
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Domain decomposition based parallel Howard's algorithm / Festa, Adriano. - In: MATHEMATICS AND COMPUTERS IN
SIMULATION. - ISSN 1872-7166. - 147:(2018), pp. 121-139. [10.1016/j.matcom.2017.04.008]

Original

Domain decomposition based parallel Howard's algorithm

Publisher:

Published
DOI:10.1016/j.matcom.2017.04.008

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2786531 since: 2020-02-14T14:02:39Z

Elsevier

Domain decomposition based parallel Howard’s

algorithm

Adriano Festa
INSA Rouen LMI lab

adriano.festa@insa-rouen.fr
Avenue de l’Université,

76800 Saint-Étienne-du-Rouvray, France

February 14, 2020

Abstract

The Howard’s algorithm, a technique of resolution for discrete Ha-
milton-Jacobi equations, is of large use in applications for its high ef-
ficiency and good performances. A useful characteristic of the method
is the superlinear convergence which, in presence of a finite number of
controls, is reached in finite time. Performances of the method can
be significantly improved using parallel computing. Building a parallel
version of the method is not trivial because of the hyperbolic nature
of the problem. In this paper we propose a parallel version of the
Howard’s algorithm driven by an idea of domain decomposition. This
permits to derive some important properties and to prove the conver-
gence under standard assumptions. The good features of the algorithm
are shown through some tests and examples.

Keywords: Howard’s algorithm (policy iterations), parallel computing, do-
main decomposition
2000 MSC: 49M15, 65Y05, 65N55

1 Introduction

The Howard’s algorithm (also known as policy iteration algorithm) is a clas-
sical method for computing the solution of a discrete Hamilton-Jacobi (HJ)
equation. This technique, developed by Bellman and Howard [7, 20], is of
large use in applications thanks to its good proprieties of efficiency and
simplicity.

This algorithm is generally more efficient than other techniques of reso-
lution – the convergence is superlinear and even quadratic in special cases
(see [8]) – and always faster than value iteration and at least comparable to
other iterative methods normally adopted (cf. Section 4, see also [21, 24]).

1

A high efficient alternative is represented by modern fast techniques such
as Fast Marching [25] and Fast Sweeping [30, 31]. Nevertheless those ap-
proaches typically require some restrictive hypothesis on the dynamics of
the system suffering in consequence of a limited applicability. The policy
algorithm instead is extremely general and may be easily adapted to various
special cases of interest (cf. Section 5) and to second order problems [12,
§3.2]. As a drawback, the technique requires the resolution of large linear
systems. This can be a difficult step when we approximate equations in
spaces of a high dimension. In this paper, we deal with this problem using
parallel computing.

The application of parallel computing to HJ equations is a subject of
actual interest and recent development. It is in fact an effective tool to
overcome difficulties caused by memory storage restrictions and CPU speed
limitations in the resolution of real problems.

In literature, at our knowledge, the first parallel algorithm proposed in
the context of HJ equations is [28]. In this paper the authors discuss the
numerical solution of the Bellman equation related to an exit time problem
for a diffusion process (i.e. for second order elliptic problems). A successive
work is [10] in which an operator of semilagrangian kind is described and
studied. More recently the issue was discussed in [32] where the authors
pass to an equivalent quasi variational inequality and propose a domain de-
composition technique. In [9, 18] there are presented two different multigrid
approaches to obtain a decomposition of the domain in subsets that can be
solved independently.

Our approach is slightly different. If we decompose the problem directly
in its differential form we can give an easy and consistent interpretation of
the condition to impose on the boundaries of the sub-domains. Thereafter
we pass to a discrete version of such decomposed problem. Now it is easy
to show the convergence of the algorithm to the discrete solution.

The paper is structured as follows: in Section 2 we recall the Howard’s
algorithm and the relation with the differential problem focusing on the case
of its optimal control interpretation. In Section 3 we present the algorithm
and we study the convergence. Section 4 is dedicated to test the perfor-
mances and to show the advantages and speed-up factors with respect to
the non parallel version. We end by presenting some possible extensions
of the technique to some problems of interest: target problems, obstacle
avoidance and max-min problems.

2

2 Howard’s algorithm

The problem considered is the following. Let be Ω bounded open domain of
Rd (d ≥ 1); the steady, first order HJ equation is:{

λv(x) +H(x,Dv(x)) = 0 x ∈ Ω,
v(x) = g(x) x ∈ ∂Ω,

(1)

where, following the optimal control interpretation, λ ∈ R+ is the discount
factor, g : Ω → R is the exit cost, and the Hamiltonian H : Ω × Rd → R is
defined by: H(x, p) := infα∈A{−f(x, α) · p − l(x, α)} with f : Ω × A → R
(dynamics), l : Ω×A → R (running cost) and A a compact set. The choice
of such Hamiltonian is not restrictive but useful to simplify the presentation.
In Section 5 we extend the study to other Hamiltonians.

Under classical assumptions on the data (we can suppose f(·, ·) and
l(·, ·) continuous, f(·, α) and l(·, α) Lipschitz continuous for all α ∈ A and
the Soner’s condition [26] is verified), it is known (see i.e. [2, Th.3.1]) that
the equation (1) admits a unique continuous solution v : Ω → R in the
viscosity solutions sense.

The solution v is the value function of the infinite horizon problem with
exit cost, where τx is the first time of exit from Ω:

v(x) = inf
a(·)∈L∞([0,+∞[;A)

τx(a)∫
0

l(yx(s), a(s))e−λs ds+ e−λτx(a)g(yx(τx(a))),

where yx(·) is a.e. solution of

{
ẏ(t) = f(y(t), a(t))
y(0) = x .

Many numerical schemes for the approximation of this problem have
been proposed. Let us mention Finite Differences Schemes [14, 27], semila-
grangian [15], Discontinuous Galerkin [13] and many others. In this paper
we focus on a monotone, consistent and stable scheme (wide class including
the first two mentioned above) for the approximation of (1).

Considered a discrete grid G with N points xj , j = 1, ..., N on the
domain Ω, the finite N -dimensional approximation of v, V is the solution of
the discrete equation (Vj = V (xj))

F hi (V1, ..., VN) = F hi (V) = 0, i ∈ {1, ..., N}, (2)

where h := max diamSj (biggest diameter of the family of simplices Sj on
G) is the discretization parameter. The Dirichlet conditions of (1) are

F hj (V1, ..., VN) := Vj − g(xj), xj ∈ ∂Ω. (3)

We assume on F some standard hypotheses:

3

(H1*) Monotony. For every choice of two vectors V,W such that, V ≥ W
(component-wise) then F hi (V1, ..., VN) ≥ F hi (W1, ...,WN) for all i ∈
{1, ..., N}.

(H2*) Stability. If the data of the problem are finite, for every vector V ,
there exists a C ≥ 0 such that V , solution of (2), is bounded by C i.e.
‖V ‖∞ = maxi=1,...,N |Vi| ≤ C independently from h.

(H3) Consistency. It is assumed that F hi (ϕ(yi)+ξ, ..., ϕ(yi)+ξ)→ λϕ(xi)+
H(xi, ϕ(xi), Dϕ(xi)) for every ϕ ∈ C1(Ω), xi ∈ Ω, with h → 0+,
yi → xi, and ξ → 0+.

