
06 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

New algorithm for the rendering of CSG scenes / Sanna, Andrea; Montuschi, Paolo; Fisone, Antonio; Montrucchio,
Bartolomeo. - In: COMPUTER JOURNAL. - ISSN 0010-4620. - 40:9(1997), pp. 555-562.

Original

New algorithm for the rendering of CSG scenes

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2786348 since: 2020-01-29T12:56:57Z

Oxford Univ Press

A New Algorithm for the Rendering of CSG Scenes

Andrea Sanna

y

Paolo Montuschi

y

Antonio Fisone

y

Bartolomeo Montrucchio

z

y

Dipartimento di Automatica e Informatica,

Politecnico di Torino, corso Duca degli Abruzzi 24,

10129 Torino (Italy)

z

Centro di Servizi Informatici e Telematici,

Politecnico di Torino, corso Duca degli Abruzzi 24,

10129 Torino (Italy)

Keywords: rendering of CSG scenes, bound-

ing box computation, shadow detection, Com-

puter Aided Design.

Abstract

The generation of 3D solid objects, and more gen-

erally solid geometric modeling, is very important

in Computer Aided Design (CAD). An important

role is played by the Constructive Solid Geometry

(CSG) representation scheme. In CSG, objects are

described by trees of Boolean operations on half-

spaces or boundary primitive solids.

The study of techniques to speed up rendering of

scenes modeled with CSG scheme is an attractive �eld

of research; in this paper we propose a new algorithm

which reduces the computation complexity for ray

casting approaches. Our strategy identi�es a set of ar-

eas on the plane of view where the rays starting from

the observer have to be traced; for each zone, only a

portion of the entire CSG tree has to be considered

for intersection tests instead of the whole database of

the primitive objects. A comparison of our algorithm

with a ray caster adopting bounding volume hierar-

chies and with a freeware ray tracer called POV-Ray,

shows that, for the considered examples, we may re-

duce the intersection tests up to one third of the ones

performed adopting standard optimizations

1 Introduction

Several computer graphics algorithms heavily relate

their performances to the e�ciency of the tests of in-

tersection between the rays of light sources and the

objects of a synthetic scene. Since Whitted [1] re-

�ned the original ray tracing algorithm to implement

a global illumination model, which involves the phe-

nomena of re
ection, refraction, shadow and specu-

lar re
ection, ray tracing has become one of the most

powerful approach to image synthesis. Whitted found

that the rendering time of a scene obtained with a ray

tracer is dominated by the intersection calculations,

which may require up to 95% of the whole time, thus,

many algorithms to speed up ray tracing were pro-

posed.

One way to speed up ray tracing is to attempt to re-

duce the number of intersection tests. The most prim-

itive approach was suggested by Rubin and Whit-

ted [2]; the basic idea was to surround the objects

with bounding volumes of very simple shape. If a

ray does not intersect the bounding volume, it is not

necessary to check the intersection with the object

enclosed. Since most of the rays will not intersect

with the bounding volume many expensive tests will

be saved. In [2] spheres were used as bounding vol-

umes. The main drawback of this approach is that

the complexity depends on the number of the objects

belonging to the scene, since all bounding volumes

have to be tested to detect the object closest to the

observer.

In order to avoid this, two main methodologies have

been proposed in the existing literature: hierarchies

of bounding volumes ([3],[4]) and spatial subdivision

([5], [6], [7]); these techniques will be reviewed in sec-

tion 2.

The algorithm proposed in this paper is particularly

attractive for ray casting applications of CSG (Con-

structive Solid Geometry) models. Constructive Solid

Geometry (CSG) describes the objects in terms of a

set of primitive solids, (such as prisms, spheres, cylin-

ders, cones and so on) and of operators (union, in-

tersection and di�erence). An object is described in

terms of a binary tree whose leaves are the primitive

solids and the intermediate nodes are the operators

[8]. CSG has been found to have a very interesting

application environment in the description of mechan-

ical objects and in the modeling of synthetic images.

A straightforward method for intersecting rays with

a CSG model is to classify each ray against the CSG

tree, determining the intervals along the rays which

intersect the solid. Roth in [9] described this process

as a recursive walk down the tree structure, intersect-

ing a ray with each CSG primitive, and combining

the resultant intervals according the operators walk-

ing up the tree. This strategy may be accelerated

using bounding volumes; in [9] the application of 2D

boxes for primary rays and 3D spheres for the other

rays was discussed.

With our technique we can compute, before the ren-

dering process begins, a group of areas, which iden-

ti�es a set of independent rectangles on the screen

where the rays have to be traced. Moreover, just a

limited CSG sub-tree of the whole scene has to be

tested for intersection for each rectangle. We will

show with practical examples that the application of

our method leads to a reduction of the intersection

tests and, hence, to a reduction of the computation

times.

The content of the paper is as follows. In section 2 ba-

sic works on ray tracing acceleration are reviewed; in

section 3 we provide the notation used in this paper,

while basic idea and a detailed description of the al-

gorithm are outlined in section 4. Performance com-

parisons of our method vs. a hierarchical approach of

bounding volumes and vs. a freeware ray tracer called

POV-Ray are presented in section 5. Finally, several

remarks can be found in section 6; mathematical de-

tails are reported in the appendix.

