
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A High-level Implementation Framework for Non-Recurrent Artificial Neural Networks on FPGA / Prono, Luciano;
Marchioni, A.; Mangia, M.; Pareschi, F.; Rovatti, R.; Setti, G.. - STAMPA. - 2019:(2019), pp. 77-80. (Intervento
presentato al convegno 15th Conference on Ph.D. Research in Microelectronics and Electronics, PRIME 2019 tenutosi
a Lausanne (Switzerland) nel July 15-18, 2019) [10.1109/PRIME.2019.8787830].

Original

A High-level Implementation Framework for Non-Recurrent Artificial Neural Networks on FPGA

Publisher:

Published
DOI:10.1109/PRIME.2019.8787830

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2786317 since: 2021-08-19T18:10:03Z

Institute of Electrical and Electronics Engineers Inc.

1

This is the author’s version of the article that has been presented at IEEE PRIME2019
The editorial version of the paper is available at http://dx.doi.org/10.1109/PRIME.2019.8787830

For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org
Copyright (C) 2019 IEEE. Personal use is permitted.

A High-level Implementation Framework for
Non-Recurrent Artificial Neural Networks on FPGA

Luciano Prono∗, Alex Marchioni†,‡, Mauro Mangia†,‡, Fabio Pareschi∗,‡, Riccardo Rovatti†,‡, Gianluca Setti∗,‡
∗ DET – Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy.
email: luciano.prono@studenti.polito.it, {fabio.pareschi, gianluca.setti}@polito.it
† DEI – University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy.

email: {alex.marchioni, mauro.mangia2, riccardo.rovatti}@unibo.it
‡ ARCES – University of Bologna, via Toffano 2/2, 40125 Bologna, Italy.

Abstract—This paper presents a fully parametrized frame-
work, entirely described in VHDL, to simplify the FPGA imple-
mentation of non-recurrent Artificial Neural Networks (ANNs),
which works independently of the complexity of the networks
in terms of number of neurons, layers and, to some extent,
overall topology. More specifically, the network may consist of
fully-connected, max-pooling or convolutional layers which can
be arbitrarily combined. The ANN is used only for inference,
while back-propagation is performed off-line during the ANN
learning phase. Target of this work is to achieve fast-prototyping,
small, low-power and cost-effective implementation of ANNs
to be employed directly on the sensing nodes of IOT (i.e.
Edge Computing). The performance of so-implemented ANNs
is assessed for two real applications, namely hand movement
recognition based on electromyographic signals and handwritten
character recognition. Energy per operation is measured in
the FPGA realization and compared with the corresponding
ANN implemented on a microcontroller (µC) to demonstrate the
advantage of the FPGA based solution.

I. INTRODUCTION

Nowadays many sophisticated signal processing operations
are becoming more and more pervasive in everyday life,
ranging from voice, language and image recognition, to ex-
traction of bio-information from vital signals, to arrive to more
complicated tasks such as robot control and assisted driving.
In several of these operations, the complexity of the task to
perform is so high that machine learning techniques exploiting
Artificial Neural Networks (ANNs) are often the only viable
solution [1], [2].

There are two main types of ANNs: feed-forward and
recurrent. While recurrent ANNs, being composed by the
interconnection of (first- or second-order) dynamical systems,
can exhibit very reach forms of dynamic behavior and there-
fore (in principle) are better suited for mimicking superior
brain-like tasks, their learning algorithms are today not as
accurate as for the feed-forward networks [3]. Conversely,
feed-forward ANNs are algebraic systems and their possible
behaviors are theoretically much more simple, since their
outputs depends only on the inputs given at the same time.
Yet, for the latter, learning algorithms have recently proven to
be able to train the ANN to perform very complex tasks [1].

By building networks of increasing dimensions today we
can achieve a high level of accuracy for feed-forward ANNs.

Approaches based on the use of a large number of processors
such as GPUs are quite effective but at the same time expen-
sive and energy-inefficient. For example, Edge Computing on
the node sensors of a IOT network would require low-power,
cost-effective and compact processing units for signal elabora-
tion. These requirements can be met with the implementation
of small ANNs mainly in two ways: i) by programming
the ANN structure using microcontrollers (µC) or ii) by
describing the architecture in a hardware description language
(VHDL) to be mapped on a Field Programmable Gate Array
(FPGA). While the performance on µC is expected to be lower
compared to FPGA, the implementation of the ANN on FPGA
is much more time-consuming. In order to let the designer
experiment quickly with many different implementation of the
ANN at the hardware level it is therefore necessary to devise a
way to quickly and easily generate high performing structures
on the basis of a given set of parameters. The availability
of such a framework would allow to measure not only the
accuracy of many different nets but also their performance
in terms of the actual implementation. Aim of this paper is
to compare µC vs FPGA implementations, highlighting their
pros and con towards fast-prototyping and cost-effective ANN
implementation1. This paper is organized as follows. Section
II introduces the basic mathematical framework for fully-
connected and convolutional feed-forward ANNs. Section III
describes how the feed-forward ANNs are being implemented
in VHDL and the level of parametrization of the net. Section
IV shows the performance of the architecture of Intel Cyclone
10 LP FPGA in comparison with the equivalent implemented
on an ARM Cortex M4 µCs. Conclusions are finally drawn.