Remark 1. Under Hypotheses (H1*), (H2*), (H3) it has been discussed and
proved [27] (other examples are [14, 15]) that V solution of (2) converges
to v viscosity solution of (1) for h→ 0+.

The special form of the Hamiltonian H gives us a correspondent special
structure of the scheme F , in particular, with a rearrangement of the terms,
the discrete problem (2) can be written as the nonlinear system

V ∈ RN ; min
α∈AN

(B(α)V − cg(α)) = 0, (4)

where B is a N × N matrix and cg is a N vector. We underline that
cg contains all information about the Dirichlet conditions (3). The policy
iteration algorithm (or Howard’s algorithm) consists in a two-steps iteration
with an alternating improvement of the policy and the value function, as
shown in Table 1.

It is known [8] that under a monotonicity assumption on the matrices
B(α) (we recall that a matrix is monotone if and only if it is invertible and
every element of its inverse are non negative) the above algorithm is a non
smooth Newton method [22] that converges superlinearly to the discrete
solution of problem. The convergence of the algorithm is also discussed
in the earlier works [24, 21] where the results are given in a more regular
framework. Additionally, if A has a finite number of elements – this is the
case of a discretized space of the controls – then the algorithm converges in
a finite number of iterations.

We call, for a fixed vector V ∈ Rn, the subspace of controls A(V) :=
arg minB(α)V − cg(α)

Proposition 1. Assume the matrix B(α) is invertible. If (H1*) holds true,
then B(α) is monotone and not null for every α ∈ A(V) with V ∈ Rn.

Proof. For a positive vector V , consider a vector W such that W − V ≥ 0
componentwise, then for H1*

B(ᾱ)W − cg(ᾱ) ≥ min
α∈A

B(α)W − cg(α) ≥ min
α∈A

B(α)V − cg(α)

= B(ᾱ)V − cg(ᾱ),

4

Howard’s Algorithm (HA)

Inputs: B(·), cg(·).
Initialize V 0 ∈ RN and α0 ∈ AN
Iterate k ≥ 0:

i) Find V k ∈ RN solution of B(αk)V k = cg(α
k).

If k ≥ 1 and V k = V k−1, then stop. Otherwise go to (ii).

ii) αk+1 := arg min
α∈An

(
B(α)V k − cg(α)

)
.

Set k := k + 1 and go to (i)

Outputs: V k.

Table 1: Pseudo-code of HA

where ᾱ ∈ A(V), therefore

B(ᾱ)(W − V) ≥ 0.

Suppose now that the ith column of B−1(ᾱ) has a negative entry: choosing
W−V = ei (ei is ith column of the identity matrix) multiplying the previous
relation for B−1(ᾱ) we have a contradiction. Then B(ᾱ) is monotone.

Example 1 (1D, upwind scheme). An example of matrix B(α) and vector
cg(α) is given by the upwind explicit Euler scheme (we limit the description
to dimension one to avoid an over-complication of the notation)

V0 = g(x0)

λVi = min
αi∈A

(
l(xi, αi) + f+i (αi)

Vi+1−Vi

h + f−i (αi)
Vi−Vi−1

h

)
, i ∈ {1, ..., N}

VN+1 = g(xN+1)
(5)

where {xi} are the points of a uniform discrete grid consisting in N + 2
knots of distance h. Moreover, f+

i (αi) = max{0, f(xi, αi)} and f−i (αi) =
min{0, f(xi, αi)}. In this case the system (4) is

B(α) =

1 +

[f+
1 −f

−
1]

hλ − f
+
1

hλ 0 · · · 0
f−
2

hλ 1 +
[f+

2 −f
−
2]

hλ − f
+
2

hλ · · · 0

0
. . .

. . .
. . . − f

+
N−1

hλ

0 · · · · · · f−
N

hλ 1 +
[f+

N−f
−
N]

hλ

 ,

5

and

cg(α) =
1

hλ

−f−1 g(x0) + hl(x1, α1)

hl(x2, α2)
...

hl(xN−1, αN−1)
+f+N g(xN+1) + hl(xN , αN)

 .

It is straightforward that the solution of Howard’s algorithm, verifying
minαB(α)V − cg = 0, is the solution of (5).

Example 2 (1D, semilagrangian scheme). If we consider the standard 1D
semilagrangian scheme, the matrix B(α) and the vector cg(α) are

B(α) =

1− βb1(α1) −βb2(α1) · · · −βbN (α1)
−βb1(α2) 1− βb2(α2) · · · −βbN (α2)

. . .
. . .

. . .
. . .

−βb1(αN) · · · −βbN−1(αN) 1− βbN (αN)

 ,

and

cg(α) =

hl(x1, α1) + βb0(α1)g(x0)

hl(x2, α2)
...

hl(xN−1, αN−1)
hl(xN , αN) + βbN+1(αN)g(xN+1)

 ,

where β := (1 − λh) and the coefficients bi are the weights of a chosen
interpolation I[V](xi + hf(xi, αj)) =

∑N+1
i=0 bi(αj)Vi.

Despite the good performances of the policy algorithm as a speeding up
technique, in particular in presence of a convenient initialization (as shown
for example in [1]) the technique requires to store data of very big size. For
example a 3D problem on a squared grid of side n requires the resolution of
linear systems with n6 elements. This limits the efficacy of the method and
give us a sound motivation to investigate the use of parallel computing to
reduce the complexity of the sub problems and the memory storage.

3 Domain decomposition and parallel version

The dependence between various points of the domain in equation (1) makes
the use of parallel computing not an easy task to accomplish. The main
problem is to pass information between the threads, which is necessary
without a prior knowledge of the characteristics of the problem.

3.1 Hamilton Jacobi equation on submanifolds

Our idea is to combine the policy iteration algorithm with a domain decom-
position principle for HJ equations. We use the theoretical framework of

6

the resolution of partial differential equations on submanifolds, presented
for example in [23, 4]. We consider a decomposition of Ω on a collection of
subdomains:

Ω :=
MΩ⋃
i=1

Ωi ∪
MΓ⋃
j=1

Γj , with
◦
Ωi ∩

◦
Ωj= ∅, for i 6= j, (6)

where the interfaces Γj , j = 1, · · · ,MΓ are some strata of dimension lower
than d defined as the intersection of two subdomains Ωi ∩ Ωk for i 6= k.

The notion of viscosity solution on the manifold must be coherent with
the definition elsewhere: we define

Definition 1. An upper semicontinuos function u in Γ is a subsolution on
Γ if for any ϕ ∈ C1(Rd), any δ > 0 sufficiently small and any maximum
point x0 ∈ Γδ := {x s.t. |x− y| < δ, y ∈ Γ} of x→ u(x)− ϕ(x), it is verified

λϕ(x0) +Hδ(x0, Dϕ(x0)) ≤ 0,

where with Hδ(·, ·) we indicate the Hamiltonian H restricted on Γδ.
The definition of supersolution is made accordingly.

Remark 2. It is worth to underline that, differently from multidomains
problems (where the Hamiltonian is discontinuous [4, 23]) there is no need
of introducing a special definition of solution on the interfaces. We use the
standard definition of viscosity solution on an enlargement of Γ (called Γδ).