2 Previous works

Two main methodologies have been developed to

speed up ray tracing process; the former strategy

is based on hierarchies of bounding volumes ([3],[4]),

while the latter is based on spatial subdivision ([5],

[6], [7]). With the �rst approach, each object is sur-

rounded by a bounding volume. The bounding vol-

umes are recursively combined into a tree, by pick-

ing up and surrounding some of them with a larger

bounding volume. This process is repeated until a

bounding volume encapsulates the whole scene. In

order to speed up the ray/volume test, the bound-

ing volumes are chosen among the solids with \sim-

ple shape". Spheres and rectangular prisms with the

edges parallel to the coordinate axes are often used.

The second approach is called spatial subdivision

because it subdivides the synthetic scene into non-

intersecting cells (voxels) and, then, it relates each

cell to a list of objects. The scene is recursively parti-

tioned until each cell contains less than a �xed num-

ber of objects. Bounding volumes may o�er good ob-

ject encapsulations but poor hierarchies; on the other

hand, spatial subdivision techniques provide good hi-

erarchical organizations but poor bounds.

The idea to project the objects on the plane of view

to speed up the intersection tests for the rays traced

from the observer is not new. For instance, Coquil-

lart in [7] proposed a method where the projections

on the plane of view are administrated in a graph.

With this approach is easy to �nd the intersection

point by travelling through this graph along the ray.

Unfortunately, as pointed out by Gervautz in [10],

this technique can not be used for CSG models. We

must keep memory of the operators of the CSG tree to

recursively combine the intersections at the leaf level

to obtain the intersection point, if it exists, closest

to the observer at the root level. With the approach

proposed in [7] this is not possible. Gervautz in [10]

proposed a method to build dynamic temporary ob-

ject trees in order to reduce the part of scene to be

considered for intersection with each ray. With this

method the primitive CSG objects are projected onto

a plane; each projection divides the plane into four

half-planes. The projections of all objects produce

a matrix of rectangles (raster) on the plane. The

objects overlapping with each rectangle have to be

found, in this way, for each rectangle may be built

a temporary tree according to several simple rules.

With this approach, each time a temporary tree has

to be built the whole CSG tree must be analyzed and

this is a time-consuming step. A survey of the accel-

eration techniques can be found in a chapter written

by Arvo and Kirk in [11].

Our algorithm di�ers from the others known in the

literature for the methodology of construction of the

bounding entities at the intermediate nodes and at

the root level of the CSG tree. In particular, a new

de�nition of bounding box allows us to �nd, in an

e�ective way, the CSG sub-tree to be considered for

the intersection with each ray traced. The problem of

computing the bounding box of the root of a CSG tree

starting from the bounding boxes of its leaves, has al-

ready been considered in [12], [13], [14] and [15]. In

particular, in [15] the bounding box group theory has

been presented. With this approach, the limitation of

having just one box at any level of the CSG tree has

been relaxed. For each node of the tree, the bounding

entity is identi�ed as a group of boxes; in this way, it

has been proved that the bound at the root level is as

tightest as possible. In this paper we extend and im-

prove this theory, by presenting an algorithm which

is based on a new de�nition of bounding box. Our

bounding box is a rectangular prism with the edges

parallel to the coordinate axes, as in [15], but we asso-

ciate with each box a CSG sub-tree to be considered

when a ray strikes the box. With this approach we

maintain the tightness of the bounds of bounding vol-

ume techniques and only the necessary intersections

ray/object are performed as in the spatial subdivision

methods.

3 De�nitions and symbols

In this section de�nitions and notation used in this

paper are provided:

De�nition 1: Bounding Box. In this paper

we de�ne a bounding box (bb) as a prism whose

edges are parallel to the coordinate axes. A bb is

described by a pair of two vertices connected by

a diagonal and by a CSG sub-tree; for instance:

f(X

min

; Y

min

; Z

min

); (X

max

; Y

max

; Z

max

);

(1 \ 2) [3g (each object at the leaf level of a CSG

tree may be identi�ed with a number).

De�nition 2: BB group. A group of bbs (BBG) is

a list of bbs (i.e., fbb

1

; bb

2

; : : : ; bb

n

g) such that no bb

belonging to the list can enclose or intersect another

bb of the same list.

Symbols. In this paper we denote the union and

the intersection operators with the symbols [and \,

respectively; the symbol � will be used to denote the

di�erence operator. Capital letters are used to repre-

sent the BBGs, small letters denote the bbs belong-

ing to a group and the symbol ST () represents the

CSG sub-tree associated with each bb; for instance:

A = f(a

1

; ST (a

1

)); (a

2

; ST (a

2

)); : : : ; (a

n

; ST (a

n

))g.

4 The algorithm

4.1 Basic idea

In [15] it has been proved that the BBGs algebra is

Boolean; therefore, the BBG of the root is as tight-

est as possible bounding entity obtained considering

the bounding boxes at leaf level and combining them

according to the operators of the intermediate nodes.

