Then, assuming that b is Lipschitz,
for every φ ∈ C∞0

(
Rd
)

and k = 0, . . . , N we obtain∫
Rd
φ(x)m∆x,∆t(x, tk)dx =

∫
Rd
φ(x)m(x, tk)dx+O(∆x), (19)

and for k = 0, . . . , N − 1∫
Rd
φ(x)G∆x,∆t(mk, x, tk)dx

=

∫
Rd
φ(x)m(x, tk)dx+

∫ tk+1

tk

∫
Rd
b(x,m(t, x), t) · ∇φ(x)m(x, t)dxdt

+

∫ tk+1

tk

∫
Rd
ε∆φ(x)m(x, t)dxdt+O(∆x+ (∆t)2).

(20)

In particular, if m is differentiable w.r.t. to the time variable and if (∆xn, ∆tn)
is a sequence of space and time steps such that

(∆xn, ∆tn)→ 0 and ∆xn/∆tn → 0

as n→∞, then

lim
n→∞

1

∆tn

∫
Rd
φ(x) [m∆xn,∆tn(x, tkn+1)−G∆xn,∆tn(mkn , x, tkn)] dx

=

∫
Rd
φ(x) [∂tm(x, t)− ε∆m(x, t) + div (b(x,m(x, t), t)m(x, t))] dx,

(21)

for kn such that tkn → t.

Proof Let C = supp(φ), which is a compact set. By definition∫
Rd
φ(x)m∆x,∆t(x, tk)dx =

∑
i∈G∆x(C)

mi,k

∫
Ei

φ(x)dx

=
∑

i∈G∆x(C)

∫
Ei

m(xi, tk)φ(x)dx+O((∆x)2)

=
∑

i∈G∆x(C)

∫
Ei

m(x, tk)φ(x)dx+O(∆x+ (∆x)2)

=

∫
Rd
m(x, tk)φ(x)dx+O(∆x)
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where, we have used that

mi,k =
1

(∆x)d

∫
Ei

m(x, tk)dx = m(xi, tk) +O(∆x2),

which holds true by a Taylor expansion, since m is regular. On the other hand,∫
Rd
φ(x)G∆x,∆t(mk, x, tk)dx =

∑
i∈G∆x(C)

G(mk, i, k)

∫
Ei

φ(x)dx.

Now,

G(mk, i, k)

∫
Ei

φ(x)dx =
∑
j∈Zd

1

2d

d∑
l=1

∑
s∈{+,−}

βi(Φ
`,s
j,k[mj,k])mj,k

∫
Ei

φ(x)dx,

=
∑
j∈Zd

1

2d

d∑
l=1

∑
s∈{+,−}

βi(Φ
`,s
j,k[mj,k])

∫
Ej

m(x, tk)dxφ(xi) +O(∆x),

where we have used that

1

(∆x)d

∫
Ei

φ(x)dx = φ(xi) +O(∆x).

Therefore, since∑
i∈G∆x(C)

βi(Φ
`,s
j,k[mj,k])φ(xi) = I[φ](Φ`,sj,k[mj,k]) = φ(Φ`,sj,k[mj,k]) +O((∆x)2),

interchanging the sums w.r.t. i and j, we get∫
Rd
φ(x) G∆x,∆t(mk, x, tk)dx

=
∑
j∈Zd

∫
Ej

m(x, tk)dx
1

2d

d∑
l=1

∑
s∈{+,−}

φ(Φ`,sj,k[mj,k]) +O((∆x)2 +∆x). (22)

Note that for x ∈ Ej

1

2d

d∑
l=1

∑
s∈{+,−}

φ(Φ`,sj,k[mj,k])

= φ(xj) +∆tb(xj ,mj,k, tk) · ∇φ(xj) + ε∆t∆φ(xj) +O((∆t)2),

= φ(x) +

∫ tk+1

tk

[b(x,m(x, t), t) · ∇φ(x) + ε∆φ(x)] dt

+O(∆x+∆x∆t+ (∆t)2).

