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Abstract: The estimation of the Instantaneous Angular Speed (IAS) has in recent years attracted a 
growing interest in the diagnostics of rotating machines. Measurement of the IAS can be used as a 
source of information of the machine condition per se, or for performing angular resampling 
through Computed Order Tracking, a practice which is essential to highlight the machine spectral 
signature in case of non-stationary operational conditions. In these regards, the SURVISHNO 2019 
international conference held at INSA Lyon on 8–10 July 2019 proposed a challenge about the 
estimation of the instantaneous non-stationary speed of a fan from a video taken by a smartphone, 
a pocket, low-cost device which can nowadays be found in everyone's pocket. This work originated 
by the author to produce an offline motion-tracking of the fan (actually, of the head of its locking-
screw) and obtaining then a reliable estimate of the IAS. The here proposed algorithm is an update 
of the established Template Matching (TM) technique (i.e., in the Signal Processing community, a 
two-dimensional matched filter), which is here integrated into a Genetic Algorithm (GA) search. 
Using a template reconstructed from a simplified parametric mathematical model of the features of 
interest (i.e., the known geometry of the edges of the screw head), the GA can be used to adapt the 
template to match the search image, leading to a hybridization of template-based and feature-based 
approaches which allows to overcome the well-known issues of the traditional TM related to scaling 
and rotations of the search image with respect to the template. Furthermore, it is able to resolve the 
position of the center of the screw head at a resolution that goes beyond the limit of the pixel grid. 
By repeating the analysis frame after frame and focusing on the angular position of the screw head 
over time, the proposed algorithm can be used as an effective offline video-tachometer able to 
estimate the IAS from the video, avoiding the need for expensive high-resolution encoders or 
tachometers. 

Keywords: machine vision; machine diagnostics; instantaneous angular speed; SURVISHNO 2019 
challenge; video tachometer; motion tracking; edge detection; parametric template modeling; 
adaptive template matching; genetic algorithm 

 

1. Introduction 

Rotating machinery are fundamental components of mechanical systems for most of the 
industrial applications, as mechanical power is commonly obtained in the form of torque at a rotating 
speed. Electrical motors, internal combustion engines and motors in general, in fact, convert some 
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sort of source energy into mechanical energy which is transferred to the final user through a 
mechanical transmission (e.g., a gearbox) which provides speed and torque conversion. 

The speed is then a piece of essential system information, usually kept under control to 
accomplish a determined work. As a general consideration, feedback controllers can easily maintain 
their process variable (i.e., the speed in this case) close to its setpoint, but noise and disturbances may 
affect the controlled system instantaneous output causing the variable to depart from and oscillate 
around its desired value. The appearance of damages in the system has then repercussions on the 
instantaneous speed, which can be used as a source of information of the machine health condition 
perse. 

The information about the instantaneous speed is fundamental for machine diagnostics also in 
other ways. In the field of Vibration Monitoring (i.e., a particularly successful kind of condition 
monitoring based on vibration records) for example, it is very common to use measured or estimated 
information about the Instantaneous Angular Speed (IAS) to perform the so-called Order Tracking 
[1]. In fact, most of rotating machines are affected by phenomena which are locked to particular 
angular positions (e.g., the intake of a 4 strokes diesel engine lasts from 0 to 𝜋 radians of the main 
shaft and is periodic of 4𝜋; a gear featuring a wheel with 𝑀 teeth whose 𝑁௧௛  tooth is damaged 
features an anomalous meshing pattern at angle ଶగேெ  of the wheel’s shaft with a periodicity of 2𝜋). 
Furthermore, in the case of non-stationary acquisitions, the spectral signature of the machine can only 
be found after synchronization of the Fourier analysis on the shaft rotation (i.e., the spectrum is not 
given as a function of the frequency, but as a function of the orders of a reference shaft). 
Unfortunately, commercial Data Acquisition Systems (DAQ) are not efficient in sampling at constant 
angular increments of the reference shaft, so that resampling algorithms are used, based on the 
additional information of the angular position of the reference shaft over time [2–5]. 

The growing interest of the signal processing community in the IAS information is demonstrated 
by the increasing number of publications involving the estimation of the instantaneous frequency as 
well as the creation of a special issue on IAS processing in the Journal of Mechanical Systems & Signal 
Processing [6] and of a conference dedicated solely to condition monitoring in non-stationary 
operations [7]. In addition, at the international conferences Surveillance 8 (in 2015) [8] and 
SURVISHNO (in 2019), contests about IAS estimation were organized. The IAS is in effect spreading 
in many fields of diagnostics of rotating machinery, especially for motors and gearboxes. 

Particular applications for motors diagnostics involve electrical motors [9–11], internal 
combustion engines [12–16], and hydraulic engines too [17]. 

Gearbox diagnostics was also covered from a general point of view [18–21] as well as considering 
particular applications (e.g., windmills [22]) or focusing on relevant components such as the bearings 
[23,24]. 

Machining processes can also be subject to diagnostic analysis through the IAS estimation. The 
milling cutting force, for example, is proved to be reflected by the IAS [25,26]. 

1.1. Instantaneous Angular Speed (IAS) Review 

The IAS information is, in simple terms, a measure of the rotation speed of a rotating component 
of a machine defined at an angular resolution corresponding to at least one value per revolution [26]. 
From a physical point of view then, the IAS is defined starting from the angular position 𝛼(𝑡) of a 
shaft as: 𝜔(𝑡) = 𝛼ሶ(𝑡) = 𝑑𝛼𝑑𝑡  (1) 

A measure of this quantity can be obtained using analog sensors such as the tachometer-dynamo 
which translates the rotational speed into an electrical signal, or with analog angular position sensors 
such as the resolver. Nevertheless, such devices can nowadays be considered obsolete and are often 
substituted by more reliable digital sensors, whose signals can be processed to produce an estimate:  𝜔ෝ(𝑡) ≅ ΔαΔ𝑡  ;  𝜔ෝ → 𝜔 𝑓𝑜𝑟 Δ𝑡 → 0 (2) 

In particular, two strategies can be put in place. One involves the measurement of the angle Δ𝛼 
swept in a constant interval of time Δ𝑡 by the shaft. Nevertheless, the angular measurements can be 
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affected by larger errors than the time measurements’ ones. A second more widespread and accurate 
method consists of measuring the time elapsed between successive pulses (Elapsed Time 𝐸𝑇 = Δ𝑡) 
corresponding to a known swept angle Δα which is a characteristic of the sensor (e.g., an encoder). 
An analysis of the resolution and the speed estimation error can be found in [27]. 

In any case, all these methods involve the use of an additional sensor (generally referred to as a 
generic “tachometer” but not to be confounded with the tachometer-dynamo sensor). The interest of 
the scientific diagnostics community then has recently moved to IAS estimation from the easily 
available accelerometric signals, fundamental for vibration monitoring, going “encoder-less” or 
“tacholess”. In this regard, several different approaches are possible [7]. 

In particular, the simplest idea is to track a shaft-speed related harmonic (possibly showing a 
good Signal to Noise Ratio-SNR) from its corresponding peak in a time-frequency representation of 
the signal (i.e., a Spectrogram, computed for example via a Short Time Fourier Transform). This can 
be made more accurate by averaging the tracks from multiple harmonic orders, which can also be 
automatically selected by the algorithm (e.g., Multi-Order Probabilistic Approach-MOPA, Ceptrsum-
based MOPA, or ViBES). 

A second approach to the IAS estimation is the demodulation of a shaft-speed related harmonic 
exhibiting good SNR. This follows the idea that vibration signals can be modulated by the revolution 
of the shaft so that phase demodulation can recover the shaft speed from the band-pass isolated 
harmonic of interest. 