The main limitation of the BBGs approach of [15] is

that there is no relationship among the objects (prim-

itive CSG objects) and the bounding boxes at the root

level. We overcome this drawback by de�ning a new

bounding volume. In this paper, a bounding box is

described by two �elds:

1. a pair of vertices connected by a diagonal, for

instance the lower left and the upper right cor-

ners of a prism;

2. a CSG sub-tree of the whole scene, which has to

be considered for intersection when a ray strikes

the bounding box.

Our approach requires new de�nitions of union, inter-

section and di�erence operators, which are di�erent

from those provided in [15]. These de�nitions, to-

gether with the mathematical details, can be found

in the appendix.

4.2 Steps of the algorithm

The operators and data structures (see appendix)

proposed in this paper have been used to develop a

rendering (software) system based on the ray cast-

ing approach [16]. By ray casting approach we mean

a rendering algorithm which does not consider the

secondary rays but only the rays traced from the ob-

server. Ray casting algorithms provide good quality

rendering with computational times lower than ray-

tracing-based methods; on the other hand, a ray cast-

ing approach can not handle optical e�ects such as

re
ection and refraction. Ray casting can be used for

fast previews of complex scenes, in volume rendering

algorithms and in animation rendering.

With the BBG method we can compute, before the

beginning of the rendering process, all the areas on

the screen where the rays have to be traced. The

algorithm can be summarized by the following steps:

1. the BBG at the root level of the CSG tree

is computed applying the rules shown in the

appendix. We consider a ray casting algo-

rithm, hence, only the projection of the bound-

ing boxes on the plane of view must not over-

lap; therefore, during this phase the intersec-

tions among boxes in three dimensions are not

eliminated. If a ray tracing algorithm were

employed, the intersections among 3D boxes

should be resolved.

2. Each bb is projected on the screen (2D space)

using the observer as center of projection. For

each vertex, a line linking the view point with

the vertex itself is computed, and the point of

intersection of this line with the screen is ob-

tained. For each bounding box a rectangular

area is found, which encapsulates the projected

vertices in the tightest way. The CSG sub-tree

of the projected 3D box is associated with the

corresponding rectangle.

3. The intersections among the rectangles are

eliminated (Fig. 1 and Fig. 2) and a list of areas

is obtained (observer's group); a CSG sub-tree

is associated with each area. Only the CSG

sub-tree of a rectangle is considered for inter-

section when a ray is traced into the rectangle

itself instead of the whole CSG tree. In order to

discard the new rectangles which do not contain

any CSG primitive a test to detect the \empty"

areas could be executed. In this way, the num-

ber of rectangles might be reduced as well as

the complexity of this step.

4. For each light it is determined a plane where 3D

boxes can be projected by using the light itself

as center of projection.

5. Steps 2 and 3 are executed for each light source

by computing a list of rectangles for each light

(light groups).

6. For each pixel enclosed by an observer's rectan-

gle a ray has to be traced. If the ray does not

strike any object of the rectangle CSG sub-tree,

the background color is assigned to the pixel,

otherwise, it must be determined if the point

hit is either illuminated or in shadow.

7. A line which joins the point and the �rst light

source is computed. The rectangle (of the light

group) enclosing the intersection point between

the plane of the light and the line has to be

a,b

c,d

e,f

bb2 - ST(bb2) g,h

bb1 - ST(bb1)

Figure 1: Two overlapping bbs.

a,b

e-1,f

e,b

e,f-1

e,f

c,d

e,d+1

bbI - ST(bb1)

c,h

c+1,f

g,h

ST(bb2)

ST(bb1) U ST(bb2)

bbII

bbIII

ST(bb2)

bbIV

ST(bb1)

bbV

Figure 2: Five new bbs have been obtained.

found. The objects associated with this rect-

angle are tested for intersection with the line

itself. If no intersection is detected the light

under test is not occluded; otherwise, its con-

tribution must not be considered. This step has

to be repeated for each light.

A C-like pseudo code of the algorithm is shown in Fig.

3. The read scene descr() procedure reads the scene

description from �le file des, while build 3D BBG()

builds the three dimensional BBG at the root level.

The 3D BBG is projected with the project 3DBBG

procedure and the overlapping rectangles are de-

composed by decompose overl rect. For each light

a plane of projection (find project plane) is deter-

mined and a list of non overlapping areas is obtained

as for the observer. Then, each rectangle of the ob-

server is considered and a ray is traced for each pixel

(trace ray); if no intersection is detected the pixel is

set to background color, otherwise, the contribution

of each light is computed. The find line procedure

computes a line joining the current light source to the

struck point; then, the rectangle of the light enclosing

the intersection between line and the plane of projec-

tion is determined by find rect light procedure. Fi-

nally, if the light is not occluded its contribution is

added by add procedure. When all light sources have

been considered the pixel is rendered.

 int xmin, xmax, ymin, ymax;

 CSG_tree *CSG_head;

} rectangle;

render()

{

 rectangle *obs_list;

 rectangle *vett_light[num_light];

 read_scene_descr(file_des);

 build_3D_BBG();

 decompose_overl_rect(obs_list);

 for(light=1;light<=num_light;light++)

 {

 vett_light[light]=project_3DBBG(light,new_plane);

 obs_list=project_3DBBG(observer,plane_view);

 }

 for(rect_oss=1;rect_oss<=num_rect;rect_oss++)

 {

 for(y=ymin;y<=ymax;y++)

 for(x=xmin;x<=xmax;x++)

 intersection=trace_ray(x,y,CSG_head);

struct {

 if(intersection==NULL)

 new_plane=find_project_plane(light);

 set_pixel(x,y,background);

 else

 {

 for(light=1;light<=num_light;light++)

 {

 line=find_line(intersection,light);

 find_rect_light(line,light);

 shadow=searc_intersection(line,CSG_head);

 if(shadow==NULL)

 contrib=add(light);

 }

 set_pixel(x,y,contrib);

 }

 }

 return;

}

 decompose_overl_rect(vett[light]);

 int light, num_light;

Figure 3: Pseudo code of the algorithm.