Theorem 1. Let us consider a domain decomposition as stated in (6). The
continuous function v : Ω → R that verifies for a δ > 0 in the viscosity
sense the system

λv(x) +H(x,Dv(x)) = 0 x ∈ Ωi, i = 1, ...,MΩ

λv(x) +Hδ(x,Dv(x)) = 0 x ∈ Γj , j = 1, ...,MΓ,
v̄(x) = g(x), x ∈ ∂Ω,

(7)

is coincident with the viscosity solution v(x) of (1).

Proof. It is necessary to prove the uniqueness of a continuous viscosity so-
lution for (7). After that we invoke the existence and uniqueness results
for the solution v (solution of the original problem) and we observe that it
is also a continuous viscosity solution of the system to get the thesis.

We use the classical argument of “doubling of variables”. We recall the
main steps of the technique (skipping some technical details that can be
found in [2]). For two continuous viscosity solutions ū, v̄ of (7) define the
auxiliary function

Φε(x, y) := ū(x)− v̄(y)− |x− y|
2

2ε
,

7

which has a maximum point in (xε, yε). We have that

max
x∈Ω

(ū− v̄)(x) = max
x∈Ω

Φε(x, x) ≤ max
x,y∈Ω

Φε(x, y) = Φε(xε, yε).

The limit lim infε→0+ Φε(xε, yε) is proved to be non positive taking the
derivative of Φε and using the properties of (sub-) super-solution for (ū)
v̄, (for example, [2, Th.II.3.1]). To deal with the interface we can always
extract a subsequence (xεn , yεn) definitely in Γδ and use the regularity of
the Hamiltonian. Exchanging the role between ū and v̄ (both super and
subsolutions) we have uniqueness.

In the next section we propose a parallel algorithm based on the numer-
ical resolution of the decomposed system above. This technique consists of
a two steps iteration:

(i) Use (HA) to solve in parallel (n threads) the nonlinear systems ob-
tained after discretization of (7) on the subdomains Ωi (in this step
the values of V are fixed on the boundaries);

(ii) Update the values of V on the interfaces of connection
⋃
j Γj by us-

ing (HA) on the nonlinear system obtained discretizing the second
equation of (7) (in this case the interior points of Ωj are constant).

As it is shown later, this two-step iteration permits the transfer of infor-
mation through the interfaces during (ii). The procedure is not costless:
the number of the steps necessary for its resolution is generally higher than
(HA). The advantage is that we solve smaller problems possibly in parallel.
Moreover in the case of a finite space of controls the coupling between phase
(i) and (ii) produces a succession of results convergent in finite time.

Remark 3. The point (ii) contains a detail that (although not affecting the
convergence of the method) can be influential in the performances. In previ-
ous works it has been proven (cf. [10, 16]) that the communication between
subdomains can be implemented either only on the interface (as in our case)
or introducing an overlapping region belonging to both the subdomains in
contact where the numerical solution is updated. Being this issue already
discussed in literature we choose for simplicity the first case, underlining
that better results, in term of performances and scalability, can be obtained
with the use of the second technique.

3.2 Parallel Howard’s algorithm

Let us consider (as before) a uniform grid G := {xj : j ∈ I}, the indices
set I := {0, ..., N}, and a vector of all the controls on the knots α :=
(α1, ..., αN)T ∈ AN . The domain Ω is decomposed as Ω := ∪ni=1Ωi ∪ Γ,

where, coherently with above Γ := ∪MΓ
j=1Γj . This decomposition induces

8

a similar structure in the indices set I := I1 ∪ I2 ∪ ... ∪ ...In ∪ J , where
every point xk of index in Ii is an “interior point” in the sense that for
every xj ∈ Bh(xk) (ball centred in xk of radius h, defined as previously),
j ∈ Ii, for every j 6= k. The set J is the set of all the “boundary points”,
which means, for a i ∈ J we have that there exist at least two points xj ,
xk ∈ Bh(xi) such that j ∈ Ij and k ∈ Ik with j 6= k.

We build n discrete subproblems on the subdomains Ωi using a mono-
tone, stable and consistent scheme. In this case the discretization of the
Hamiltonian gives for every subdomain Ωi (therefore in relation with points
xj , j ∈ Ii) a matrix B̂i(α̂i) and a vector ĉi(α̂i, {Vj}j∈J). We highlight here
the dependence of ci from the boundary points which are, either, points
where there are imposed the Dirichlet conditions (data of the problem) or
points on the interface Γ which have to be estimated.

Assumed for simplicity that every Ii has the same number of k ele-
ments, called k̄ := card(J), we have k := N−k̄

n , and B̂i(·) ∈ Mk×k,

ĉi(·, ·) ∈ Rk. Solving over Γ we have a matrix B̂n+1(α̂n+1) and a vector

ĉn+1(α̂n+1, {Vj}j∈I\J), in the spaces, respectively, Mk̄×k̄ and Rk̄. (For the
1D case e.g. we can easily verify that k̄ = n − 1). In this framework, the
numerical problem after the discretization of equations (7) is the following:

Find V := (V1, ..., Vi, ..., Vn, Vn+1) ∈ RN with Vi = {Vj ∈ Rk | j ∈ Ii} for

i = 1, ..., n and Vn+1 = {Vj ∈ Rk̄ |j ∈ J } solution of
min
α̂i∈Ak

(
B̂i(α̂i)Vi − ĉi(α̂i, Vn+1)

)
= 0, i = 1, ..., n;

min
α̂n+1∈Ak̄

(
B̂n+1(α̂n+1)Vn+1 − ĉn+1(α̂n+1, {Vj}j∈{1,...n})

)
= 0.

(8)

The resolution of the first and the second equation of (8) are called
respectively parallel part and iterative part of the method. The parallel and
the iterative part are performed alternatively, as a double step solver. The
iteration of the algorithm generates a sequence V s ∈ RN solution of the two
steps system

min
α∈AN

(
Bi(α)V s+2 − ci(α, V s+1)

)
= 0, i = 1, ..., n,

min
α∈AN

(
Bn+1(α)V s+1 − cn+1(α, V s)

)
= 0,

V 0 = V0,

(9)

where Bi(·), ci(·, ·) are the matrices and vectors in MN×N and RN con-
taining B̂i(·), ĉi(·, ·) and such to return as solution the argument of ci(α, ·)
elsewhere. Bi(·) ci(·, ·) with i ∈ {1, ..., n} are: equal to B̂i in the {ik, .., (i+
1)k− 1}×{ik, .., (i+ 1)k− 1} blocks and equal to the rows Ii of the identity
matrix elsewhere ci = ĉi in the {ik, .., (i + 1)k − 1} elements of the vector
and ci(·, V) = V elsewhere (we call these entries identical arguments). The
same, in the {nk + 1, .., N} × {nk + 1, .., N} block, {nk, .., N} elements of

9

Parallel Howard’s Algorithm (PHA)

Inputs: B̂i(·), ĉi·, V kn+1) for i = 1, ..., n+ 1

Initialize V 0 ∈ RN and α0.
Iterate k ≥ 0:

1) (Parallel Part) for each i = 1, ..., n
Call (HA) with inputs B(·) = B̂i(·) and cg(·) = ĉi(·, V kn+1)
Get V ki = {V k(xj)|j ∈ Ii}.