Demodulation can also be performed using the Teager-Kaiser Energy Operator. 
Finally, the two main procedures of tracking and demodulation can be exploited together as 

implemented in the Vold-Kalman filtering. 
At any rate, both the measurement and estimation of the IAS have some limitations. In the first 

case, the use of high-resolution encoders allows to get reliable and accurate estimates of the IAS, but 
the angular sensors can be very expensive and need to be mounted on a shaft added for the purpose. 
On the other hand, the second case exploits the cheap and reliable accelerometers which can be added 
on a machine without special design updates. The estimated IAS, however, is less accurate and less 
reliable, and needs computational time. 

In this article then, the measurement of the IAS is tackled at the scope of testing an offline, low-
cost video-tachometer approach, as suggested by the SURVISHNO 2019 challenge (see 
Supplementary Material). The question was “how far is it possible to carry out relevant analysis from 
a video or a rotating fan acquired by a smartphone which can reach a maximum rate of 30 frames per 
second?”. 

In order to answer the question, the field of computer vision was explored so as to point out the 
main approaches to shape detection and image recognition at the scope of extracting the angular 
position 𝛼(𝑡) of the fan from the video and then obtain an estimate of the IAS. 

1.2. Brief Literature Review of Computer Vision 

Computer (or Machine) Vision is a scientific discipline that deals with Machine Learning applied 
to digital images and videos coming from cameras as well as any other visual representation derived 
from various sensors such as ultrasonic cameras, range sensors, radars, tomography devices, etc. The 
objective is transforming visual images into descriptions of the world by extracting data and features, 
producing then information which is fundamental in decisional processes. Applications of Machine 
Vision to industrial processes include automatic inspection (e.g., to detect manufacturing defects), 
surveillance and security (e.g., detection of events, face recognition, etc.), motion control, navigation 
and human-machine interaction (e.g., robots, autonomous vehicles, etc.), modeling objects or 
environments, improving human vision (e.g., medical image analysis and detection), or organizing 
information (e.g., image classification databases, etc.). 

Anyway, according to the need of the particular application, this article is interested only in a 
small sub-domain of Machine Vision algorithms, namely object recognition (i.e., finding and 
identifying objects in an image or video), video tracking (i.e., locating a moving object over time using 
a camera), and motion estimation (i.e., determining motion of a body from two following 2D frames). 
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In order to obtain the angular position of the fan 𝛼(𝑡), in fact, all the three domains are needed. 
First, the subject must be identified in a frame. Then, its position and orientation should be compared 
to the subject in previous or in a reference frame. This way the motion can be tracked from frame to 
frame. In general, two main categories of algorithms can be found in the literature [28–30]. Direct 
methods are based on the pixel information, while indirect methods make use of features such as 
corners or particular points of the subject. Feature-based methods minimize an error measure based 
on distances in the feature space, while direct methods minimize an error measure based on direct 
image information collected from all pixels in the image (i.e., typically the pixel brightness, which is 
usually computed from the RGB color image at a pre-processing stage). 

Complete reviews of approaches to image processing and face recognition (i.e., a common 
application of object recognition) can be found in [31–33] from which it is clear that Neural Networks 
strongly entered the game of machine vision (in particular for feature-based methods). However, all 
the reviews also agree in pointing out a common foundation of the processing: Template Matching 
(TM).  

Template Matching [34] is a technique in digital image processing for finding small parts of an 
image which match a template image (i.e., an image designed to serve as a model). TM is often 
considered a very basic and limited approach to computer vision, but it is actually involved in many 
old and new techniques. In [35] for example, TM is taken into account only for reference-comparison 
inspection of mass-produced integrated circuits precisely aligned on a conveyor (i.e., equal objects, 
with the same location, scale, and orientation in the image). In fact, the limitations of traditional TM 
are well known [34–36] and can be summarized as: a) noise, illumination changes, and occlusions, b) 
background changes and clutter, c) rigid and non-rigid transformations and scale changes (i.e., 
images are a projection of a 3D scene onto a 2D plane), d) high computational cost. 

Point a) is commonly tackled first at a pre-processing stage, when the RGB color image is 
translated into a pixel-wise single channel brightness information (i.e., the luminance) and edge 
detection is performed, and later by focusing on the stability and robustness of the selected similarity 
measure, which affects also point c). Examples of standard similarity measures are the pixel-wise 
sum of differences of the search image and the template, the sum of products (or cross-correlation) 
among them, the Best-Buddies-Similarity based on Nearest-Neighbor matches of features, the 
Deformable Diversity Similarity [36]. Limitations in b) and d) are often faced with the simple trick of 
using masks to remove non-interesting areas (i.e., providing a search window), or otherwise, 
reducing the number of sampling points by decreasing the resolution. Point c) was sometimes dealt 
with the implementation of multiple templates with different scales and rotations (e.g., eigenspaces) 
or with Deformable Part Models (DPM) or Deformable Template Matching [37]. This paper anyway 
focuses on the exploitation of the Genetic Algorithm for dealing with rigid transformations and scale 
variations in the template. 

1.3. GA and Template Matching: A Review 

Evolutionary Algorithms are recently enjoying new success in the scientific community for 
generating good solutions to optimization and search problems without relying on assumptions 
about the underlying fitness landscape (i.e., they perform derivative-free optimization). 

A Genetic Algorithm (GA) is a heuristic algorithm inspired by Charles Darwin’s theory of 
natural evolution via natural selection, where the best individuals are more prone to reproduction 
and have better offspring. 

When focusing on TM, GA can be found in several applications and in different fields, from 
manufacturing (i.e., Integrated Circuits quality inspections) to security and surveillance (i.e., animals 
recognition or face recognition) up to medicine (i.e., nodulus recognition in Computed Tomography 
CT scans) as found in [38–42]. In particular, in [38] GA is used to speed up the TM by shrinking the 
image to be processed. More refined employment of GA can be found in [39], where face recognition 
is performed by TM using a T-shaped template isolating eyes, nose and mouth, resized by GA to find 
a better match when the size of search image and template is different. In [40] further improvement 
is proposed, as a Deformable Template generated as a Point Distribution Model (PDM) is adapted by 
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GA to measure characteristic landmark points (i.e., vertices, nodes, markers, etc.) on cattle images for 
morphological assessment of bovine livestock. The idea of generating a template through a model 
optimized by GA was applied also in [41] and in [42] for automatic detection of lung nodules in chest 
spiral CT scans. Nevertheless, all three applications show some weaknesses. In [40], because of the 
scope of the analysis, the deformable template is GA adapted to locate landmark points on the cattle 
PDM profile, but this does not allow to extract clear and unique information about scale, orientation, 
or center of the template shape, which remains a parametric function (i.e., the template is not a digital 
image). In [41], a two-step GA is proposed for real-time shape tracking. The first step optimizes the 
template which is not directly generated by a mathematical model but comes from a mathematical 
mask (characterized by 3 parameters) on a digital image template, while the second optimizes 
orientation and center position the template (but does not accounts for the scale). Nevertheless, the 
higher computational efficiency of using a two-steps GA rather than a single step GA is not justified. 
Finally, in [42], the template is actually halfway between the parametric function and the digital 
image: a simple parametric function is used in this case to generate multiple images which will be 
used as multiple templates (different scale and rotation). Nevertheless, GA is set up to perform a 
discrete rather than a continuous search of the best matching template in terms of rotation, scale, and 
center position. This limits the potential of GA-TM of getting sub-pixel accuracy [30]. 