5 Performance comparison

In this section a performance comparison of the pro-

posed method (Algo 1) vs. a hierarchical approach

based on bounding volumes (Algo 2) and vs. a free-

ware ray tracer called POV-Ray (Persistence of Vi-

sion Ray Tracer) [17] is presented. For our tests we

used POV-Ray version 3.01 for Windows 95. Com-

putational times have been obtained by using a PC

with a Pentium Pro processor at 133 MHz; each pic-

ture has been rendered with a resolution of 640x480

pixels in true color.

Algo 2 implements an acceleration technique based

on hierarchies of bounding volumes. Each primitive

CSG solid is surrounded by a bounding box, then the

bounding boxes are combined according to the CSG

operators; in this way, a bounding box is computed

for each node of CSG tree. The box at the root level

encapsulates the whole scene. The rules to combine

the boxes are very easy; when an union operation

between two boxes A and B has to be performed,

the bounding box surrounding in the tightest way A

and B is computed. On the other hand, when an

intersection is encountered only the volume shared, if

it is not empty, by the two boxes is taken. For the

di�erence between two boxes A and B, the box A is

chosen as result. When a ray strikes the box of a node

the sibling nodes are considered; if the bounding box

of a sibling node is not hit by the ray, its sub-tree

CSG can be pruned without other tests, otherwise,

the hierarchy has to be recursively descended until a

leaf node is reached. The intersection points, if they

exist, with primitive CSG solids have to be combined

according to the CSG operators to obtain the closest

intersection point to the observer.

In order to be fair, it has been used the same ray

casting software both for bounding volumes (Algo 2)

and for the proposed method (Algo 1), that is, both

implementations use the same light model and the

same procedure to test the intersections with primi-

tive CSG objects.

5.1 Image rendering

Four examples have been considered:

� example 1: a simple molecule, modeled with 20

objects (Fig. 4);

� example 2: a wheel of cart, modeled with 12

objects (Fig. 5);

� example 3: a ball bearing, modeled with 61 ob-

jects (Fig. 6);

� example 4: three gears, modeled with 93 objects

(Fig. 7).

The �rst example has been built as union of spheres

and cylinders and it represents a very simple CSG

model; the second example has been built as union

of cylinders of which two of them were achieved with

di�erence operations. The third and the fourth ex-

ample represent mechanical pieces. In Table 1 we

provide the number of intersection tests for Algo 1,

Algo 2. Scenes as similar as possible to the considered

Figure 4: Example 1: a simple molecule. Figure 5: Example 2: a wheel of a cart.

Figure 6: Example 3: a ball bearing. Figure 7: Example 4: gears.

examples have been built also for POV-Ray. In the

third and fourth column are listed the intersection

tests with primitive CSG objects and 3D bounding

box, respectively. The last two columns have to be

considered only for POV-Ray; POV-Ray uses a va-

riety of systems to speed up ray-object intersection

tests. The primary system uses a hierarchy of nested

bounding boxes. Additionally, POV-Ray adopts sys-

tems known as Vista Bu�er and Light Bu�er to fur-

ther speed the rendering process up. The vista bu�er

is created by projecting the bounding box hierarchy

onto the plane of view and determining the rectan-

gular areas that are covered by each element in the

hierarchy. Only those objects whose rectangles en-

close a given pixel are tested by the primary viewing

ray. The light bu�er is created by enclosing each light

into an imaginary box and projecting the bounding

box hierarchy onto each of its six sides. The tests con-

cerning POV-Ray were made with all optimizations

turned on.

In Table 2 computation times of Algo 1 and Algo 2

are reported. We do not list computation times ob-

tained with POV-Ray because it uses di�erent and

optimized procedures to test the intersections. We

use just one routine to test the intersection between

a ray and a generic quadric; this has the advantage

that our code is very short but may be ine�cient at

run time. On the other hand, POV-Ray uses spe-

ci�c intersection routines for each primitive object.

The number of primitive CSG objects is listed in

the second column of Table 2, while in the next col-

umn the number of lights can be found. The num-

ber of rectangles for the observer and for the lights

is listed in the next columns. The last two columns

report the computational times for Algo1 and Algo

2. Other statistics concerning memory requirements

and traced points can be found in Table 3. Mem-

ory requirements for data structures are listed in the

second, third and fourth column, respectively; traced

points during the rendering process are reported in

the last three columns.

Table 1: Intersection tests.

Ex. Algorithm Int. Ob. Int. BB Int. Light Buf. Int. Vista Buf.