2) (Iterative Part)
Call (HA) with inputs B(·) = B̂n+1(·) and cg(·) = ĉn+1(·, {V ki }i={1,...,n})
Get V kn+1 = {V k(xj)|j ∈ J }.

3) Compose the solution V k+1 = (V k1 , ..., V
k
n , V

k
n+1)

If ‖V k+1 − V k‖∞ ≤ ε then exit, otherwise go to (1).

Outputs: V k+1

Table 2: Pseudo-code of PHA

the vector for i = n+ 1. We underline that each equation of (9), negletting
the trivial relations, is a nonlinear system on the same dimension than (8).
A solution of (8) is a fixed point of (9).

Iteration (9) can be expressed as{
F h,ij (V s+2, V s+1) = 0 j ∈ Ii, with i = 1, ..., n

F h,n+1
j (V s+1, V s) = 0 j ∈ J

where F h,ij (V,W) :=

[
min
α∈AN

(Bi(α)V − ci(α,W))

]
j

for j ∈ Ii.

Remark 4. The hypotheses (H1*-H2*) are adapted to the new framework as
below. Such hypotheses are verified by Examples 1,2 and their n-dimentional
extensions.

(H1) Monotony. For every choice of two vectors V,W such that, V ≥ W

(component-wise) then F h,ij (V, ·) ≥ F h,ij (W, ·) for all j ∈ {1, ..., N} and
i = 1, ..., n+ 1.

(H2) Stability. If the data of the problem are finite for every vector V and
every W s.t. ‖W‖∞ ≤ +∞ (where ‖W‖∞ = maxj |Wj |) there exists a

C ≥ 0 such that V solution of F h,ij (V,W) = 0 with j ∈ {1, ..., N} and
i ∈ {1, ..., n+ 1} is bounded by C independently from h.

10

From the assumptions on the discretization scheme some specific prop-
erties of Bi(·) and ci(·, ·) can be derived.

Proposition 2. Let us assume H1−H2 and

(H4) if W1 ≥ W2 then ci(α,W1) ≥ ci(α,W2), for all i = 1, ..., n+ 1, for all
α ∈ A.

Then it holds true the following.

1. If invertible, the matrices Bi(α) are monotone, not null for every i ∈
{1, ..., n + 1} and for every α ∈ A ∩ arg minBi(α)V − ci(α, V) with
V ∈ RN+ .

2. If ‖W‖∞ < +∞ we have that for all i ∈ {1, ..., n + 1} and for every
α ∈ A there exists a C > 0 such that

‖ci(α,W)‖∞ ≤ C‖Bi(α)‖∞. (10)

3. V ∗ is the fixed point of (9). If we have V ≤ V ∗ (resp. V ≥ V ∗) then
there exists a α ∈ A such that, for all i = 1, ..., n+ 1,

Bi(α)V − ci(α, V) ≤ 0 (resp. Bi(α)V − ci(α, V) ≥ 0). (11)

Proof. To prove 1 we observe that the monotony of B̂i(·) is sufficient and
necessary for the monotony of Bi(·) (elsewhere Bi(·) is a diagonal block
matrix with all the other blocks invertible). Therefore the argument is as in

Proposition 1, starting from two vectors W −V :=

(
W1

W2

)
−
(
V1

V2

)
∈ RN+

with the only difference that we need assumption H4 to get

B̂i(ᾱ)(W1 − V1) ≥ ĉi(ᾱ,W2)− ĉi(ᾱ, V2) ≥ 0, ∀i = 1, ..., n+ 1;

or equivalently

Bi(ᾱ)(W − V) ≥ ci(ᾱ,W)− ci(ᾱ, V) ≥ 0, ∀i = 1, ..., n+ 1;

then the thesis.
To prove 2 we observe ci(α,W) = Bi(α)V . Thanks to H2 we obtain the

thesis. The proof of 3 is a direct consequence of monotony assumption H1
with the definition of V ∗ as

Bi(α)V ∗ − ci(α, V ∗) = 0, ∀i = 1, ..., n+ 1.

Here we introduce a convergence result for the (PHA) algorithm.

11

Theorem 2. Assume that the function α ∈ AN → Bi(α) ∈ MN×N , with
Bi(α) invertible, (α, x) ∈ AN × Rn → ci(α, x) ∈ RN are continuous on the
variable α, x for i = 1, ..., n+ 1, A is a compact set of Rd and (H1, H2, H4)
hold.

Then there exists a unique V ∗ in RN solution of (8). Moreover the
sequence V k generated by the (PHA) (9) has the following properties:

(i) Every element of the sequence V s is bounded by a constant C, i.e.
‖V s‖∞ ≤ C < +∞.

(ii) If V 0 ≤ V ∗ then V s ≤ V s+1 for all k ≥ 0, vice versa, if V 0 ≥ V ∗ then
V s ≥ V s+1.

(iii) V s → V ∗ when s tends to +∞.

Proof. The existence of a solution comes directly from the monotonicity of
the matrices B(α), the existence of an inverse and then the existence of a
solution of every system of (8). Let us show that such solution is limited as
limit of a sequence of vectors of bounded norm. Observing that,

‖V s‖∞ = max {‖V s
i ‖∞}i=1,...,n+1

without loss of generality we assume that ‖V s‖∞ ≡ ‖V s
i∗‖∞. Considering

the problem
min
α∈A

Bi∗(α)V s − c(α, V s−1) = 0,

we have for H2 that if V s−1 is bounded then ‖V s‖∞ ≤ C. Adding that V 0

is chosen bounded, the thesis follows for induction.
Let us prove the uniqueness: taken V,W ∈ RN two solutions of (9), we

define the vector W ∗ equal to V in the identical arguments of ci(α, ·) and
equal to W elsewhere, for a i ∈ {1, ..., n+ 1}. We have that, for a control β
(for Proposition 2.3),

Bi(β)V − ci(β, V) ≥ 0 ≥ Bi(β)W ∗ − ci(β,W ∗) = Bi(β)W − ci(β, V)

then Bi(β)(V −W) ≥ 0 and for monotonicity V ≥W . Exchanging the role
of V and W , and for the arbitrary choice of i we get the thesis.

(i) To prove that V k ∈ RN is an increasing sequence, it is sufficient to
show that taken V1, V2 ∈ RN solution of

min
α∈A

Bi(α)V2 − ci(α, V1) = 0

with (the opposite case is similar) V1 ≤ V ∗, for a choice of i ∈ {1, ..., n+ 1}
is such that V2 ≥ V1. Let us observe, for a choice of β ∈ A and using (11)
of Prop. 2

0 = min
α∈A

Bi(α)V2 − ci(α, V1) ≤ Bi(β)V2 − ci(β, V1)

≤ Bi(β)V2 − (Bi(β)V1 − ci(β, V1))− c(β, V1)

12

then Bi(β)(V2 − V1) ≥ 0 and V2 ≥ V1.
We need also to prove that V2 ≤ V ∗: if it should not be true, then

0 ≥ Bi(β)V2 − ci(β, V1) ≥ Bi(β)V2 − (Bi(β)V2 − ci(β, V2))− ci(β, V1)

and for H4, V1 ≥ V2. This contradicts what stated previously.

We show that in presence of a finite number of controls the method
reaches the fixed point in a finite time.