As a result of these considerations, a novel GA-adaptive TM technique is proposed in this work. 
In particular, GA is integrated into the TM so as to reconstruct a digital template from a simplified 
parametric geometrical model (which acts as a mask) whose parameters can be continuously 
optimized in terms of scale, rotation, and center position so as to maximize a similarity measure and 
to find the best match. This not only overcomes the well-known issues of the traditional TM related 
to deformations in the search image with respect to the template but enables to resolve the position 
of the center at a resolution that goes beyond the limit of the pixel grid, allowing an effective shape 
tracking which is used in this paper for implementing an offline video-tachometer able to estimate 
the IAS of the SURIVSHNO 2019 fan from the video, avoiding the need of expensive high-resolution 
encoders or tachometers. 

2. Materials and Methods  

This work is meant to propose an inexpensive but effective video-tachometer using a 30 fps (i.e., 
frames per second) video from a mobile phone. The target is the IAS estimation of the SURIVSHNO 
2019 fan. The raw dataset is then composed by a bunch of sequential digital color pictures, each of 
them corresponding to a matrix of pixels (i.e., “picture element”: the smallest addressable element of 
the digital image) updated during a full scan of the camera image sensor. The dataset is described in 
Section 2.1. In Section 2.2 the principle of TM is introduced, while in Section 2.3 the GA is integrated 
into TM. Finally, the overall methodology for estimating the IAS is reported in Section 2.4. 

2.1. Data Description: the SURVISHNO 2019 Challenge Video and Its Critical Issues 

As already introduced, Computer Vision deals with the understanding and interpreting of 
visual representations such as digital images and videos, as well as other representations which will 
not be considered in this paper. A video is the electronic medium for recording and displaying a 
moving visual media, namely a chronographic sequence of photographic shots which forms a 
representation of the visual world and can capture motion. The representation of the visual 
characteristics of an object is converted by image sensors into digital signals that can be processed by 
a computer and made output through a screen as a visible-light image. The 2D digital image is 
spatially discretized in a number of addressable elements (i.e., the pixels-px) organized in rows and 
columns to cover the entire image space. The standard full-HD High-Definition Television (HDTV) 
system uses a resolution of 1920 × 1080 px with 16:9 aspect ratio, so that each of the 2,073,600 pixels 
stores three-channels color information. Trichromacy, in fact, mimics the animal vision which uses 
three different types of cone cells in the eye to perceive not only light intensity but also its spectral 
composition (i.e., color). A very common set of primary colors is that defined by the RGB color model, 
an additive model in which red, green, and blue light are added together to reproduce a broad range 
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of colors. In particular, graphics file formats usually store RGB pictures as 24-bit images (i.e., RGB24 
format), where RGB components are 8 bits each, so that each color intensity can be rendered at 256 
levels (normalized to unity between 0 and 1 or, more commonly, with integers between 0 and 255), 
leading to a potential of 16,777,216 (about 16 million) colors. 

Therefore, in digital imaging systems (e.g., digital cameras, mobile phones, etc.) the acquisition 
corresponds to an interrogation of each pixel photo-sensor so that the full image is recorded; to 
produce a video this image recording is repeated in time at a given sampling frequency (commonly 
30 fps). Nevertheless, the pixel sensors can be either interrogated simultaneously (i.e., global shutter) 
or, more frequently in mobile phones, one after the other in a predetermined sequence (i.e., rolling 
shutter). 

In the particular case, the SURIVSHNO 2019 video is a sequence of 1298 RGB24 images acquired 
at 30fps for a duration of 43.3 s. All the frames are recorded at a full-HD resolution of 1920 × 1080 px 
with 16:9 aspect ratio. The RGB color image depicts a front view of a fan composed by 10 blades, 
coupled to a spindle by a hexagonal shaft and an 8.8 screw. The first frame of the video is reported 
in Figure 1. 

 
Figure 1. The first frame of the video, digitalized as a 1080 × 1920 × 3 matrix: full-HD resolution of 
1920 × 1080 (16:9 aspect ratio), where each pixel color is represented as a triplet of intensities for the 
three-color components namely red, green, and blue (RGB additive trichromacy color model). 

The IAS of the fan is unknown, nevertheless, it can be recognized as strongly non-stationary by 
watching the video. Some typical issues of non-stationary cases, in fact, arise. In particular, spatial 
aliasing due to the rolling shutter effect of the camera can be easily noticed. As the fan is spinning 
counterclockwise at an increasing rotational speed, the blades on the left side appear to get thicker 
while the blades on the right side appear to become thinner as the video progresses in time. This is 
visualized in Figure 2, in contrast to Figure 1. 

Aliasing is a typical issue of digital signals. A digitally reconstructed image, in fact, will differ 
from the original image (i.e., analog) because of the spatial discretization (i.e., the sampling) so that 
visible patterns or deformations can compromise the quality of the reconstruction. 

Temporal aliasing, determined by the sampling frequency or, in case of videos, by the frame rate 
of the camera, is a major concern of Digital Signal Processing. In videos, because of the limited frame 
rate (N.B., limited with respect to the rotating speed of the object), a rotating object like a fan or a 
wheel looks like turning in reverse or too slowly. A similar effect is probably experienced by any 
human beings in the form of an optical illusion called “wagon-wheel effect” which may occur even 
under truly continuous illumination because of the human visual perception. 
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Figure 2. The thousandth frame of the video. The rolling shutter effect is highlighted as a deformation 
of the blades. 

Sampling at 30 fps, in accordance with the Nyquist sampling theorem, allows to correctly picture 
phenomena which are bandlimited to half the sampling rate (i.e., 15 Hz, the Nyquist frequency) 
without aliasing. In the SURIVSHNO 2019 video, the fan starts from a standstill and accelerates up 
to values lower than the Nyquist frequency, so that temporal aliasing does not occur. Nevertheless, 
by looking at the video, the optical illusion of a reverting direction of rotation occurs anyway as the 
brain cannot recognize the 10 equal blades of the fan, so the exceeding of 1,5 Hz causes a reversal of 
the perceived direction of rotation.  

A final issue is related to the autofocus of the camera. When taking photos, in fact, a convex lens 
is used in the camera to focus incoming light onto a photo-sensor array (e.g., a Complementary metal-
oxide-semiconductor-CMOS-photo-sensor). In order to ensure crisp and clear images, the optical 
system commonly uses a control system and a motor to optimize the distance between the lens and 
the sensor. This can obviously lead to distortions of the image during the video. 

To summarize, three main issues should be tackled: 
• Spatial Aliasing related to the rolling shutter effect, 
• Temporal Aliasing due to the 30-fps sampling rate given the 10 equal blades of the fan,  
• Additional autofocus distortions. 

Nevertheless, a workaround can be found to simplify things. First, the spatial aliasing occurs 
when the object moves faster than a limit speed dictated by the rolling shutter clock. Being the fan is 
rotating around its center, the higher the distance from the center, the higher the tangential speed, so 
that, focusing on a part of the image very near to the center (i.e., the fan-locking screw head), the 
spatial aliasing effect is minimal. 

Second, the temporal aliasing, in this case, is more a visualization issue rather than a real 
problem for the analysis. The fan speed, in fact, is always lower than 10 Hz, so that if the attention is 
brought to a feature that occurs just once per revolution (i.e., the 8.8 logo on the fan-locking screw 
head) rather than the blades (which are 10 and not distinguishable), no temporal aliasing occurs. 