Algo 1 611,708 - - -

molecule Algo 2 4,106,860 7,745,915 - -

POV-Ray 321,880 469,990 1,578,577 1,489,570

Algo 1 591,228 - - -

wheel Algo 2 2,273,803 4,143,395 - -

POV-Ray 553,859 382,675 904,228 746,410

ball Algo 1 4,956,484 - - -

Algo 2 9,853,671 19,226,892 - -

bearing POV-Ray 15,353,438 541,098 699,265 776,538

Algo 1 18,000,703 - - -

gears Algo 2 22,742,628 44,825,967 - -

POV-Ray 35,743,511 466,283 653,340 589,922

Table 2: Computational times.

Ex. CSG lights rect. rect. lights Algo 1 Algo 2

objects observer L1 L2 L3 [min:sec] [min:sec]

1 20 3 251 261 236 265 0':37" 16':13"

2 12 3 114 92 160 140 0':35" 8':52"

3 61 3 453 431 229 434 3':47" 42':28"

4 93 3 11 19 22 22 19':47" 93':45"

6 Remarks

The statistics reported in section 5 show our method

may reduce the number of intersection tests and,

hence, can improve the rendering process. Let us con-

sider only the intersection tests with primitive CSG

solids. For the �rst example, our algorithm executes

about the double of the intersection tests performed

by POV-Ray; on the other hand, POV-Ray executes

a very large number of vista and light bu�er tests.

These tests are faster than ones necessary to check

a ray/object intersection but it has to be considered

that their number is, for the example 1, of an or-

der of magnitude larger. For the second example the

performance of Algo 2 and POV-Ray are quite simi-

lar, while in the last two examples Algo 2 reduces up

to one third the intersection tests. In these two ex-

amples, where the di�erence operation is widely em-

ployed, the vista and light bu�er techniques do not

speed up the ray tracing as for the �rst two examples

where the most used operation is the union.

If compare Algo 1 with Algo 2, which uses only

bounding box hierarchies, we speed up the render-

ing process in the best case of 26 times (example 1)

and in the worst case of 3 times (example 4). It has

to be pointed out that the scenes have been built

manually and no post-processing step has been done

to arrange the CSG trees in an optimized way. The

performance gain is achieved by considering only a

little portion of the entire database for intersection

tests, instead of the whole CSG tree. In this way,

we may save the unnecessary and computational in-

tensive tests (in particular, the di�erence operation

requires a high computational time); moreover, an

automatic reorganization of the CSG sub-trees is ex-

ecuted, since primitive objects of a CSG sub-tree have

a strong spatial locality. This overcomes the problem

of obtaining good hierarchical organizations of the

bounding volume approach. The organization of a

CSG tree heavily a�ects the performance of ray trac-

ers adopting standard optimizations. In Table 4 are

listed the intersection tests executed with POV-Ray

arranging the CSG tree of example 4 in two alter-

native ways. With the �rst arrangement of the tree

the performance of POV-Ray are quite similar to our

algorithm, while in the second case POV-Ray auto-

matically disables all optimizations (i.e. bounding

box hierarchies and light and vista bu�er); in this

case Algo 1 reduces the intersection tests to about

one �fth. The performance of our algorithm is in-

Table 3: Memory requirements and traced points.

Ex. Algo 1 Algo 2 POV-Ray Algo 1 Algo 2 POV-Ray

kbytes kbytes kbytes points points points

1 347 35 142 134362 307200 307200

2 162 21 138 86844 307200 307200

3 478 108 295 145354 307200 307200

4 763 163 320 178839 307200 307200

Table 4: Intersection tests for two alternative organizations of the example 4.

Ex. Int. Ob. Int. BB Int. Light Buf. Int. Vista Buf.

gears 22,205,461 517,238 842,484 856,596

94,945,524 - - -

dependent of tree organization and we obtain always

the same results (already reported in Table 1).

Furthermore, we trace rays only into zones where cer-

tainly there are some objects. The statistics of traced

pixels for di�erent examples are given in Table 3;

we can see that in the best case (example 2) only

one third of the rays considered with a standard ray

caster has to be traced. This may be an advantage

for scenes where the objects do not a�ect a wide part

of the plane of view.

On the other hand, our technique presents three

drawbacks:

1. Our implementation requires more memory

than a standard ray caster. In the worst case

(example 4) our algorithm needs 763 kbytes

against 163 kbytes used by a bounding volume

approach. Anyway, memory requirement of our

algorithm can not be considered critical for a

graphic system, and only scenes with several

thousands objects could be a problem.

2. With our strategy we need planes where to

project 3D bounding boxes by using light

sources as centers of projection. This constrains

to place the lights outside the scenes, since only

in this way we can be sure to �nd a projection

plane for each light. This drawback might be

overcome using the light bu�er technique [18];

when a plane of projection can not be found for

a given light source, the same technique used

by POV-Ray can be employed.

3. Our algorithm is more complex than a standard

strategy.