The equality in (20) follows easily from the relation above and (22). Finally,
relation (21) follows directly from (19) and an integration by parts in the space
variable. �
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We conclude by discussing the implementation of Dirichlet and Neumann
boundary conditions. Hence we consider the nonlinear FP on the bounded
domain with mixed Dirichlet and Neumann boundary conditions

∂tm− ε∆m+ div(mb(x,m, t)) = 0 in Ω × (0, T ),

m(·, 0) = m0(·) in Ω,

m = 0 in T ,

(ε∇m− b(x,m, t)m) · n̂ = 0, on ∂Ω \ T × (0, T )

(23)

Note that Φ defined in (14) (with µ = m(xj , tk)) can be interpreted as a single
Euler step in time of

dX(s) = b (X(s),m(X(s), s), s) ds+
√

2εdW (s), s ∈ (tk, tk+1),

X(tk) = xj ,
(24)

with a random walk discretization of the Brownian motion W (·). Indeed, con-
sidering a random vector Z in Rd such that for all ` = 1, . . . , d

P(Z` = 1) = P(Z` = −1) =
1

2d

P
( ⋃

1≤`1<`2≤d

{Z`1 6= 0} ∩ {Z`2 6= 0}
)

= 0,
(25)

the function Φ`,±j,k [m(xj , tk)] corresponds to one realization of

xj +∆tb(xj ,m(xj , tk), tk) +
√

2dε∆tZ.

Taking into account the boundary conditions in (23), the discretization of the
stochastic process (24) driving the evolution of the density m(·, t) has to be
reflected in ∂Ω \ T × (0, T ) and truncated at T , as for example in [30,11] in
the case of a consistent Monte-Carlo simulation.
Let us introduce the notation s ∧ t := min{s, t} for t and s belong to R, with
the convention that +∞ ∧ s = s for all s ∈ [0,∞). In order to proceed for
i ∈ G∆x(Ω) and µ ∈ R, denoting for all ` = 1, . . . , d

∆̂t
`,±
i = inf{γ > 0 ; x+ γb(xi, µ, tk)±

√
2dεγe` ∈ T } ∧∆t,

we redefine (14) as

Φ`,±i,k [µ] := xi + ∆̂t
`,±
i b(xi, µ, tk)±

√
2dε∆̂t

`,±
i e`.

We approximate the Neumann boundary condition in ∂Ω \ T by the sym-
metrized Euler scheme proposed in [11]. We define the symmetrized charac-

teristics as P (Φ`,±i,k [µ]), where P : Rd → Ω is defined as (see Fig. 1)

P (z) :=

z, if z ∈ Ω,
2w∗ − z, where w∗ := argmin

w∈Ω
|z − w|, if z /∈ Ω. (26)
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Fig. 1 Sketch of the implementation of the boundary conditions when the characteristics
leave the domain Ω.

We get the following scheme to approximate (23)

mi,k+1 = G(mk, i, k) if i ∈ G(Ω \ T ),

mi,k+1 = 0 if i ∈ G∆x(T ),

mi,0 =

∫
Ei
m0(x)dx

(∆x)d
for all i ∈ G∆x(Ω),

(27)

where G is redefined accordingly as

G(mk, i, k) :=
1

2d

∑
j∈Zd

d∑
`=1

[
βi

(
P (Φ`,+j,k [mj,k])

)
+ βi

(
P (Φ`,−j,k [mj,k])

)]
mj,k.

Remark 1 Evidently, if we consider the scheme (27) the statements of Proposi-
tion 1 still hold true for test functions with compact support strictly contained
in Ω.