Finally, the autofocus distortions can be accounted for, together with other perspective 
distortions by implementing the adaptive TM introduced in the following sections. In the 
SURVISHNO 2019 challenge video acquisition, in fact, the camera was almost but not perfectly 
aligned to the fan axis, so that, during the revolution, the center of rotation moves in a small region, 
while the image undergoes slight deformations.  
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2.2. Matched Filters and Template Matching 

The problem of finding parts of a search image which match a template image is just a bi-
dimensional extension of the common unidimensional Signal Processing (SP) problem of detecting 
the presence of a template signal in a search signal, typically a noise-affected measurement. This 
problem was first solved in the mid-40s by North, Vleck, and Middleton [43–46] as a response to the 
immediate need to improve radar performance during World War II [43]. In the original framework, 
the issue with radar is to highlight the presence of an echo (i.e., a known template) exhibiting little 
power and obscured by noise in a received signal (i.e., the search signal). Assuming a Gaussian white 
noise (i.e., with a flat power spectrum), the noise contributes with equal undesired power at all 
frequencies, while the signal, on the contrary, shows a bandlimited spectral content. Considering a 
transmitted pulse (i.e., a rectangular function), its spectrum is described by a sinc pulse (i.e., a sinc 
function) which is theoretically defined over the whole frequency axis but has practically most of the 
power bound to low frequencies. A matched filter is then a linear time invariant filter that maximizes 
the signal-to-noise power ratio highlighting then the presence of the template in the search signal. 
Intuitively, it is then a filter that emphasizes the frequency where the template power is contained 
(i.e., the low frequencies) while attenuating those where the only noise is present. If the template is 
known then, it is sufficient to use the template spectrum for designing the best filter frequency 
response. 

The filter impulse response to be convolved with the search signal (i.e., for discrete signals, 𝑠ሾ𝑛ሿ, 
where 𝑛 is the sample index related to time by the sampling period) is then just the time-reversed 
version of the template 𝑡̂[𝑛] of finite length 𝑁 (N.B., more in general, for complex search signals, the 
conjugated time-reversed). The filter is then said to be “matched” to the template. See Equations (3) 
and (4) for the discrete Matched Filter impulse response definition (ℎ[𝑛]). 

In the Matched Filter output a peak occurs (i.e., the amplitude goes “considerably” greater than 
the rest of the output signal 𝑦[𝑛] in the time domain) when the template signal is detected. By 
playing a bit with the notation, the convolution of the search signal with the time-reversed version of 
the template (𝑠[𝑛] ∗ ℎ[𝑛] in Equation (5)) is equivalent to the cross-correlation of the template (as it 
is) with the search signal (𝑟௧௦[𝑛] in Equation (6)). In the same way, if the cross-correlation shows a 
peak for a given delay (or lag) 𝑘, then the template is detected. 𝑠[𝑘] −𝐾 < 𝑘 < 𝐾 ൜𝑡[𝑛] = 𝑡̂[𝑛] 𝑛 = 0, … ,𝑁 − 1 < 𝐾𝑡[𝑛] = 0      −𝐾 < 𝑛 < 0 ∨  𝑁 − 1 < 𝑛 < 𝐾 (3) ℎ[𝑛] = 𝑡[−𝑛] (4) 𝑦[𝑛] = 𝑠[𝑛] ∗ ℎ[𝑛] = ෍ ℎ[𝑛 − 𝑘]𝑠[𝑘]௄௞ୀି௄  (5) 𝑦[𝑛] = ෍ 𝑡[𝑘 − 𝑛]𝑠[𝑘]௄௞ୀି௄ = ෍ 𝑡[𝑘]𝑠[𝑘 + 𝑛]௄௞ୀି௄ = 𝑟௧௦[𝑛] (6) 

The same consideration holds also when the problem is extended to a discrete 2D search signal 
such as a monochromic image where the light intensity 𝑠[𝑛,𝑚] is a function of the spatial coordinates 𝑛 and 𝑚 over the pixel grid (i.e., a matrix). This problem is referred to as TM. Given a known 
template 𝑡̂[𝑛,𝑚] of size 𝑁 × 𝑀, it is possible to perform cross-correlation by simply moving the 
center of the template over each pixel of the search image pixel-grid of size 𝐽 × 𝐾 and calculate the 
sum of the pixel-wise products of 𝑠 and 𝑡̂ over the area spanned by the template 𝑡̂ . In a more 
rigorous formulation: 

1. The template 𝑡̂ is placed at (𝑛଴ + 𝑁/2,𝑚଴ + 𝑀/2) in a matrix 𝑡 of the same size [𝑛,𝑚] 
of the search matrix 𝑠[𝑛,𝑚] (Equation (7)), 

2. The entrywise product (also known as Hadamard or Schur product, here “ ∘”) is 
performed finding the matrix 𝑠𝑡[𝑛,𝑚] (Equation (8)) 

3. The correlation 𝑟௧௦  at (𝑛଴ + 𝑁/2,𝑚଴ + 𝑀/2 ) is obtained by summing all the 
components in 𝑠𝑡[𝑛,𝑚] (Equation (9)) 

4. By letting 𝑛଴  and 𝑚଴  vary in the range 𝑛଴ = 1, … , 𝐽 − 𝑁 + 1 ∨ 𝑚଴ = 1, … , 𝐽 − 𝑀 + 1 , 
the whole cross-correlation matrix is computed. 



Algorithms 2020, 13, 33 9 of 22 𝑠[𝑗,𝑘] 1 < 𝑗 < 𝐽 ∨ 1 < 𝑘 < 𝐾 ൜𝑡[𝑛,𝑚] = 𝑡̂[𝑛,𝑚] 𝑛 = 𝑛଴, … ,𝑛଴ + 𝑁 < 𝐽 ;  𝑚 = 𝑚଴, … ,𝑚଴ + 𝑀 < 𝐾  𝑡[𝑛,𝑚] = 0           1 < 𝑛 < 𝑛଴ ∨ 𝑛଴ + 𝑁 < 𝑛 < 𝐽 ;  1 < 𝑚 < 𝑚଴ ∨ 𝑚଴ + 𝑀 < 𝑚 < 𝐾 𝑛଴ = 1, … , 𝐽 − 𝑁 + 1 ∨ 𝑚଴ = 1, … , 𝐽 − 𝑀 + 1 
(7) 

𝑠𝑡[𝑛,𝑚] = 𝑠[𝑛,𝑚] ∘ 𝑡[𝑛,𝑚] (8) 𝑟௧௦[𝑛଴ + 𝑁/2,𝑚଴ + 𝑀/2] = ෍ ෍ 𝑠𝑡[𝑗,𝑘]௄௞ୀଵ௃௝ୀଵ  (9) 

If the template is present in the search image, the cross-correlation features a maximum. The 
template detection becomes then a search for the maximum. This implies that the cross-correlation 
can be used as an effective similarity measure. 

Nevertheless, this basic approach to TM is effective only when the template is a crop from an 
acquired reference image, and the search image is acquired under the same conditions (i.e., 
illumination, scale, orientation, fixed background, etc.). That is why in [35] TM is considered only for 
quality inspection of precisely aligned integrated circuits. 

The limitations of traditional TM, as already introduced in Section 1, are well known [34–36] and 
are here summarized:  

a) noise, illumination changes, and occlusions in the search image, 
b) background changes and clutter, 
c) rigid and non-rigid transformations, rotations, and scale changes (i.e., images are a 

projection of a 3D scene onto a 2D plane), 
d) high computational cost. 