Furthermore, our algorithm might be concurrently

used together with other acceleration techniques. For

instance, the zz-bu�er algorithm [19], or similar,

could be employed to sort along the Z axis the prim-

itive CSG objects of each sub-tree. Our methodology

allows us to identify for each primary and shadow

ray the CSG sub-tree to be checked for intersection,

then, each other optimization should be applied only

for the CSG sub-tree and for the area of the projec-

tion plane associated with it, instead of considering

the whole CSG model and the entire screen.

Moreover, it is important to point out that also the

rectangles of the observer could be rendered in paral-

lel and each processor should load into memory just

the portion of the database related to the rectangle

being processed.

6.1 Evaluation of complexity

To evaluate the complexity of our algorithm we have

to consider three phases:

� determination of the 3D bounding boxes at the

root level;

� 2D projection of the 3D boxes at the root level;

� decomposition of the projections into non over-

lapping rectangles.

Let us denote with the capital letters G, N and P

the number of primitive CSG objects, the number of

3D boxes at the root level, and the number of pro-

jections, respectively. For sake of simplicity, let us

assume to consider a CSG with only union operators;

in the worst case, the problem to �nd the number

of 3D boxes at the root level is linear with the num-

ber of objects N = O(G), since each union operation

produces a number of resulting boxes equal to the

sum of the boxes of the operands. The problem of

computing the 2D projections is linear with the num-

ber of 3D boxes at the root level, (i.e. P = O(N))

since the 2D projections can be obtained by analyz-

ing, in sequence, the N bounding boxes. Finally, the

problem of decomposition of the projections in non

overlapping rectangles is quadratic O(P

2

), since each

projection has to be checked for intersection with all

the other ones. From these results, it follows that in

the worst case the complexity is O(G

2

).

A general, accurate and tight evaluation of the com-

plexity could be extremely di�cult in the event of

considering also intersection and di�erence operators

and this is mainly due to the evaluation of the �rst

phase (determination of 3D boxes). In fact, it can

be observed that the decomposition in non overlap-

ping rectangles is always a problem of quadratic com-

plexity O(P

2

) and the projection always depends in

linear way with the number of 3D boxes at the root

level P = O(N). On the other hand, spatial coher-

ence among the objects strongly a�ects in an unpre-

dictable way, even in the worst case, the dependency

between primitive CSG objects and the 3D boxes at

the root level. Therefore, the evaluation of the com-

plexity of the �rst phase is strongly related to the

typology of the scene (i.e. how the objects are placed

in the 3D space) and it could be extremely di�cult

to provide a general and tight bound.

However, the examples we have considered in section

5 show that the number of rectangles grows, in the

worst case, (i.e. example 2) about as the square of

the object number, i.e. to the order of complexity of

a tree with only union operators. For the consid-

ered examples we observe that the time spent to ob-

tain the non overlapping rectangles is negligible when

compared with the rendering time, since in the worst

case (example 4) the rectangle computation requires

75 seconds which amount to about the 6% of the en-

tire rendering time. However, in scenes consisting of

several thousands objects, this step might require a

computational time larger than the rendering time it-

self. Anyway, with the CSG representation, very com-

plex scenes can be often obtained with several hun-

dreds objects and, in these cases, it could be reason-

able to expect that the rectangle computation should

not have a considerable impact on the computational

time.

7 Conclusion

In this paper a new method of spatial subdivision for

fast rendering of CSG scenes has been presented. We

provide a new de�nition of bounding box; in this way,

we can consider bounding boxes containing the CSG

sub-tree to be tested when a ray strikes the box. The

considered examples show that we may reduce the in-

tersection tests up to one third of the ones performed

by a ray caster adopting standard optimizations.

Our strategy uses bounding volumes to surround the

objects, in this way, tight bounds can be obtained;

moreover, we split the screen into a set of non over-

lapping rectangles, associating a CSG sub-tree with

each of them. With this approach just a portion of

the whole database is considered for intersection tests.

Bounding box group technique o�ers an automatic

reorganization of the CSG hierarchy, in fact, the ob-

jects belonging to the CSG sub-trees have a strong

spatial locality. In this way, the performance of our

algorithm are not a�ected by the CSG tree organiza-

tion, on the other hand, standard optimization may

be heavily a�ected by the tree organization.

Acknowledgments

We are grateful to Ing. Enrico Porta for helping us

in developing our software and to the anonymous re-

viewers for their helpful comments.

References

[1] Whitted, T. (1980) An Improved Illumination

Model for Shaded Displays. CACM, 23, 343-349.

[2] Rubin, S. M. and Whitted, T. (1980) A 3-

Dimensional Representation for Fast Rendering

of Complex Scenes. Proc. Siggraph, ACM Com-

puter Graphics, 110-116.

[3] Kay, T. L. and Kajiya, J. T. (1986) Ray Trac-

ing Complex Scenes. Proc. Siggraph, ACM Com-

puter Graphics, 269-277.

[4] Goldsmith, J. and Salomon, J. (1987) Automatic

Creation of Object Hierarchies for Ray Tracing.

IEEE Computer Graphics & Applications, 7, 14-

20.

[5] Glassner, A. S. (1984) Space Subdivision for Fast

Ray Tracing. IEEE Computer Graphics & Appli-

cations, 4, 15-22.

[6] Wyvill, G. Kunii, T. L. and Shirai, Y. (1986)

Space Division for Ray Tracing in CSG. IEEE

Computer Graphics & Applications, 6, 28-34.