3.2 A Semi-Lagrangian scheme for the Hamilton-Jacobi-Bellman equation

In this section we consider a SL scheme to solve the HJB equation and thus to
approximate the velocity field −∇u(x, t). In order to formally introduce the
scheme, we recall that the solution u(x, t) of the HJB equation in (2) depends
on t only because of the presence of m(x, t) on the r.h.s. of the equation,
which is supposed to be given. In the entire section we fix t > 0. Rewriting
the quadratic term in its Legendre-Fenchel transfom, the solution u(x, t) of
the HJB equation is the unique classical solution of (see [29, Chapter 4])

inf
α∈Rd

{
1
2 |α|

2 − α · ∇u(x) + ε∆u(x)
}

+
1

2f2(m(x, t)) + δ
= 0 if x ∈ Ω, (28)

u(x) = g(x) if x ∈ ∂Ω.
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Using that the optimal α in the infimum of (28) is given by α = ∇u(x, t),
setting A := {α ∈ Rd ; |α| ≤ ‖∇u(·, t)‖L∞} and F (x, t) := 1/(2f2(m(x, t)) +
δ), system (28) can be rewritten as

min
α∈A

{
1
2 |α|

2 − α · ∇u(x) + ε∆u(x)
}

+ F (x, t) = 0, if x ∈ Ω, (29)

u(x) = g(x) if x ∈ ∂Ω,

where, for notation convenience, we have suppressed the dependence of u on
t, since the time variable is fixed.
In order to numerically solve (29), let us introduce a fictive time step h >
0. Recalling the definition of yx,α (trajectory) and τx,α (first time that the
trajectory leaves the domain) in (4) and noting that τx,α ∧ h is a stopping
time, then for any admissible α and x ∈ Ω, Itô’s formula yields

E (u(yx,α(τx,α ∧ h))− u(x)) =

E

(∫ τx,α∧h

0

α(s) · ∇u(yx,α(s))ds+ ε

∫ τx,α∧h

0

∆u(yx,α(s))ds

)
.

Formally, if we discretize the r.h.s. of the above expression as

E (τx,α ∧ h) (α · ∇u(x) + ε∆u(x))

(where α ∈ A is arbitrary) and setting h̃ := τx,α ∧ h, we get the following
approximation of (29)

ũ(x) = min
α∈A

E

(
ũ(yx,α(h̃)) +

h̃

2
|α|2 + h̃F (x, t)

)
if x ∈ Ω, (30)

ũ(x) = g(x) if x ∈ ∂Ω.

Then, it is natural to approximate h̃ as

ĥ := inf{γ > 0 ; x+ γα+
√

2dεγZ ∈ ∂Ω} ∧ h,

where Z is a random vector defined as in (25). Denoting for all ` = 1, . . . , d

ĥ`,+x,α := inf{γ > 0 ; x+ γα+
√

2dεγe` ∈ ∂Ω} ∧ h,

ĥ`,−x,α := inf{γ > 0 ; x+ γα−
√

2dεγe` ∈ ∂Ω} ∧ h,

y`,+x,α := x+ ĥ`,+x,αα+

√
2dεĥ`,+x,αe`, y`,−x,α := x+ ĥ`,−x,αα−

√
2dεĥ`,−x,αe`,

and setting ĥ`,±x,α = ĥ`,+x,α + ĥ`,−x,α, we get the following approximation of (30)

û(x) = min
α∈A

{
1
2d

∑d
`=1

[
û(y`,+x,α) + û(y`,−x,α) +

ĥ`,±x,α
2 |α|

2 + ĥ`,±x,αF (x, t)

]}
,

for x ∈ Ω,

û(x) = g(x) for x ∈ ∂Ω.

(31)
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Finally, in order to obtain the space discretization from (31), given a space
step ∆x > 0 we interpolate û in space using the operator I defined in (9).

Given i ∈ G∆x(Ω) let us set y`,+i,α := y`,+xi,α and y`,−i,α := y`,−xi,α with analogous

definitions for ĥ`,+i,α , ĥ`,−i,α and ĥ`,±i,α . For v ∈ B(G∆x(Ω)) define

W (v, i) := min
α∈A

{
1

2d

d∑
`=1

[
I[v](y`,+i,α ) + I[v](y`,−i,α ) +

ĥ`,±i,α
2
|α|2 + ĥ`,±i,α F (xi, t)

]}
.