Nevertheless, in this particular application (i.e., the SURVISHNO 2019 fan), as introduced in the 
previous sub-section, it was proposed to solve the issue of aliasing by focusing on the fan-locking 
screw head region. This reduction of the search space performed by cropping the image around the 
center of rotation is beneficial also according to points b) and d), as the background is effectively 
removed, while the computational burden is lightened. 

The overall pre-processing is described in the next subsection, which treats about the edge 
detection performed on the basis of the monochromic image obtained from the brightness of the 
original RGB24 image. This helps in relieving the issues in point a). 

Finally, point c) is addressed by exploiting the GA for dealing with rigid transformations and 
scale variations of the template to obtain a better match. 

2.3. Image Preprocessing  

In order to maximize the performance of the TM, a preprocessing of the image is essential. Three 
fundamental steps were chosen, based on the literature [47]: 

• Image cropping 
• Gray monochrome conversion and image binarization (thresholding) 
• Edge Detection 

The first step is fundamental for removing the issues related to the background and in particular for 
improving the computational speed. 

The second step is used to prepare the image for edge detection, limiting the effect of noise, 
illumination changes and occlusions in the search image. In this analysis, in fact, the edges are used 
as features to enhance the TM. The hybridization of template-based and feature-based approaches is 
not new (e.g., [48,49]), and allows to overcome the well-known issues of the traditional TM related to 
scaling and rotations of the search image with respect to the template. This will be the subject of 
Section 2.4. 

2.3.1. Image Cropping 

The image cropping is meant to remove the background, solving issues related to changes and 
clutter in part of the image of little relevance. Furthermore, decreasing the overall number of pixels 
in the image, the computational burden is reduced. 
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In this analysis, the image is shrunk from a matrix of 1080 × 1920 px to a matrix of 191 × 191 px, 
by cropping in the square region defined by the row indices in the range 475 ൊ 665 px and the 
column indices in the range 485 ൊ 675 px. The result is presented in Figure 3 for two frames of the 
video. 

  
(a) (b) 

Figure 3. First (a) and thousandth (b) frames of the video. Notice how the image (b) is out of focus 
and the center of the screw is translated upwards. N.B., The selected 𝑥 coordinate goes from left to 
right, while the 𝑦 coordinate goes from the top to the bottom, differently from the standard. 

2.3.2. Gray Monochrome Conversion and Image Binarization (Thresholding) 

Conversion of an arbitrary color image to grayscale is not a unique procedure in general, as a 
different weighting of the color channels can effectively represent the effect of shooting black-and-
white film. A common strategy is to use the principles of photometry and colorimetry to calculate the 
grayscale values so as to have the same relative luminance (i.e., the density of luminous intensity per 
unit area in a given direction) as the original color image. Given the RGB intensities (i.e., values in 
the range 0 ൊ 255 for the RGB24 file format or normalized to 0 ൊ 1) provided by the three channels 𝑅, 𝐺, and 𝐵, the luminance 𝑌 is defined as a weighted sum of these components. In this analysis, 
the coefficients from the ITU-R Recommendation BT.601 standard, revision 7 [50] are taken, so as to 
find: 𝑌 = 0,299  𝑅 +  0,587  𝐺 +  0,114  𝐵 (10) 

The formula reflects the eye color photoreceptors sensitivity, which has a maximum in the green-
light region. Notice that, in general, human-perceived luminance is commonly referred to as 
brightness, while luma is the luminance of an image as displayed by a monitor.  

The so obtained grayscale image is displayed in Figure 4a. 
Once the gray monochrome image is obtained, thresholding is implemented. The goal of 

thresholding is to classify pixels as either dark (0) or light (1) to produce a black and white (i.e., binary) 
image based on the luminance information.  

In its simplest implementation, the threshold is a constant set by the user, and the pixels’ 
luminance is compared against this value. An automatic selection of the threshold was implemented 
by Otsu [51] as a Fisher's Discriminant Analysis performed on the intensity histogram. Otsu’s 
threshold is then determined by minimizing intra-class intensity variance, or equivalently, by 
maximizing inter-class variance (N.B., the two classes are obviously dark vs. light). 

Nevertheless, illumination changes in the image can lead to a bad classification. In this case, an 
adaptive threshold such as the Bradley’s could perform much better [52]. The idea is to use a local 
threshold which can vary within the image as it is adapted to the average of surrounding pixels. 
Typically, a moving window of approximately 1/8th of the size of the image is used for computing 
the local mean intensity. Matlab implementation [52] also allows to tune the threshold using a scalar 
“sensitivity” in the range 0 ൊ 1 : high sensitivity value leads the thresholding of more pixels as 
foreground (i.e., class 1, light), at the risk of including some background pixels (i.e., class 0, dark). 

Thresholding, in fact, is commonly used to separate foreground objects from their background, 
reinforcing the action of the image cropping. 
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Comparing Figure 4c to 4b, the robustness of Bradley’s adaptive thresholding to illumination 
changes is highlighted. Furthermore, it can be noticed that the circle in the image background is 
removed, improving the robustness to background changes and clutter. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. (a) Original grayscale: Grayscale conversion of the first frame of the video (Figure 3a) using 
luminance [50]; (b) Otsu threshold: Comparison of Otsu’s thresholding [51]; (c) Adaptive 
thresholding (Bradley) [52,53] with sensitivity: 0,99; (d) Not-Sobel filtering [54,55] applied to the 
grayscale image in (a). 

2.3.3. Edge Detection 

The objective of edge detection is to find the locations in a grayscale image where the change in 
intensity (i.e., 𝑌) is sufficiently large to be taken as a reliable indication of an edge [35]. One of the 
most common detectors is the Differential Gradient edge detector called Sobel–Feldman filter [54], 
which uses two 3 × 3 windows convolved with the image to produce two directional pieces of 
information (i.e., approximated gradients) added to find the resulting magnitude. Finally, the 
magnitude information undergoes thresholding to produce a binary image of the edges (automatic 
heuristic threshold selection [55]), as reported in Figure 4d, where the logical not operator is applied 
to highlight the edges in black. As can be easily noticed in the picture, the edges are filtered and 
isolated very effectively, but the illumination affects the result. 

By comparing Adaptive thresholding and Sobel filtering (i.e., Figure 4c vs. Figure 4d) it is clear 
how robustness to illumination changes is important in the analysis. Hence, in this work, the edge 
detection is left to Bradley’s adaptive thresholding, to produce a search image with thicker edges 
more robust to noise, illumination changes, and background clutter (i.e., Figure 4c). 

To summarize, the finally selected preprocessing is reported in Figure 5. 
 

 
Figure 5. Preprocessing scheme. 
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2.4. GA-adaptive Template Matching 

In traditional TM, as described in Section 2.2, the template is selected as a cutout from one larger 
reference search image and compared to all the successive test search images using the cross-
correlation. The position of maximum correlation testifies the match, proving the template detection. 
This obviously works very well in case of a fixed framing camera depicting an object which translates 
on a plane orthogonal to the optical axis of the camera. Nevertheless, in case of rotations, scale 
changes or non-rigid transformations (N.B., images are a projection of a 3D scene onto a 2D plane, so 
that movement on a plane non-orthogonal to the optical axis of the camera can lead to deformations), 
the method cannot be used unless some technical device is implemented, such as using multiple 
templates with different scales and rotations (e.g., eigenspaces) or using Deformable Part Models 
(DPM) or implementing Deformable Template Matching [37]. Nevertheless, in this particular work, 
the Genetic Algorithm was selected to deal with rigid transformations of the template. The GA was 
used for adapting a parametric template so as to get the maximum correlation (i.e., the best match). 
The complete cross-correlation function (i.e., correlation for all the delays or lags) is never computed 
in this case; the GA is exploited for optimizing at the same time not only the scale and the orientation 
but also the location of the parametric template in the search space, so as to obtain an hybrid of the 
template-based and feature-based approaches which allows to overcome the issues of the traditional 
TM (i.e., scaling and rotations). 