Proposition 3. If Card(A) < +∞ and convergence requests of Theorem
2 are verified then (PHA) converges to the solution in less than Card(A)N

iterative steps.

Proof. Let us consider the abstract formulation P : x → y, where P (x) is
determined by NP parameter in A and Q : y → x, where Q(y) is determined
by NQ parameter in A. If we consider the iteration

P (xk) = yk

Q(yk) = xk+1 (12)

and we suppose (Theorem 2) xk ≤ xk+1, yk ≤ yk+1, then called αk the
NP + NQ variables in A associated to (xk, yk) we know that there exist a
k and a l where k < l ≤ Card(A)NP +NQ such that αk = αl and again
(xk, yk) = (xl, yl). Hence (xk, yk) is a fixed point of (12).
It is sufficient identifying the process P with the (parallel) resolution on
the sub-domains and Q with the iteration on the interfaces between the sub
domains to obtain the thesis

Remark 5. It is worth to notice that the above estimation is worse than
(HA). In fact, the classical algorithm finds the solution in Card(A)N and
(PHA) has the same number of iterative steps. This number has to be
multiplied for Card(A)(M1+M2) (M1 is the maximum number of nodes in
a sub-domain and M2 is the number of nodes belonging to the interface).
Hence the total number of steps is Card(A)(N+M1+M2): more than the clas-
sical case. In this analysis it is not possible to see the advantages of the
decomposition technique: any computational step involves smaller and sim-
pler problem with a reduction of time and memory storage needed.

4 Performances, tuning parameters

The performances of the algorithm and its speeding up traits are tested in
this section. We use a standard academic example where we can observe
all the main features of our technique. The efficiency of (HA) in relation to
iterative methods as value iteration (VI) (and its successive modifications
as the monotone value iteration in the set of subsolutions presented in [2]

13

Figure 1: Approximated solution of the (PHA) (left) in the 1D case, final
time (dotted) and fifth iteration (solid), in the 2D case (right, 3rd iteration).

and the Gauss-Seidel variation in [19]) has been studied and discussed in [1].
In this section we focus on comparing the non parallel version (HA) with
the parallel (PHA). Where useful, we use also the standard value iteration
method (VI) as a reference for the reader.
The tests are performed on a normal laptop using the GPU as parallel
machine. In particular we run the main structure of the code on the main
processor 2.8 GHz Intel Core i7 (the code is implemented in Mathworks’
MATLAB R2015a). This main part (which computes also the sequential
step of (PHA)) opens in parallel n−threads on the GPU (1 thread-1 core in
local memory) using the Parallel Computing Toolbox (version 6.6 [29]). The
GPU is a Nvidia Geforce with 384 CUDA cores of specs: Clock up to 900
MHz, Local memory DDR3/GDDR5 (Interface width 128 bit, Bandwidth
80 GB/sec).

1D problem Consider the unidimensional problem{
u(x) + |Du(x)| = 1 x ∈ (−1, 1),
u(−1) = u(1) = 0.

(13)

It is well known that this equation (Eikonal equation) models the distance
from the boundary of the domain, scaled by an exponential factor. Through
a standard upwind scheme we obtain the problem in the form (4). In Table
4 we show a comparison in term of speed and efficacy of our algorithm and
the (HA) in the case of a two thread resolution. It is possible to see as
the parallel technique is not convenient in all the situations. This is related
to the low number of parallel threads which are not sufficient to justify
the construction. In the successive test, keeping a fixed number of nodes
processed and tuning the number of threads, it is possible to notice the
influence of such variable in the performances.

14

Table 3: Testing performances, 1D. Our method compared with the (HA)
and (VI) with two sub-problems. Performances are described in terms
of time in seconds (t.), iterations (it.) relative to the parallel part
of the algorithm (par.), the iterative part (itp.) and speed-up factor
(SU=time(HA)/time(PHA))

VI HA PHA (2-threads)

dx t. it. t. it. t. (par.) it. t. (itp.) t. (tot.) SU
2E1 8.9E-3 115 1E-3 10 1E-4 4 1E-5 1E-3 1
4E1 51E-3 232 6E-3 20 8E-4 5 1E-5 3E-3 2
8E1 0.88 521 0.09 40 7E-3 6 2E-5 0.04 2.3

1.6E2 2.12 882 0.32 80 0.048 8 1E-4 0.36 0.9
3.2E2 16.8 1420 2.22 160 0.34 14 8E-4 3.26 0.7

Table 4: Testing performances, 1D. Our method compared with the classic
Howard’s with various number of threads

nodes: 8E1 HA PHA

threads t. it. t. (par.) it. t. (itp.) t. (total) SU
2 0.48 4 1E-4 3.6E-1 0.9
4 8E-3 6 1E-4 8.6E-2 3.7
8 0.32 80 18E-4 7 6E-4 1.4E-2 22.9

16 7E-4 10 4E-4 9.5E-3 33.7
32 2E-4 8 6E-3 1.1E-2 29.1

In Table 4 we compare the iterations and the time necessary to reach the
approximated solution. We study in the various phases of the algorithm,
the maximal time necessary to solve every sub-problem (first column), num-
ber of iterations and time elapsed for the iterative part (which passes the
information through the threads, next column), the total time and finally
the speed-up factor of our technique compared to (HA). It is highlighted
the optimal choice of number of threads (16 thread); it is clear that choice
changes varying the number of the nodes processed. Therefore an ad-
ditional work is required to tune the number of threads according to the
characteristics of the problem: otherwise it is possible to loose completely
the gain obtained through parallel computing and to get worse performances
even compared with the (HA) (cf. 1D problem Table 3).

2D problem Let us consider the approximation of the scaled distance
function from the boundary of the square Ω := (−1, 1)× (−1, 1) solution of

15

Table 5: Testing performances, 2D. Comparison between (HA) and (PHA)
with 4 threads

VI HA PHA (4-threads)

nodes t. it. t. it. t. (par.) it. t. (itp.) t. (total) SU
4E2 0.24 168 5E-2 11 9E-3 2 2E-2 4E-2 1.3

1.6E3 10.8 21 2.41 21 5E-2 2 3E-2 0.14 17.2
6.4E3 351.5 521 73.3 40 2.5 2 0.15 7.83 9.4
2.56E4 >E5 - >E5 - 5 76 1.293 383.3 -

the eikonal equation{
u(x) + inf

a∈B(0,1)
{−a ·Du(x)} = 1 x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.
(14)

where B(0, 1) ∈ R2 is the usual unit ball. For the discretization of the
problem we use the standard upwind discretization.

Figure 2: Comparison of the speed of convergence of our method in the
case of various initial guess to in the L∞-norm (left). Distribution of the
error dx = 0.125, 16 threads (right).

In Table 5 performances of the (HA) are compared with (PHA). In this
case the number of threads are fixed to 4; the parallel technique is evaluated
in terms of: maximum elapsed time in one thread (first column), time and
number of iterations of the iterative part (third and fourth columns), total
time and speed-up factor. In both of the cases the control set A := B(0, 1) is
substituted by a 32−points discrete version. It is evident, in the comparison,
an improvement of the speed of the algorithm more consistent than the 1D
case.