Thus, interpolating the unknown in the formula for û(x), we get the fol-
lowing fully-discrete scheme to approximate the solution u of (29):

Find u ∈ B(G∆x(Ω)) such that

ui = W (u, i) for all i ∈ G∆x(Ω),

ui = g(xi) for all i ∈ G∆x(∂Ω).
(32)

Note that, alternatively, problem (32) can be written in the form:

Find u ∈ B(G∆x(Ω)) such that

0 = max
α∈A
{(Bαu)i − c(α)i} ∀ i ∈ G∆x(Ω), (33)

where the linear operator Bα : B(G∆x(Ω))→ B(G∆x(Ω)) and c(α) are defined
as following:

(Bαv)i :=vi −
1

2d

∑
j∈G∆x(Ω), `=1,...,d

[
βj(y

`,+
i,α ) + βj(y

`,−
i,α )

]
vj ,

c(α)i :=
1

2d

d∑
`=1

[
1
2 ĥ

`,±
xi,α|α|

2 + ĥ`,±xi,αF (xi, t)
]
,

for every i ∈ G∆x(Ω) and v ∈ B(G∆x(Ω)), and

(Bαv)i := vi, c(α)i = g(xi) for all i ∈ G∆x(∂Ω).

In the following result we prove existence and uniqueness of a solution of (33)
using the policy iteration method, which is also an efficient method to compute
the solution (see Section 4).

Lemma 1 Problem (32) admits a unique solution u. In addition, for α0 ar-
bitrary in A, the sequence defined by

vn := (Bα
n−1

)−1c(αn−1), (34)

αn ∈ argmaxα∈A {Bαvn − c(α)} , n ≥ 1,

is well-defined. Furthermore, for all i ∈ G∆x(Ω), the sequence vni is non-
increasing, converges to ui, and any limit point α of αn (there exists at least
one) satisfies

0 = (Bαu)i − c(α)i = max
α∈A
{(Bαu)i − c(α)i} ∀ i ∈ G∆x(Ω). (35)
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Proof The key point is to show that Bα is a monotone matrix for every α ∈ A.
Indeed, we will show that Bα is of positive type (see [5, Definition 6.4]), which,
applied to our problem, means that in the directed graph associated to Bα

from every node associated to an index in G∆x(Ω) there exits a path to a node
associated to an index in G∆x(∂Ω). It is well known that this property implies
the monotonicity of Bα (see [5, Theorem 6.5]).
Note that if we set (1)i := 1 for all i ∈ G∆x(Ω), we have that (Bα1)i = 0 if
i ∈ G∆x(Ω) and (Bα1)i = 1 if i ∈ G∆x(∂Ω). Since A is compact, if h is small

enough, the dominant terms in the definitions of y`,+i,α and y`,−i,α are
√

2dεh

and −
√

2dεh, respectively, independently of α. Therefore, starting from any
point i ∈ G∆x(Ω), there exists a sequence of indexes i0, ..., im ∈ G∆x(Ω), ` ∈
{1, . . . , d} and s ∈ {+,−} such that i0 = i, im ∈ G∆x(∂Ω) and βij+1

(y`,sij ,α) > 0

for all j = 0, . . . ,m− 1 (indeed, we can choose the sequence i0, . . . , im to be a
subset of the set of indexes describing the shortest path from i to G∆x(∂Ω)).
Thus we have shown that Bα is of positive type and so it is monotone and,
in particular, invertible. As a consequence of the invertibility, the sequences
(αn, vn) in (34) are well-defined. The proof of the remaining assertions present
no difficulties and are by now classical. We only sketch the main arguments
and refer the reader to [45], [46] for detailed proofs. The existence of a solution
of (33) can be deduced from the convergence of the sequence vni which follows
from the fact that it is a non-increasing sequence (since Bα is monotone) and
bounded (which is a consequence of A being compact and Bα and c(α) being
continuous w.r.t. α). The uniqueness is an easy consequence of the fact that
Bα is monotone while (35) follows directly using that A is compact (and so
the sequence αn has at least one converging subsequence) and the convergence
of vn. �

Remark 2 (Interpretation of the scheme as a Markov decision problem) Analo-
gously to the stochastic control interpretation of the problem in the continuous
case sketched in Section 2, it is not difficult to see that the scheme (32) corre-
sponds to the Bellman equation associated to the controlled Markov decision
problem, for ı̂ in G∆x(Ω)

uı̂ := inf

{
lim
N→∞

E

(
N−1∑
k=0

c(yı̂,k, αk(yı̂,k))