Notice that, in the SURVISHNO video, the framing is fixed, but the fan revolution occurs in a 
plane non-perfectly orthogonal to the optical axis, so that, during the revolution, the center of rotation 
of the fan moves in a small region, while the image undergoes slight deformations. These perspective-
related deformations are neglected by the here-introduced algorithm, but relative translations of the 
locking screw head hexagon and the underlying hexagon (lying on two different planes) are allowed 
by breaking the template adaptation in three successive GA steps. 

2.4.1. Template Parametric Model 

The template parametric model arose from the exploitation of the geometrical features of the 
search image. In particular, three characteristic features were defined in order to determine the angle 
of rotation of the fan. The first two are related to the regular hexagonal shape of the screw head and 
the underlying driving shaft. The third is the resistance class logo (i.e., 8.8), which enables to discern 
the orientation of the screw and consequently that of the fan. 

The three characteristic features are highlighted in Figure 6. 

 
Figure 6. Geometrical edge features highlighted on the first frame of the video (Figure 3a): Outer 
hexagon model in red and its center in green, inner hexagon model in magenta and its center in cyan, 
8.8 logo model in yellow, and the finally tracked vertex in blue. 

Two parametric models for the edges are then built. The first represents a hexagon inscribed in 
a circumference and is governed by the coordinates of the center (i.e., the location), the radius of the 
circumference in which the hexagon is inscribed (i.e., the scale), and the angle of rotation of the 
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hexagon. The second is the 8.8 logo, modeled as 5 circles, around one of the diagonals of the screw 
hexagon, as reported in yellow in Figure 6. This is governed by five parameters: a size parameter 
ruling the radii of the circles and the height of the writing, a width parameter giving the distance of 
the two 8 characters, a shift parameter allowing uneven positioning of the two 8 characters around 
the main axis, a radial distance of the writing from the center of the screw hexagon (either positive or 
negative to cover both sides of the reference axis with respect to the center of the screw), and an 
angular deviation from the reference axis, whose information is considered as a known input given 
the desired diagonal of the screw. 

Given these two geometric models, a binary template of size 191 × 191 px can be produced as a 
function of these 13 parameters plus thickness information. The characteristic parameters are 
reported in Table 1. The ideal path from the model, defined in the continuous pixel space, can be used 
as a mask for lighting (i.e., turning to 1) the pixels covered by such a filter. The path thickness is 
obviously a relevant parameter, but to avoid overcomplicating the model, the thickness was pre-set 
to a constant value of 30 px for the hexagons (𝑡 and 𝑡′ in Figure 7), while it is related to the scale 
parameter 𝑠 for the 8.8 logo (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝑟ଵ − 𝑟ଶ = 3,5 𝑠). 

 

(a) (b) (c) 

Figure 7. Binary templates after Genetic Algorithm (GA) optimization on the first frame (Figure 3a) 
with characteristic parameters highlighted in red (overall, 13 independent parameters, as reported in 
Table 1): (a) Outer hexagon template; (b) Inner hexagon template; (c) 8.8 logo template. N.B., The 
pictures “quantization” effect is determined by the 191 × 191 px grid of the search image, which 
dictates the final template resolution. 

Table 1. Characteristic variables of the three parametric templates. The 13 independent variables are 
highlighted in red, 𝑡 and 𝑡’ parameters are constants, while the other parameters are derived. 

Parameter Description Parameter Description 𝑋௖ ,𝑌௖ Center of the outer hexagon (OH) 𝑅ᇱᇱ Distance of 8.8 logo from (𝑋௖ᇱ ,𝑌௖ᇱ) 𝑅 Radius of the inscribing circle (OH) 𝑑𝜃 Deviation from ax slope direction 𝜃 Rotation of the OH 𝑠 = 𝑟ଶ Logo size = hollow circles radii 𝑡 Thickness of OH 𝑟ଵ Logo’s circles radii 𝑟ଵ = 4,5𝑠 𝑋௖ᇱ ,𝑌௖ᇱ Center of the inner hexagon (IH) 𝑟ଷ Logo’s dot radius 𝑟ଷ = 2,25𝑠 𝑅ᇱ Radius of the inscribing circle (IH) ℎ Logo’s height ℎ = 5,5𝑠 𝜃ᇱ Rotation of the IH 𝑤 Logo’s width 𝑤 = 𝑤ଵ + 𝑤ଶ 𝑡ᇱ Thickness of the IH 𝑤௥ Logo’s width ratio 𝑤௥ = 𝑤ଵ/𝑤 𝑎𝑥 8.8 intercepting diagonal of IH 𝑤ଵ,𝑤ଶ Distance of “8” from Logo’s dot 

As highlighted in Figure 7, three different templates were actually generated, as the template 
adaptation was performed in three different subsequent GA optimizations, exploiting in the 
following steps the knowledge acquired from the previous optimization. 

In particular, the optimized outer hexagon path is used as a mask for cropping the search image 
and further remove the background, improving the following GA search. Then, from the optimized 
inner hexagon, the diagonal on which the 8.8 logo lies is detected (i.e., “ax” in Figure 7b,c, found by 
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summing the pixels intersecting the three diagonals and seeking the maximum), and the information 
is used as input for the last GA optimization. 

It is important to point out that using a parametric template-mask defined on a continuous 
search space and implementing a GA optimization of the match between the corresponding discrete 
template image and the search image, it is possible to obtain a parametric estimation that goes beyond 
the pixel grid, leading to a super-resolution (i.e., similar to what obtained in [30]). 

2.4.2. Objective Function 

The change of paradigm from traditional TM to GA-adaptive TM is related to the use of GA for 
the estimation of the optimal parameters maximizing the match of the parametric template to the 
search image. In order to evaluate “how good” a reconstructed template is (N.B., reconstructed on 
the basis of the selected parameters), an objective function (commonly called utility function when 
referred to maximization problems or cost function when dealing with minimizations) is needed. In 
order to keep the link between TM and GA-adaptive TM, a possible utility function is the correlation 
function (i.e., 𝑟 in Equation (11)). Nevertheless, in the literature, other commonly found functions 
are the Sum of Absolute Differences (i.e., SAD) or the Sum of Squared Differences (i.e., SSD), usually 
implemented as cost functions for a minimization problem. 

In order to select the best objective function for this particular implementation, two 
considerations are fundamental. First, in this work the template is reconstructed to the same size 
(𝐽𝑥𝐾 = 191𝑥191) of the search image so that all the objective functions can be easily implemented as: 𝑟(𝑝𝑎𝑟𝑎𝑚) = ෍ ෍ 𝑡[𝑗,𝑘|𝑝𝑎𝑟𝑎𝑚]௄௞ୀଵ 𝑠[𝑗,𝑘]௃௝ୀଵ  (11) 𝑆𝐴𝐷(𝑝𝑎𝑟𝑎𝑚) = ෍ ෍ |𝑡[𝑗, 𝑘|𝑝𝑎𝑟𝑎𝑚] − 𝑠[𝑗,𝑘] | ௄௞ୀଵ௃௝ୀଵ  (12) 𝑆𝑆𝐷(𝑝𝑎𝑟𝑎𝑚) = ෍ ෍ ( 𝑡[𝑗,𝑘|𝑝𝑎𝑟𝑎𝑚] − 𝑠[𝑗,𝑘])ଶ ௄௞ୀଵ௃௝ୀଵ  (13) 

where 𝑡[𝑗,𝑘|𝑝𝑎𝑟𝑎𝑚] is the reconstructed template as a function of the corresponding parameters (i.e., 𝑝𝑎𝑟𝑎𝑚, see Figure 7) and 𝑠[𝑗,𝑘] is the search image (e.g., a frame processed to obtain the result in 
Figure 4c). 