In Table 6, we compare the performances for various choices of the
number of threads, for a fixed number of nodes to compute. As in the 1D
case it is possible to see how an optimal choice of the number of threads can

16

Table 6: Testing performances, 2D. Comparing different choices of the num-
ber of threads

nodes: 6.4E3 HA PHA

threads t. it. t. (par.) it. t. (itp.) t. (total) SU
4 2.5 2 1.5E-1 7.83 9.4
9 9E-1 5 0.5 5.08 14.4

16 73.3 9 5E-2 13 1.6 1.87 40.1
25 3E-2 12 2.4 2.52 29.1
36 1.6E-2 18 6.04 6.11 12

drastically strike down the time of convergence. In Figure 2 it is possible to
see the distribution of the error. As predictable, the highest concentration
corresponds to the non-smooth points of the solution.

Remark 6. The method is sensible to a good initialization of the “inter-
nal boundary” points. As is shown in Figure 2 a right initialization, even
obtained on a very coarse grid, affects consistently the overall performances
(column it. (PHA) in the tables). In this section, all the tests are made with
an initialization of the solution on a 4d-points grid, with d dimension of the
domain space. The time necessary to compute the initial solution is always
negligeable with respect to the global procedure.

Figure 3: Two level sets (corresponding to levels u(x) = 0.192 (left) u(x) =
0.384 (right)) of the approximated solution obtained with a dx = 0.1 and
an 8−threads PHA.

3D problem We obtain analogue results in the approximation of a 3D
problem. Let us consider the domain Ω := [−1, 1]3 and the equation (14)
where A := B(0, 1) unitary ball in R3. In Figure 3 there are shown two level

17

Table 7: Testing performances, 3D. Comparison with classical method and
(PHA) with 8 threads

VI HA PHA (8-threads)

nodes t. it. t. it. t. (par.) it. t. (itp.) t. (tot.) SU

1.2E2 18E-3 52 4E-3 4 3E-3 4 2E-3 5E-2 8E-2
1E3 1.12 64 0.22 6 2.6E-2 6 1.6E-2 5.2E-2 4.2
8E3 1.4E3 88 1.64E2 9 0.7 8 1.1 6.78 24.2

6.4E4 >1E5 - >1E5 - 164 5 4.98 4.94E2 -

Table 8: Testing performances, 3D. Comparing different choices of the num-
ber of threads

nodes: 8E3 HA PHA

threads t. it. t. (par.) it. t. (itp.) t. (total) SU
4 4.5 12 1.3 55.3 3

8 1.64E2 9 0.7 8 1.1 6.78 24.2
18 0.5 10 4.6 9.6 17.1
24 0.6 21 9.4 17.8 9.2

sets of the solution obtained. A comparison with the performances of the
(HA) are shown in Table 7 and 8.

Remark 7 (Speed-up and Scalability). Summing up the results obtained in
this section we observe some features of the technique proposed. We can see
(results reported in Figure 4) as the parallelization of the Howard algorithm
permits to obtain very good performances in term of SU and efficiency (SU
divided by the number of threads) where the techniques available in literature
(cf. in particular the results in [17] – only in 2D) provided maximal efficiency
rates around 1 (typically SU ≈ 10 for n ≈ 10 threads). In our case, the
coupling between a ’fast technique’ like the (HA) and the use of parallel
computing is highly effective. We note that the technique suffers of a non
satisfactory scalability: we observe again in Figure 4 as the optimal number
of processor is finite and determined by the size of the problem. This issue is
due to two aspects of the iterative part of (PHA): the number of the points
to compute in this step and the memory management. The first point is
discussed in the next remark while the latter can be overcome with some
expedients discussed in [17] as the creation of some regions of overlapping
stored in a shared memory between the threads.

Remark 8. A particular attention should be dedicated to the resolution of
the iterative part to avoid loosing the advantages of parallel computing. To

18

Figure 4: Summary of the results obtained in the 1D-2D-3D tests. Speed-up
factor (SU) and Efficiency (SU/threads) on number of threads.

explain this, suppose to simplify the procedure considering a square domain
(in dimension d = 1, 2, 3, .. an interval, a square, a cube..) and a successive
splitting in equal regular subdomains. Calling N the number of total vari-
ables and Ns the number of the splitting (which generates a division in Nd

s

subdomains) the number of the elements in every thread of the parallel part
is N

(Ns)d
, and the number of the variables in the iterative part N

d√N
(Ns− 1)d.

Clearly the optimal choice of the number of threads is such that the elements
of the iterative part are balanced with the nodes in each subdomain, so it
is straight forward to find the following optimal relation between number of
splitting and total elements

N =
(
Nd
s (Ns − 1)d

)d
.

Therefore, for a very high number of elements (Figure 5) it is worthless to
use a large and non optimal number of threads. This contradiction comes
from a bottleneck effect of the resolution on the interfaces of communication
between the subdomains. Indeed the complexity of this subproblem grows with
the number of threads instead to decrease, complicating the resolution. The
problem can be overcome with an additional parallel decomposition of the
iterative pass, permitting to decompose each subproblem to an acceptable
level of complexity. Imagine to be able to solve (for computational reasons,
memory storage, etc.) only problem of dimension “white square” (we refer
to Figure 5, right) and to want to solve a bigger problem (“square 1”) with
an arbitrary number of processors available. Through our technique we de-
compose the problem in a finite number of subproblems “white square” and
a (possibly bigger than the others) problem “square 2”. We replicate our
parallel procedure for the “square 2” obtaining a collection of manageable

19

Figure 5: Optimal number of splitting for number of variables in the dis-
cretization (left/above) and and number of element (here the 2D case) in
the parallel part and in the iterative part (right/above), the optimum is the
point of crossing between the two, (as obtained experimentally in Table 6).
Recursive structure of the algorithm (right/below) to reduce the original
problem (dark gray) to a fixed number of variables sub-problems (white).

problems and a “square 3”. Through a reiteration of this idea we arrive to
a decomposition in subproblems of dimension desired.

5 Extensions and special cases

In this section we show some non trivial extensions of the technique. We
discuss in particular how to adapt the parallelization procedure to the case
of a target problem, an obstacle problem and max-min problems, where the
special structure of the Hamiltonian requires some cautions and remarks.

5.1 Target problems

An important class of problems to which we want to extend our approach
are target problems, where a trajectory is driven to arrive to a Target set
T ⊂ Ω optimizing a cost functional.

20

An easy way to modify our algorithm to this case consists in changing
the construction procedure for B and C:

[
B′(α)

]
i

:=

{
[B(α)]i , if xi /∈ T ,
[I]i , otherwise;

c′(α)i :=

{
c(α)i, if xi /∈ T ,
0, otherwise.

(15)

Example 3 (Zermelo’s navigation problem). A well known benchmark in
the field is the Zermelo’s navigation problem where a dynamic is driven by
a force of comparable power with respect to the control. The target is a ball
of radius equal to 0.005 centred at the origin, the control is in A = B(0, 1).
The other data are:

f(x, a) = a+

(
1− x2

2

0

)
, Ω = [−1, 1]2, λ = 1, l(x, y, a) = 1. (16)

Figure 6: Approximated solution for the Zermelo’s navigation problem on a
grid of 4e4 nodes.

In Table 9 we compare the number of threads and performances. We are
in presence of characteristics not aligned with the grid, but the efficacy of
the method are poorly effected. Convergence is archived with performances
comparable to the already described case of the Eikonal Equation.