)
; over αk : G∆x(Ω)→ A

}
, (36)

where c : G∆x(Ω)×A → R is defined as

c(j, α) :=

{
1
2d

∑d
`=1 ĥ

`,±
xj ,α

(
1
2 |α|

2 + F (xj , t)
)

if j ∈ G∆x(Ω),

g(xj) if j ∈ G∆x(∂Ω),

and the Markov chain (yı̂,k)k≥0 in G∆x(Ω), has transition probabilities {pi,j ; i, j ∈
G∆x(Ω)}, depending on the choice of the policies (αk)k≥0 and the initial dis-
tribution p0, given by

pi,j =
1

2d

d∑
`=1

[
βj(y

`,+
xi,α) + βj(y

`,−
xi,α)

]
, p0j = δı̂,j
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where δi,j = 1 if i = j and δi,j = 0, otherwise. Note that problem (36) is a
generalization of the well-known stochastic shortest path problem, for which
the existence of a unique solution of the Bellman equation is well-known under
a reachability condition over the target states (see [8, Chapter 7] and Proposi-
tion 7.2.1 for a detailed proof of the aforementioned result). This reachability
condition corresponds exactly to a probabilistic reformulation of the property
stating that Bα is of positive type (see the proof of Lemma 1).

Finally, let us point out that following exactly the computations in [19, Propo-
sition 1 (iii)] (in a time dependent framework) we have the following consis-
tency property of the scheme: let (∆xn, hn) → 0 with ∆x2n = o(hn) and
consider a sequence of grid points xin → x ∈ Ω. Then, for every φ ∈ C∞ (Ω),
we have

lim
n→∞

1

hn
[uin −W (u, in)] = −ε∆φ(x) + 1

2 |∇φ(x)|2 − F (x, t).

3.3 A Semi-Lagrangian scheme for the system

Now we have all the elements to present the numerical scheme for the complete
system (2)-(3). We use scheme (27) to approximate the nonlinear FP equation
with drift b(x,m, t) defined in (8). In this case, the drift depends also on the
gradient ∇u of the value function u, solution of the HJB equation, which
depends implicitly on m(x, t). We proceed iteratively, in the following way:
given the discrete measure mk at time tk (k = 0, . . . , N − 1), we compute the
discrete value function uk ∈ B(G∆x(Ω)) by the scheme (32) with

F (xi, tk) := 1/(2f2(mi,k) + δ), δ > 0.

We denote by Dui,k the discrete gradient, obtained by centered finite differ-
ences of ui,k in in the internal node xi ∈ Ω and by one side finite differences
for the node on the boundary. The choice of taking the discrete gradient at
xi instead of an optimal solution of the corresponding minimization problem
is that, in principle, the latter can have more than one solution. Then, we
calculate mk+1 with scheme (27) approximating the drift Φ`,±j,k [mj,k] by

Φ`,±j,k [mj,k] ' xj +∆tf2 (mj,k)Duj,k ±
√

2dε∆te`

and we iterate the process until k = N − 1.

Remark 3 Note that the scheme is explicit in time, therefore the existence of
a solution is a direct consequence of the construction, as opposite to analogous
scheme for Mean Field Games (see [18,17,19]) where the scheme is proved to
be well-posed by a fixed-point argument. Again, this reflects at the discrete
level the fact that in this model agents cannot anticipate the future behaviour
of the crowd.
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Remark 4 The most expensive task in the simulations corresponds to the com-
putation of the solution of the HJB in every time step. Therefore it is essential
the choice of an efficient technique to compute (32). Despite the high efficiency
of techniques such as Fast Marching (FMM) [47,51] and Fast Sweeping meth-
ods (FSM) [52], their applicability is essentially limited to first order equations.
Therefore they cannot be used for strictly positive values of ε. There are few
results on efficient techniques for second order equations: a parallel algorithm
for the numerical resolution of stationary second order HJB equations has been
proposed in [14]. However the method is only efficient in case of sufficiently
small diffusivities.
We follow a different but also well known strategy: the policy iteration method,
as described in Lemma 1. This class of techniques is especially sensible to a
good initial policy α0 (see e.g. [1]). We remark that this method is less efficient
than for example FMM or FSM in the case ε = 0. However, it is a suitable
approach for the diffusive problem, since it does not depend on the value of
the diffusion coefficient.
We do not expect large variations of the density at each time step. Hence a
natural warm start policy at the time step tk is the optimal policy α obtained
at the previous time step tk−1. This choice results in a significant reduction in
the iteration number and a subsequent reduction of the respective CPU time.
In order to compute the optimal policy in (34), a common practice in the liter-
ature is to discretize the set A and select the minimizing policy in this discrete
set (see e.g. [42,1]). We proceed in this manner by choosing nθ, nρ ∈ N and
defining