Second, the 𝑡 and 𝑠 are binary, so that the possible results for single pixel information can be 
summarized as in Table 2: 

Table 2. Correlation 𝑟, Sum of Absolute Differences (SAD) and Sum of Squared Differences (SSD) 
comparison for binary images. 𝒕 𝒔 → 𝒓 𝑺𝑨𝑫 𝑺𝑺𝑫 

1 1  1 0 0 
1 0  0 1 1 
0 1  0 1 1 
0 0  0 0 0 

From Table 2, it is clear that SAD and SSD are equivalent in the case of binary images. Another 
relevant consideration regards the fact that correlation can be used for maximizing the match (i.e., 
the similarity), while SAD and SSD are suitable for minimization of the mismatch (i.e., the difference). 
Nevertheless, correlation rewards the similarity of white pixels (i.e., the 1) only, but neglects the black 
pixels (i.e., the 0). On the contrary, SAD and SSD penalize only the different pixels, or in other words, 
rewards both the white matching and the black matching pixels. As a result of this, the correlation 
was used as a utility function for the first GA (so that, thanks to the selected template shape Figure 
7a, the 8.8 and JD logos are not accounted in the match), while the SAD was selected as a cost function 
for the second and third GA optimization. 
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2.4.3. Genetic Algorithm Optimization 

Optimization is the selection of the best element from a set of available alternatives according to 
some criteria. In a more formal way, given an objective function 𝑓: 𝑆 → 𝑅 which links the search 
space of feasible solutions to the corresponding utility or cost, the optimization process seeks to find 
the element 𝑥௢ ∈ 𝑆 such that 𝑓(𝑥௢) ≤ 𝑓(𝑥)  ∀ 𝑥 ∈ 𝑆 (minimization) or such that 𝑓(𝑥௢ ) ≥ 𝑓(𝑥)  ∀ 𝑥 ∈𝑆 (maximization). Fixing a target for convenience, in the simplest case, an optimization problem 
corresponds to the minimization of a cost function over a search space obtained by constraining the 
overall Euclidean space. Or, argmin௫∈ௌ 𝑓(𝑥). From a mathematical point of view, the minimization of a 

function typically involves derivatives. Then, the more a function is complex (e.g., defined on a wide 
multidimensional support, non-continuous, or with non-continuous derivatives, featuring many 
local minima, etc.), the harder is the computation of such derivatives, so that the optimization may 
become very tricky in practical cases. Furthermore, the optimization is very likely to get stuck into 
local minima in the vicinity of an initial guess value for the optimum location (local optimization), 
with no guarantees (unless particular properties of the cost function i.e., convexity) that the result 
corresponds to the actual global minimum (global minimization). 

In general, the assessment of the performance of an optimizer can be expressed in terms of: 
• Exploration: the optimizer discovers a wide region of the search space, 
• Exploitation: the optimizer “pounds the pavement” on a limited but promising region, 
• Reliability: repeatability of the fund solution. 

It is important to highlight that exploration and exploitation are competing properties. Local 
optimizers show very good exploitation at the expense of a very poor exploration. On the contrary, a 
good global optimizer should sacrifice exploitation to gain in exploration and speed. This is usually 
obtained taking advantage of heuristic or meta-heuristic techniques implementing some form of 
stochastic optimization. 

An important category of global population-based metaheuristic optimization algorithms is the 
Evolutionary. An evolutionary algorithm (EA) uses mechanisms inspired by biological evolution, 
such as reproduction, mutation, recombination, and selection. Candidate solutions to the 
optimization problem play the role of individuals in a population, and the cost function determines 
the quality of a solution. A “direct search” is performed to find the best individuals within the 
population according to their quality. These best individuals are then selected to determine the 
offspring, namely the new trial solutions, which will substitute lower quality individuals. 

The most famous EA is the Genetic Algorithm, developed by John Holland introduced genetic 
algorithms in 1960 based on the concept of Darwin’s theory of evolution. The GA evolutionary cycle 
starts initiating a population randomly and evaluating the quality of each individual on the basis of 
his genotype. The best individuals are then selected to produce via modification the new offspring, 
while the worst are discarded. Modifications are stochastically triggered operators such as the 
crossover (the offspring is a random mix of the genotypes of their parents) or the mutation (the 
offspring features new genes which were not present in the parents). The first is important to ensure 
exploitation, while the second guarantees exploration of the search space of all possible genotypes. 
Finally, a new population is ready for starting again the cycle until some stopping criteria are met. 
The cycle is outlined in Figure 8. 

The GA selected inputs in this work were: 
• Population Size: 𝑁௣ = 100. 
• Elite Count: 5%. It defines the number of best individuals selected as a percentage of 𝑁௣.  
• Crossover Fraction: 80%. It defines the offspring quantity at the next generation as a 

percentage of 𝑁௣ . As the total 𝑁௣  is fixed, the percentage of discarded individuals 
equals the crossover fraction. 

• Default mutation: Shrinking Gaussian. Each newborn features a degree of random 
mutation which decreases in time according to the linear law:  𝜎௚ = 𝜎௚ିଵ ቀ1 − 𝑐 ௚ீቁ . 
Where 𝜎଴ = 1, c= 1, and 𝑔 is the generation index, increasing with time. 

• Stopping criterion: maximum number of generations 𝐺 = 40. 
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Figure 8. The GA evolutionary cycle. 

2.5. Overall Methodology 

Finally, the overall methodology to be repeated for all the frames in the video is summarized in 
the following steps: 

1. GA optimization of the outer hexagon template (Figure 7a) to match the search image 
(e.g., Figure 4c). 

o The outer hexagon path is used to make a mask isolating the foreground of 
interest and improving the next step. 

2. GA optimization of the inner hexagon template (Figure 7b) to match the search image 
cropped using the outer hexagon path as mask. 

o The inner hexagon path is used to make a mask for isolating the foreground of 
interest and improving the next step. 

o The three inner hexagon diagonals are tested to find the diagonal around which 
the 8.8 logo is reported. 

3. GA optimization of the 8.8 logo (Figure 7c) to match the search image cropped using the 
inner hexagon path as a mask. 

Thanks to this procedure, all the 13 parameters of interest (Figure 7) can be estimated in all the 
frames of the video. The position of the 8.8 logo is used to identify a unique vertex of the inner 
hexagon, from which it is easy to derive the angular position of the screw (and then the angular 
position of the fan) over time. 

2.5.1. IAS Estimation 

Once the 13 parameters of interest are available over time, several different IAS estimations can 
be obtained. In this work, two methodologies are compared. 

The first and simplest consists in differencing the angle over time and rescaling over the time 
interval determined by the sampling frequency (i.e., 30 𝑓𝑝𝑠  𝑓௦ = 30 𝐻𝑧). Being 𝛼(𝑛) is the angle 
of the vertex identified by the 8.8, and 𝑡 = 𝑛 Δ𝑡 = 𝑛/𝑓௦, it is easy to write: 𝜔(𝑡) = 𝑑𝛼𝑑𝑡 ≅ 𝛥𝛼Δ𝑡    [𝑟𝑎𝑑/𝑠] (14) 

For this to be accurate, the angle signal should first be “unwrapped” (i.e., corrected by adding 
multiples of േ2𝜋 when absolute jumps between consecutive elements are greater than 𝜋 radians). 
Furthermore, a perfect recognition of all the three templates is required. Nevertheless, even if the 
match for two hexagons is good for all the frames, it is not the same for the 8.8 logo, which, in some 
cases (often at a determined angle because of illumination issues), is confounded with the 
manufacturer logo “JD” (e.g., see Figure 6). In this case, an error of about േ𝜋 radians should be 
compensated in a pre-processing stage.  