5.2 Obstacle problem

Various techniques have been proposed to deal with an optimal problem
with constraints using the Bellman’s approach. In this section we consider
an implicit representation of the constraints through a level-set function.
Let us to consider the general single obstacle problem{

λv(x) + min (H(x,Dv(x)), v(x)− w(x)) = 0 x ∈ Ω,
v(x) = g(x) x ∈ ∂Ω,

(17)

21

Table 9: Zermelo’s navigation problem. Comparison of various choices of
the number of threads

nodes: 6.4E3 HA PHA

threads t. it. t. (par.) it. t. (itp.) t. (total) SU
4 1.31 4 0.13 5.4 7.02
9 0.5 7 0.7 4.2 9.02

16 37.9 20 3.1E-2 7 1.38 1.53 24.8
25 2E-2 7 2.7 3.9 9.7
36 1E-2 8 5.19 5.28 7.18

where the Hamiltonian H is of the form discussed in Section 2 and the stan-
dard hypothesis about regularity of the terms involved are verified. The
distinctive trait of this formulation is about the term w(x) : Ω → R, as-
sumed regular, typically stated as the opposite of the signed distance from
the boundary of a subset K ⊂ Ω. The solution of this problem is coincident,
where defined, with the solution of the same problem in the space Ω \ K.
This explains the name of “obstacle problem” (cf. [11]). After a finite di-
mensional approximation of the problem we arrive to the following modified
version of (17)

Find V ∈ RN ; min
α∈AN

min(B(α)V − cg(α), V −W) = 0, (18)

where the term W is a sampling of the function w on the knot of the dis-
cretization grid.

We can see how changing the definition of the matrix B and c, it is
possible to reduce the problem to (4). Adding an auxiliary control to the
set A′ := A× {0, 1} and re-defying the matrices B and c as

[
B′(α)

]
i

:=

{
[B(α)]i , if B(α)V − cg(α) ≤ V −W
[I]i , otherwise;

c′g(α)i :=

{
cg(α)i, if B(α)V − cg(α) ≤ V −W
Wi, otherwise;

(19)

for i = 1, ..., N,

(where the Xi is the i−row if X is a matrix, and the i− element if X is a
vector, and I is the identity matrix), the problem becomes

Find V ∈ RN ; min
α∈A′

(B′(α)V − c′g(α)) = 0. (20)

Remark 9. The verification of Hypotheses (H1-H4) by the numerical sche-
me associated to the transformation (19) is easy. It is in some cases also
possible the direct verification of conditions of convergence in the obstacle

22

Figure 7: Value function of Dubin car problem (left, free of constraints) and
some optimal trajectories in the case with constraints (right).

problem deriving them from the free of constraints case. For example if we
have that the matrix B(α) is strictly dominant (i.e. Aij ≤ 0 for every j 6= i,
and there exists a δ > 0 such that for every i, Aii ≥ δ +

∑
i 6=j |Aij |), then

the properties of the terms are automatically verified, (i.e. since all Bi(α)
are strictly dominant and thus monotone).

Example 4 (Dubin car with obstacles). A classical problem of interest is
the optimization of trajectories modelled by

f(x, y, z, a) :=

 c cos(πz)
c sin(πz)

a

 , λ := 10−6, l(x, y, z, a) := 1, c ∈ R;

which produces a collection of curves in the plane (x, y) with a constraint
in the curvature of the path. Typically this is a simplified model of a car of
constant velocity c with a control in the steering wheel.

The value function of the exit problem from the domain Ω := (−1, 1)2,
A = [−1, 1] discretized uniformly in 8 points is presented in Figure 7. We
consider the same problem with the presence of constraints. This problem
can be handled with the technique described above producing the results shown
in Figure 7, where there are some optimal trajectories (in the space (x, y))
to exit from Ω := (−1, 1)2 in presence of some constraints.

5.3 Max-min problems

The last, more complex extension of the Howard’s problem (4) is about
max-min problems of the form

Find V ∈ RN ; max
β∈BN

(
min
α∈AN

(B(α, β)V − c(α, β))

)
= 0. (21)

23

PHA (Max-min case)

Initialize V 0 ∈ RN α0 for all i ∈ {1, ..., n+ 1}.
k:=1;

1) Iterate (Parallel Part) for every i = 1, ..., n do:
s := 0

1.i) Find V si ∈ Rn solution of F βi (V si) = 0.
If s ≥ 1 and V si = V s−1i , then Vi := V si , and exit (from inner loop).
Otherwise go to (1.ii).

1.ii) βs+1
i := arg min

α∈An

F βi (V si) = 0.

Set s := s+ 1 and go to (1.i)

2) Iterate (Iterative Part) for t ≥ 0

2i) Find V tn+1 ∈ Rh solution of F βn+1(V tn+1) = 0.

If t ≥ 1 and V tn+1 = V t−1n+1 , then Vn+1 = V tn+1, and go to (3).
Otherwise go to (2ii).

2ii) βt+1
n+1 := arg min

βn+1∈Bh

F βn+1(Vn+1) = 0.

Set t := t+ 1 and go to (2i)

3) Compose the solution V k+1 = (V1, V2, ..., Vn, Vn+1)
k:=k+1;
If V k+1 = V k then exit, otherwise go to (1).

Table 10: Pseudo-code of PHA for max-min problems.

Those non linear equations arises in various contexts, for example in differ-
ential games and in robust control. The convergence of a parallel algorithm
for the resolution of such problem is also discussed in [17].

Also in this case, a modified version of the policy iteration algorithm can
be shown to be convergent (cf. [8]). Our aim in this subsection is to give
some hints for the use of (PHA). The convergence of the algorithm is not
guaranteed but only observed experimentally.

Let us introduce the function F βi : Rn → R, for β ∈ Bn and i ∈ I defined
by

F βi (V) := min
α∈An

(Bi(α, β)V − ci(α, β, V) (22)

The problem (21), in analogy with the previous case, is equivalent to solve
the following system of nonlinear equations

24

Figure 8: Approximated solution of the pursuit evasion game on a grid of
4e4 nodes.

min
β∈Bk

F βi (Vi) = 0 i = 1, ..., n

min
β∈Bh

F βn+1(Vn+1) = 0
(23)

The (PHA) in the case of a max-min problem is summarized in Table
10.

Remark 10. It is worth to notice that at every call of the function F β

it is necessary to solve a minimization problem over the set A. This can
be performed in an approximated way, using, for instance, the classical
Howard’s algorithm. This gives to the dimension of this set a big relevance
on the performances of our technique. For this reason, if the cardinality of
A (in the case of finite sets) is bigger than B, it is worth to pass to the
alternative problem −maxα∈Aminβ∈B(B(α, β)V − c(α, β)) (here there are
used the Isaacs’ conditions [2]) before the resolution, inverting in this way,
the role of A and B in the resolution.

Example 5 (A pursuit-evasion game). One of the most known example of
max-min problem is the pursuit-evasion game; where two agents have the
opposite goal to reduce/postpone the time of capture. The simplest situation
is related to a dynamic

f(x, y, z, a, b) :=

(
a1/2− b1
a2/2− b2

)
where controls are taken in the unit ball A = B = B(0, 1) and capture
happens when the trajectory is driven to touch the small ball B(0, ρ), (ρ =
0.15, in this case). The passage to a target problem is managed as described
previously. In Figure 8 we show the approximated value function of that
problem.