αρ,θ := ρ(cos θ, sin θ), θ ∈
{
i
2π

nθ
, i = 1, . . . , nθ

}
, ρ ∈ {0, 1, . . . nρ} .

In all the tests in the following section we set nθ = 32, nρ = 4 (as in [1]).
Finally we remark that the proposed scheme can be used in the first order
case ε = 0 as well. But since we aim to understand the impact of diffusion on
the overall evactuation time, we do not study the performance of the scheme
in this case.

4 Numerical simulations

In this section we illustrate the behavior of the solutions of system (2) with
various numerical experiments. The simulations are based on the SL scheme
presented in Section 3.3.

4.1 Exit scenario with two doors

In our first example we study the exit behavior of a group of pedestrians from
a room with two exits. We are interested in how the regularization parameter
ε influences the splitting behavior of the crowd and the evacuation time, i.e.
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the smallest time iteration Ns such that mj,Ns = 0 for all j ∈ G∆x(Ω). We set
δ := 10−6 throughout this section.
The room is represented by the domain Ω := (0, 1)2; the initial mass has a
uniform density located at the center of the domain:

m0(x) :=

{
M0 x ∈ [1/3, 2/3]2,
0 otherwise,

where M0 ∈ R+. The discretization parameters ∆x and ∆t, introduced in
Section 3, and the parameter h, introduced in sub-Section 3.2, are set to ∆x =
∆t = h = 0.08. The uniform initial mass is set to M0 = 0.7 and the diffusion
coefficient ε to ε = 0.001. The set T corresponds to two exits of different width
on opposite sides of the boundary:

T := {0} × [0.13, 0.27] ∪ {1} × [0.49, 0.51].

The position of the two exits induces an asymmetric splitting of the crowd
(see Figure 2 (left)). Initially, a large part of the crowd chooses to move to
the right exit. After a while this exit gets congested, inducing a part of the
population to change objective. They decide to move towards the left exit
instead of waiting at the right one, as shown in the right plot of Figure 2.
We would like to mention that this ’turning-behavior’ cannot be observed in a
mean field game model, since in this case agents anticipate the future behavior
of the crowd and would wait or take the other exit right away (see [25], Section
4.1 for some comparative tests).

Fig. 2 Density contour lines at time t = 0.3 (left) and t = 1.2 (right). M0 = 0.7 and
ε = 0.001. The exits are marked with the letter “E”.

In Table 1, we show the evacuation time for different values of ε, as well as the
percentage of individuals exiting from the right or the left door. The diffusion
influences the evacuation time significantly: large values of ε prevent large
pedestrian densities thus the effect of congestion is less evident; at the same
time it increases the evacuation times. If ε > 0.01 the total mass of people
that change their first objective is progressively reduced until it disappears
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(see Figure 3, where this effect is no longer observed). The reduction of the
diffusive effects induces an initial decrease of the evacuation time that raises
again because of congestion, for very small values of ε.

ε Ns∆t left exit right exit

4 · 10−2 5.08 54.32 % 45.68 %
2 · 10−2 4.62 53.72 % 46.27 %
1 · 10−2 3.85 53.40 % 46.59 %
5 · 10−3 4.00 52.28 % 47.71 %
2 · 10−3 4.10 52.17 % 47.82 %
1 · 10−3 4.32 51.85 % 48.14 %
5 · 10−4 4.77 51.40 % 48.59 %

Table 1 Evacuation time and mass split for different values of ε. M0 = 0.7.