The second method is based on phase demodulation via the Hilbert analytic signal of a fan 
speed-related harmonic [7,56]. In this particular case, it was noticed that the signal corresponding to 
the coordinates of the center of the outer hexagon (i.e., 𝑋௖ ,𝑌௖ in Figure 7a) features a speed-related 
harmonic because of the not perfect alignment of the optical axis of the camera with the fan axis, 
leading to a circular movement of the tracked center point. 

In a mathematical framework: 
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1. The analytic signal is computed via Hilbert transform 𝛼௔௡(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) = 𝐴(𝑛)𝑒௜஍(௧) (15) 
2. The instantaneous frequency is defined as 𝑓(𝑡) = 12𝜋 𝑑Φ(𝑡)𝑑𝑡    [𝐻𝑧]  (16) 

3. From which, a more suitable discrete-time (𝑡 = 𝑛 Δ𝑡) implementation can be derived [56] 𝑓(𝑛) = 𝑓𝑠2𝜋 atanቆ𝑥(𝑛)𝑦(𝑛 + 1) − 𝑥(𝑛 + 1)𝑦(𝑛)𝑥(𝑛)𝑥(𝑛 + 1) + 𝑦(𝑛)𝑦(𝑛 + 1)ቇ (17) 

Despite the “unwrap” and the error compensation, the IAS estimated from the two methods 
could still be noisy, with large observable discontinuities which are unphysical and incompatible 
with the principle “Natura non facit saltus”, so that a smoothing could be required. 

Both the methods were tested on the data to validate the two IAS estimates. 

3. Results 

The application of the here described GA-adaptive TM led to the estimation of a set of 13 
parameters fully specifying the selected template model over time (i.e., frame after frame). 

As an example, the first two parameters obtained after the first GA step are the coordinates of 
the outer hexagon in the search space. These are reported in Figure 9. As can be seen from the picture, 
the 𝑋௖ coordinate shows some jumps. These can be put in relation with the autofocus. In the same 
way, it is easy to notice that the coordinate 𝑌௖ is subject to a variation of the first-order statistics (i.e., 
the mean value) over time. This is highlighted by the estimation of the moving average (order: 50 
samples) reported in yellow in the graph. 

 
Figure 9. Outer hexagon coordinates over time (frame index). The moving average of the estimated 
parameter 𝒀𝒄 is added in yellow. N.B., The selected 𝒚 coordinate ranges from the top to the bottom 
of the displayed image (e.g., in Figure 6), differently from the standard. 

Similar graphs are available for all the 13 optimized parameters. The position of the inner 
hexagon center and the 8.8 logo vertex were then used to compute the angular position of the fan 
over time. As can be seen in Figure 10, the angle increments over time are quite uniform if the green, 
red and magenta points are not considered. In order to get a more consistent estimate, these points 
should be compensated. As introduced, the green points (360° error) can be avoided by performing 
and “unwrap” of the angle signal, while the red and magenta points correspond to a wrong 
localization of the 8.8 logo, which is confounded with the JD logo, so that the 180° error can be 
distinguished and compensated. 
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Figure 10. Fan angular position variation (angular increments 𝚫𝜶) over time (frame index). In green 
are the points for the “unwrap”, in red and magenta are the errors to be compensated (8.8 logo 
missed). 

From the compensated angular increments over time, Δ𝛼, it is easy to obtain the IAS estimate 
by normalizing this signal with respect to the constant Δ𝑡 = 1/𝑓௦, as indicated in Equation (14). 

For the sake of comparison, Hilbert phase demodulation was performed on the running-mean-
removed 𝑌௖ signal so as to produce a second IAS estimate (Equation (17)). The two estimates were 
then lowpass filtered to produce a more physically reasonable result. The IAS signals after a FIR1 
lowpass filter (order: 50 samples, cutoff: 0,1 𝑓௦/2) is reported in Figure 11. 

 
Figure 11. Final Instantaneous Angular Speed (IAS) estimates from the SURVISHNO video. 

As can be noticed in Figure 11, the two methods lead to overlapping results. This, then, increases 
the confidence in the reliability and accuracy of the proposed video-tachometer procedure for the 
IAS estimation. 

4. Discussion and Conclusions 

The paper presented a novel method for implementing a cost-effective video-tachometer 
through a GA-adaptive Template Matching. The target was an offline implementation, as the 
proposed algorithm is not optimized enough and results slow if running on nowadays PCs. To give 
an idea, the software execution takes, per each frame, about 2s for the first GA, 2s for the second GA, 
and 10s for the third GA when using MATLAB R2018b on a machine with 8 GB of ram and an INTEL 

An
gl

e 
va

ria
tio

n 
 [d

eg
]



Algorithms 2020, 13, 33 19 of 22 

i7-7700 CPU at 3,60 GHz. Clearly, for obtaining just the Hilbert demodulation estimate of the IAS, 
only the first optimization step is needed, so that the computational burden can be strongly reduced, 
but it is not enough for real-time implementation. 

In any case, the method proved to be effective in estimating the IAS of the fan despite the limits 
of the SURVISHNO 2019 video, acquired using a mobile phone. In fact, the wise selection of the 
search space effectively dealt with spatial aliasing (i.e., the rolling shutter effect), temporal aliasing 
(i.e., because of the 10 equal blades of the fan combined with a 30-fps sampling rate), and the 
additional autofocus distortions. Furthermore, the GA-adaptive implementation of TM 
reconstructing the binary edge template from a geometrical parametric model demonstrated its 
robustness to illumination changes and noise in general, as well as to rigid and non-rigid 
transformations. The issue of background changes and clutter was also tackled both in a pre-
processing stage, by cropping and binarizing the search frame, and in the three-step GA optimization, 
exploiting the information from the previous stages for further focusing the TM on a smaller region 
of interest. 

The here described GA-adaptive TM has the great advantage of allowing the localization of the 
template with a super-resolution that goes beyond the pixel-grid discretization. This allowed 
obtaining a robust and reliable estimate of the IAS, avoiding the need of expensive high-resolution 
encoders or tachometers, which are otherwise necessary for non-stationary machine diagnostics. 
When the speed is variable, in fact, the machine signature can only be highlighted by resampling the 
signal synchronously with the angular position of a reference shaft (i.e., performing the so-called 
Computed Order Tracking to get to the order domain). This way, the events which are phase-locked 
to the reference shaft (e.g., the intake of a 4 strokes diesel engine to the crankshaft, or the meshing of 
a broken tooth of a gearwheel to the supporting shaft, etc.) are put in evidence. Furthermore, the IAS 
is considered a precious diagnostic information per se, so that the analysis of IAS anomalies is 
spreading in the field of condition monitoring. 

To conclude, given the here underlined strengths, the proposed signal processing gives an 
effective and reliable tool able to foster the IAS-based condition monitoring, setting the state of the 
art for video-tachometric acquisitions. 

Supplementary Materials: The video was downloaded online during the international conference SURVISHNO 
2019 at https://survishno.sciencesconf.org/resource/page/id/18. 
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