[7] Coquillart, S. (1985) An Improvement of the

Ray-Tracing Algorithm. Proc. Eurographics, El-

sevier, 77-88.

[8] Requicha, A. A. G. and Voelcker, H. B. (1982)

Solid Modeling: a historical summary and con-

temporary assessment. IEEE Computer Graph-

ics & Applications, 2, 9-22.

[9] Roth, S. D. (1982) Ray Casting for Modeling

Solids. Computer Graphics and Image Process-

ing, 18, 109-144.

[10] Gervautz, M. (1986) Three Improvements of the

Ray Tracing Algorithm for CSG Trees. Com-

puter and Graphics, 10, 333-339.

[11] Glassner, A. S. (1989) An Introduction to Ray

Tracing. Academic Press.

[12] Cameron, S. (1991) E�cient Bounds In Con-

structive Solid Geometry. IEEE Computer

Graphics & Applications, 11, 68-74.

[13] Cameron, S. and Yap, C. K. (1992) Re�nement

Methods for Geometric Bounds in Constructive

Solid Geometry. ACM Transaction On Graphics,

11, 12-39.

[14] Mazzetti, M. and Ciminiera, L. (1994) Comput-

ing CSG tree boundaries as algebraic expres-

sions. Computer-Aided Design, 26, 417-425.

[15] Sanna, A. andMontuschi, P. (1995) On the Com-

putation of Groups of Bounding Boxes For Test

of Objects Intersection. International Phoenix

Conference on Computers and Communications,

684-690.

[16] Magnenat-Thalmann, N. and Thalmann, D.

(1987) IMAGE SYNTHESIS: Theory and Prac-

tice, Springer-Verlag Tokyo.

[17] POV-Ray is a freeware ray tracer. Source code

and documentation can be downloaded from the

web site http://www.povray.org.

[18] Haines, E. A. and Greenberg, D. P. (1986) The

Light Bu�er: A Shadow-Testing Accelerator.

IEEE Computer Graphics & Applications, 6, 6-

16.

[19] Salesin, D. and Stol�, J. (1990) Rendering CSG

Models with a ZZ-Bu�er. Proc. Siggraph, ACM

Computer Graphics, 67-76.

[20] Sanna, A. and Montuschi, P. (1995) Spatial

Bounding of Complex CSG Objects. IEE Proc.-

Comput. Digit. Tech., 142, 431-439.

Appendix: basic operators

In this section we provide the de�nition of the

new operators on BBGs (which are di�erent

from those given in [15]). Given two BBGs

A = f(a

1

; ST (a

1

)); (a

2

; ST (a

2

)); : : : ; (a

n

; ST (a

n

))g

and B = f(b

1

; ST (b

1

)); (b

2

; ST (b

2

)); : : : ;

(b

m

; ST (b

m

))g, the operators are de�ned as follows:

Intersection:

D = A \ B = f(a

1

\ b

1

; ST (a

1

) \ ST (b

1

));

(a

2

\ b

1

; ST (a

2

) \ ST (b

1

)); : : : ;

(a

n

\ b

1

; ST (a

n

) \ ST (b

1

)); : : : ; (a

n

\ b

m

;

ST (a

n

) \ ST (b

m

))g (1)

With respect to the intersection operator de�ned in

[15], a CSG sub-tree is associated with each bounding

box belonging to the resulting group.

Union: the union operation between two BBGs can

be divided into two steps. The �rst step is the union

operation similar to the one de�ned in [15]:

D = A [B = f(a

1

; ST (a

1

)); : : : ; (a

n

; ST (a

n

));

(b

1

; ST (b

1

)); : : : ; (b

m

; ST (b

m

))g (2)

In the second step, the intersections among the bbs

have to be detected and eliminated. In three dimen-

sions, it can be seen that, in general, when two bbs

overlap they can be decomposed into seven new bbs:

one intersection bb plus \other" six bbs. On the other

hand, in two dimensions an intersection leads to one

intersection bb plus four \other" bbs. The CSG sub-

tree related to the intersection bb is obtained as a

union of the CSG sub-trees of the two intersecting

bbs, while the other four bbs have a sub-tree equal

to the one of the bb from which they have been ob-

tained. An example in two dimensions is presented

in Fig. 2.

A similar process has to be carried out if a bound-

ing box encloses another bb. The result of the union

operation is a BBG where the elements do not have

reciprocal intersections and, in general, k > m+ n:

D

0

= f(d

1

; ST (d

1

)); (d

2

; ST (d

2

)); : : : ; (d

k

;

ST (d

k

))g (3)

The intersections among boxes may be all detected

at the root level of the CSG trees, instead of testing

for the intersection after having performed each union

operation. In this way, the union operation is reduced

to the step 1, but a supplementary step at the root

level has to be executed.

7.1 Di�erence operator

Given two objects A and B, the di�erence may be

obtained as: D = A \ B, where the symbol B de-

notes the complement of the object B, i.e., the set of

the points of the space not belonging to B. The dif-

ference between the bounding entities of A and B

must be examined carefully, since the relationship

bb(D) = bb(A) \ bb(B) does not hold. We have to

consider the following problem: the complement of a

bounding box is not, in general, a bounding box [20].