Fig. 3 Density contour lines at time t = 0.3s with ε = 0.1 and M0 = 0.7.

4.2 Exit scenario with barriers

In this test we investigate the influence of barriers, usually called turnstiles,
on the evacuation time. Obviously the shape and the size of such barriers
influence the dynamics of the system. We focus on the simple case where the
barriers have a rectangular shape and fixed dimension. We vary the distance
between them and consequently their number. We consider the subset

Γ :=
{
x ∈ [0, 1]2 s.t. min(0.1− |x− 0.5|, 0.02− |y − cs|) ≥ 0, s ∈ N ∩ [−4, 4]

}
defined for a fixed c ∈ R+. The choices c = 0.1, 0.2, 0.3 correspond to 9, 7, 5 bar-
riers, respectively resembling a fine/medium/coarse allocation. In this setup
the computational domain corresponds to Ω := [0, 1]2 \ Γ . We point out that
in this case, because of the non convexity of the domain, the operator P de-
fined in (26) may be not well defined. We overcome this by simply choosing
the closer projection to the starting point of the discrete characteristic.
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Fig. 4 Evolution of the density in test 2. Contour lines at time t = 0.3 and t = 1.2 for
M0 = 0.7, c = 0.1 and ε = 0.001. The exit is marked with an ‘E’.

In the HJB equation we impose Dirichlet boundary conditions on ∂Γ to pre-
serve the regularity of the solution on the boundary. This point is related to
reachability issues also discussed in [4]. A practical approach to implement
these conditions corresponds to introducing a narrow band of “ghost nodes”
(see [23, Section 5.1]) close to the barriers and setting a constant value G such
that G > ui for all i ∈ G∆x(Ω) at these nodes.

We start the simulation with an uniform distribution of individuals on the left
side of the barriers which wants to exit through

T := {1} × [0.45, 0.55].

The initial distribution corresponds to

m0(x) :=

{
M0 x ∈ [0.15, 0.35]× [0.2, 0.8],
0 otherwise.

We would like to understand how the barriers and the regularization parameter
ε effect the evacuation time. The evolution of the density is illustrated in Figure
4, in the case M0 = 0.7, c = 0.1 and a diffusion coefficient ε = 0.001.

The number and the position of the turnstiles (determined by the parameter c)
have a significant effect on the overall evacuation time. In Table 2 we observe
the relation between exit time, fine/medium/coarse disposition of barriers and
diffusion parameter. The boxes highlight the shortest evacuation times for the
different diffusivities. We observe that in the case of small diffusion a large
number of turnstiles gives the smallest evacuation time. This phenomenon
disappears gradually for larger values of the diffusion parameter. The opposite
behavior is observed when varying the total mass. In the case of a small total
mass (M0 = 0.4, 0.5) high concentrations and congestion are less probable,
and the configuration without barriers gives the lowest evacuation time. In
the case of large initial masses, that is M0 > 0.5, congested areas start to
appear. In this case the fine disposition of barriers improves the evacuation
time (see Table 3).
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ε c = 0.1 c = 0.2 c = 0.3 no barriers

2 · 10−2 3.54 3.49 3.45 3.42

1 · 10−2 3.20 3.02 2.75 2.76

5 · 10−3 3.17 2.90 2.70 2.85

2 · 10−3 3.17 3.02 3.15 3.32

1 · 10−3 3.50 3.65 3.70 3.75

5 · 10−4 3.85 4.12 4.3 4.25

2 · 10−4 3.99 5.75 5.85 5.85

1 · 10−4 6.05 6.65 6.75 6.73

Table 2 Comparison of the evacuation time for different choices of the coefficient ε and the
parameter c for M0 = 0.7.