25

6 Conclusions

The main difficulty in the use of the Howard’s Algorithm, i.e. the resolution
of big linear systems can be prevented using parallel computing. This is
important despite the fact that we must accept an important drawback:
the double loop procedure illustrated (or multi-loop procedure as sketched
in Remark 8) does not permit to archive a superlinear convergence, as in
the classical case. We suspect (looking at Figure 2) that such rate is
preserved on the iterative part. At every step, the algorithm solves (possibly
in parallel) n−reduced problems. This brings a significant reduction of the
time of computation even without parallel computing.

A substantial point is the choice of the solver for every linear problem. In
this paper we opted for the easier (but expensive) choice the exact inversion
of the matrix. With the use of an iterative solver, with the due caution
about the error introduced, we expect better performances (cf. [1]).

Acknowledgements

This work was supported by the European Union under the 7th Framework
Programme FP7-PEOPLE-2010-ITN SADCO, Sensitivity Analysis for De-
terministic COntroller design.
The author thanks Hasnaa Zidani of the UMA laboratory of ENSTA for the
support in developing the subject and the anonymous referees that help to
improve the clearness of this paper.

References

[1] A. Alla, M. Falcone, D. Kalise, An efficient policy iteration algorithm
for the solution of dynamic programming equations, SIAM J. Sci. Com-
put. 37 (1) (2015), 181–200.

[2] M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solution
of Hamilton-Jacobi-Bellman equations, Birkhäuser, Boston Heidelberg,
1997.

[3] M. Bardi, T.E.S. Raghavan, T. Parthasarathy, Stochastic and differen-
tial games: Theory and Numerical Methods, Birkhäuser, Boston, 1999.

[4] G. Barles, A. Briani, E. Chasseigne, A Bellman approach for two-
domains optimal control problems in RN , ESAIM Contr. Opim. Ca.
19(3) (2013) 710–739.

[5] G. Barles, A. Briani, E. Chasseigne, A Bellman approach for regional
optimal control problems in RN , SIAM J. Control Optim. 52 (3) (2014)
1712–1744.

26

[6] R.C. Barnard, P.C. Wolenski, Flow invariance on stratified domains,
Set Valued Var. Anal. 21 (2013) 377–403.

[7] R. Bellman, Dynamic programming, Princeton University Press,
Princeton NJ, 1957.

[8] O. Bokanowski, S. Maroso, H. Zidani, Some convergence results for
Howard’s algorithm, SIAM J. Numer. Anal. 47 (4) (2009) 3001–3026.

[9] S. Cacace, E. Cristiani, M. Falcone and A. Picarelli A patchy dy-
namic programming scheme for a class of Hamilton–Jacobi–Bellman
equations. SIAM Journal on Scientific Computing, 34(5):2625–2649,
2012.

[10] F. Camilli, M. Falcone, P. Lanucara, A. Seghini, A domain decom-
position method for Bellman equations, Contemp. Math. 180 (1994)
477–483.

[11] F. Camilli, P. Loreti, N. Yamada, Systems of convex Hamilton-Jacobi
equations with implicit obstacles and the obstacle problem, Comm.
Pure Appl. Math. 8 (2009) 1291–1302.

[12] E. Carlini, A. Festa, F. J. Silva, and M.-T. Wolfram, “A Semi-
Lagrangian scheme for a modified version of the Hughes’ model for
pedestrian flow,” Dyn. Games Appl., 2016.

[13] Y. Cheng, C-W. Shu, A discontinuous Galerkin finite element method
for directly solving the Hamilton-Jacobi equations, J. Comput. Phys.
223 (1) (2007) 398–415.

[14] M.G. Crandall, P.L. Lions, Two approximations of solutions of
Hamilton-Jacobi equations, Math. Comp. 43 (167) (1984) 1–19.

[15] M. Falcone, R. Ferretti, Semi-Lagrangian approximation schemes for
linear and Hamilton-Jacobi equations, Applied Mathematics series,
SIAM, 2013.

[16] M. Falcone, P. Lanucara and A. Seghini, A splitting algorithm for
Hamilton-Jacobi-Bellman equations, Applied Numerical Mathematics,
15 (1994) 207–21

[17] M. Falcone, P. Stefani in: A.S. Nowak, K. Szajowski (Eds), Advances
in Dynamic Games, Birkhäuser, Boston, 2005, pp. 515–544.

[18] A. Festa. Reconstuction of Independent Sub-Domains for a class of
Hamilton Jacobi Equations and Application to Parallel Computing,
ESAIM:M2AN, 50(4):1223–1240, 2016.

27

[19] L. Grüne, Numerical stabilization of bilinear control systems, SIAM J.
Control Optim. 34 (1996) 2024–2050.

[20] R.A. Howard, Dynamic programming and Markov processes, The MIT
Press, Cambridge MA, 1960.

[21] M. Puterman, S.L. Brumelle, On the convergence of policy iteration in
stationary dynamic programming, Math. Oper. Res. 4 (1) (1979) 60–69.

[22] L. Qi, J. Sun, A nonsmooth version of Newton’s method, Math. Pro-
gram. 58 (1993) 353–367.

[23] Z. Rao, H. Zidani, in: K. Bredies, C. Clason, K. Kunisch, G. von
Winckel (Eds), Control and Optimization with PDE Constraints,
Springer, Basel, 2013, pp. 93–116.

[24] M. Santos, J. Rust, Convergence properties of policy iteration, SIAM
J. Control Optim. 42 (6) (2004) 2094–2115.

[25] J.A. Sethian, A. Vladimirsky, Ordered upwind methods for static
Hamilton–Jacobi equations: Theory and algorithms, SIAM J. Numer.
Anal. 41 (1) (2003) 325–363.

[26] H.M. Soner, Optimal control problems with state-space constraints,
SIAM J. Control Optim. 24 (1986) 552–562.

[27] P. Souganidis, Approximation schemes for viscosity solutions of
Hamilton-Jacobi equations, J. differ. equations 59 (1) (1985) 1–43.

[28] M. Sun, Domain decomposition algorithms for solving Hamilton
Jacobi-Bellman equations, Num. Func. Anal. Opt. 14 (1993) 145–166.

[29] Various authors, Parallel Computing Toolbox, User’s Guide, The
MathWorks, Inc., 2017 http://www.mathworks.com/help/pdf_doc/

distcomp/distcomp.pdf

[30] H. Zhao, A fast sweeping method for eikonal equations, Math. Comp.
74 (2004) 603–627.

[31] H. Zhao, Parallel implementations of the fast sweeping method, J.
Comput. Math. 25 (4) (2007) 421–429.

[32] S.Z. Zhou, W.P. Zhan, A new domain decomposition method for an
HJB equation, J. Comput. Appl. Math. 159 (1) (2003) 195–204.

28

http://www.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf
http://www.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf

	Introduction
	Howard's algorithm
	Domain decomposition and parallel version
	Hamilton Jacobi equation on submanifolds
	Parallel Howard's algorithm

	Performances, tuning parameters
	Extensions and special cases
	Target problems
	Obstacle problem
	Max-min problems

	Conclusions