A trivial but ine�cient way of overcoming this prob-

lem, that is known in literature, is simply based on the

assumption that in the di�erence D = A�B, the ob-

ject B is smaller than A, therefore, the bounding box

of D can be de�ned as being equal to the bounding

box of the larger object, i.e., A. This technique has

to be used in each algorithm that considers just one

bounding box for each node of a CSG tree ([12],[14]).

A more e�cient method to solve the di�erence prob-

lem has been proposed in [20]. The concept of inner

bounding box group is introduced in that paper. The

inner bounding boxes do not encapsulate the objects

like the external boxes, but they enclose only points

which certainly belong to the objects. In this way,

a new bounding entity can be de�ned for each node

of a CSG tree. The new bounding entity is made up

of two groups: an external group and an inner group

fEBBG; IBBGg. In [20], the di�erence between two

BBGs A and B can be computed as the \intersection"

between the external group of A and the complement

of the inner groups of B: D = EBBG

A

� IBBG

B

.

We can not use the intersection operator \ above de-

�ned since the CSG sub-trees associated with the in-

ner boxes have to be subtracted.

In this section we provide a new de�nition of the dif-

ference operation, such that it can be used with the

boxes having associated a CSG sub-tree. In the fol-

lowing we use the subscript

in

to distinguish the inner

from the external boxes. A new de�nition of comple-

ment is provided:

Complement:

If B = f(b

in1

; ST (b

in1

)); : : : ; (b

inm

; ST (b

inm

))g is an

IBBG, then B can be computed as:

B = f(b

in1

; ST (b

in1

)) \ (b

in2

; ST (b

in2

)) \ : : : \

(b

inm

; ST (b

inm

))g (4)

Observe that the complement of a single bounding

box is, in general, a group of boxes. Now we can

de�ne the di�erence operator between two bounding

box groups:

Di�erence: The di�erence (A � B) between A =

f(a

1

; ST (a

1

)); : : : ; (a

n

; ST (a

n

)); (a

in1

;

ST (a

in1

)); : : : ; (a

inm

; ST (a

inm

))g and

B = f(b

1

; ST (b

1

)); : : : ; (b

k

; ST (b

k

)); (b

in1

; ST (b

in1

));

: : : ; (b

inz

; ST (b

inz

))g is computed as:

D = A�B = f(a

1

; ST (a

1

)); : : : ; (a

n

; ST (a

n

));

(a

in1

; ST (a

in1

)); : : : ; (a

inm

; ST (a

inm

))g �

f(b

1

; ST (b

1

)); : : : ; (b

k

; ST (b

k

)); (b

in1

;

ST (b

in1

)); : : : ; (b

inz

; ST (b

inz

))g =

f(a

1

; ST (a

1

)); : : : ; (a

n

; ST (a

n

)); (a

in1

;

ST (a

in1

)); : : : ; (a

inm

; ST (a

inm

))g �

f(b

in1

; ST (b

in1

)); : : : ; (b

inz

; ST (b

inz

))g =

= f(a

1

; ST (a

1

)); : : : ; (a

n

; ST (a

n

)); (a

in1

;

ST (a

in1

)); : : : ; (a

inm

; ST (a

inm

))g �

�f(b

in1

; ST (b

in1

)); : : :; (b

inz

; ST (b

inz

))g =

= ff(a

1

; ST (a

1

)); : : : ; (a

n

; ST (a

n

))g �

�f(b

in1

; ST (b

in1

));\ : : : \ (b

inz

; ST (b

inz

)

)g; f(a

in1

; ST (a

in1

)); : : : ; (a

inm

;

ST (a

inm

))g � f(b

in1

; ST (b

in1

)) \ : : : \

(b

inz

; ST (b

inz

))gg = ff(a

1

\ b

in1

; ST (a

1

)

�ST (b

in1

)); : : : ; (a

1

\ b

inz

; ST (a

1

)�

ST (b

inz

)); : : : ; (a

n

\ b

inz

; ST (a

n

)�

ST (b

inz

))g; f(a

in1

\ b

in1

; ST (a

in1

)�

ST (b

in1

)); : : : ; (a

inm

\ b

in1

; ST (a

inm

)�

ST (b

in1

)); : : : ; (a

inm

\ b

inz

; ST (a

inm

)�

ST (b

inz

))gg (5)

An example of di�erence in 2D is shown in Fig. 8.

The �rst picture shows the two objects of whose the

di�erence has to be computed, while in the second

picture external boxes and inner box of the object B

are depicted. The next two pictures show the BBG

complement of the inner box of B and, �nally, the

BBG result is presented.

External bb(A) int Compl. of Inner (b)

Entire world Entire world

Entire world

Object A

Object B

Externall bb(A)

External bb(B)

Inner bb(B)

bbIV

bbI - ST(B)

bbII - ST(B)

bbIII - ST(B)

ST(B)

Difference A-B External and Inner boxes

Complement of Inner(B) - ST(B)=B

Entire world

BBG result

bb2- ST(A-B)

bb1 - ST(A-B)

Entire world

Entire world

Result of the complement

Figure 8: Example of di�erence in 2D.