M0 c = 0.1 c = 0.2 c = 0.3 no barriers

1.0 5.05 5.25 5.30 5.40

0.9 4.55 4.85 5.12 5.55

0.8 4.15 4.65 4.85 5.15

0.7 3.85 4.12 4.3 4.25

0.6 3.55 3.45 3.42 3.75

0.5 3.35 3.22 3.25 3.21

0.4 2.82 2.75 2.72 2.45

Table 3 Comparison of the evacuation time for different choices of the parameter c and
varying M0. Here ε = 5 · 10−4.

4.3 The renovation of “Les Halles” in Paris

In this last test, we consider a geometry representing a part of the transport
hub situated at “Les Halles” in Paris. In this station we find connections
between underground lines, extra-city lines (RER) and buses. The center of
the structure is the large transition zone shown in Figure 5. Recently the whole
station was redesigned changing the shape of the hall. Furthermore, additional
exits to improve the flow of pedestrians have been added.

In the following simulation, we want to model an evacuation scenario where a
crowd of pedestrians placed in the center of the hall wants to reach the exits,
located behind some turnstiles. For simplicity we do not consider any addi-
tional pedestrian inflows or the use of the elevators. We want to compare the
evacuation capacity of the structure before and after the changes.

In our simulations, we set as computational domain Ω the light blue areas
in Figure 5, corresponding to the hall where circulation is possible. The dark
blue area corresponds to the obstacles.

In this test we set

f(x,m(x, t)) :=
1−m(x, t)

`(x)
,
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Fig. 5 Plan of the “Salle d’exchange RER” of Les Halles, Paris. In the 2014 (left) and in
2016 (right).

Fig. 6 Simulation for the structure in 2014. Contour lines at time t = 1s (top) t = 5s
(bottom), with M0 = 0.7 and ε := 0.001. Exits are marked with an ‘E’.

where `(x) corresponds to the environmental running cost. It takes the value
2 on the turnstiles (in red in Figure 5) and 1 elsewhere. Even if in such case f
is discontinuous, the simulations appear to be stable. We set also ε := 0.001.
The initial configuration of the crowd is chosen as

m0(x) :=

{
M0 x ∈

{
(d13 ,

2d1
3 )× (d23 ,

2d2
3 )
}
∩Ω,

0 otherwise.



24 Elisabetta Carlini et al.

where [0, d1]× [0, d2] is the smallest rectangle containing Ω.
In Figures 6 and 7, we show the simulation of the evacuation at time t = 1
and t = 5 with M0 = 0.7, respectively on the domain corresponding to the
old structure and to the new one. The figures illustrate the improvements in
pedestrian circulation, mostly due to a new exit added at the center of the
lower boundary of the domain, which limits the congestion created next to
the main exit (located at the center of the top boundary). In Table 4, we
compare the evacuation time for different initial masses M0: as expected the
improvement of the evacuation capacities is more effective in the case of high
pedestrian densities.

Fig. 7 Simulation for the structure in 2016. Contour lines at time t = 1s (top) t = 5s
(bottom), with M0 = 0.7 and ε := 0.001. Exits are marked with an ‘E’; the new exit added
is marked with ‘NE’.
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26. Degond P, Appert-Rolland C, Pettré J, Theraulaz G (2013) Vision-based macroscopic
pedestrian models. Kinet Relat Models 6(4):809–839

27. Di Francesco M, Markowich P A, Pietschmann F P, Wolfram M T (2011) On the Hughes’
model for pedestrian flow: The one-dimensional case. J Differ Equations 250(3):1334–
1362

28. Falcone M, Ferretti R (2013) Semi-Lagrangian Approximation Schemes for Linear and
Hamilton-Jacobi Equations. MOS-SIAM Series on Optimization

29. Fleming W H, Soner H M (1993) Controlled Markov processes and viscosity solutions.
Springer, New York

30. Gobet E (2000) Weak approximation of killed diffusion using Euler schemes. Stochastic
Process Appl 87(2):167–197

31. Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E
51:4282

32. Huang L, Wong S C, Zhang M, Shu C W, Lam W H (2009) Revisiting Hughes’ dy-
namic continuum model for pedestrian flow and the development of an efficient solution
algorithm. Transport Res B-Meth 43(1): 127–141
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