II. THE ANN BASIC BEHAVIOR

A complete feed-forward ANN is composed of layers of
different types. The first one is called input layer, which is
simply the input port to the ANN. All the following layers
are called hidden layers and can be of different types as
highlighted shortly. Finally, the output layer has the same

1The implementation does not include hardware for the back-propagation
algorithm, i.e. the tool used in the training phase. The network training is to be
considered an off-line task running on Matlab™ Deep Learning Toolbox™.

978-1-7281-3549-6/19/$31.00 ©2019 IEEE

2

This is the author’s version of the article that has been presented at IEEE PRIME2019
The editorial version of the paper is available at http://dx.doi.org/10.1109/PRIME.2019.8787830

For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org
Copyright (C) 2019 IEEE. Personal use is permitted.

structure as an hidden one, but its outputs are fed directly
to the output of the ANN. An example of net can be seen in
Fig. 1.

Fig. 1. Disposition of the layers of a fully-connected ANN, where L is the
total number of layers minus the input layer.

A. The neuron

The neuron is the basic element of an ANN. It receives
N inputs xj , j = 0, . . . , N − 1, multiplies each of them by
a different weighting coefficient wj (called just weight for
simplicity) and adds up all the products plus a bias value b.
The sum z is then given as the argument of a function called
activation function to get the output value y. In formulas

z = b+

N−1∑

j=0

xj · wj

y = σ(z)

(1)

where σ(·) is the activation function.
The activation function can have many forms. To maintain

the hardware complexity low, we will here use the Rectified
Linear Unit (ReLU) y = max{0, z}, which can be easily built
using a simple comparator.

B. The fully-connected layer

The fully-connected layer has in general S neurons and N
inputs: as an example in Fig. 1 layer 1 has N = 4 and S = 7.
All layer inputs are connected to each neuron. As such we
have N weights plus a bias for each neuron, which generate
an output so that we have S outputs for the whole layer.

While this is the most general type of layer it is also the
most expensive in terms of memory necessary to store the
values of the weights.

C. The convolutional layer

Convolutional layers are mainly used to work with 3D
data structures which are ideal for image representation: a
3D tensor can be seen as a group of matrices where each
component corresponds to a pixel while each matrix describes
a color between red, green or blue. The input of convolutional
layers is a 3D tensor or volume with height H , width W and
depth D, where the total number of inputs is N = H×W×D.

Convolutional layers use the concept of local connectivity:
instead of connecting all the inputs to each neuron, only a
portion of them is used at once. We define the receptive field
as the portion of inputs which is connected to the neurons.

A single portion of inputs generates S outputs which is the
number of neurons of the layer. The receptive field moves
along the input volume and, for each position it reaches, the
neurons generate S outputs. We define the receptive field size
(Fh and Fw) and the stride as its vertical and horizontal shift
(Stv and Sth). Additionally we use a padding parameter to
generate a frame of zeros around the input matrices (Pt, Pb,
Pl, Pr for top, bottom, left and right). For each position of
the receptive field the neurons receive inputs from all the input
matrices. A visual representation of this layer can be seen in
Fig. 2. With the parameters given before we can evaluate the
dimensions of the output volume as follows

Hout = b(H − Fh + Pt + Pb)/Stvc+ 1

Wout = b(W − Fw + Pl + Pr)/Sthc+ 1

Dout = S

(2)

The big advantage given by this type of layer is that for
each position of the receptive field we use the same weights,
thus saving resources in terms of memory occupation.

Fig. 2. Visual representation of the convolutional layer.

D. The max-pooling layer

Max-pooling layers evaluate the maximum value among
the inputs and do not need weights. They work with the
same set of parameters of the convolutional layers. For each
position of the receptive field, the layer generates a number
of output values equal to the number of input matrices. A
visual representation of this type of layer can be seen in Fig.
3. The dimensions of the output matrix are evaluated as in
Eq. 2, with the difference that Dout = D. This type of layer
is mainly used to reduce the quantity of data to be elaborated
across the ANN.

Fig. 3. Visual representation of the max-pooling layer.

3

This is the author’s version of the article that has been presented at IEEE PRIME2019
The editorial version of the paper is available at http://dx.doi.org/10.1109/PRIME.2019.8787830

For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org
Copyright (C) 2019 IEEE. Personal use is permitted.

III. FPGA IMPLEMENTATION OF THE ANN
The actual framework for the FPGA implementation of

an ANN is entirely written in VHDL and it is completely
parametrized. The designer can instantiate as many layers of
any type as they want. The actual first layer is the first hidden
layer of the ANN which receives the inputs from the ports of
the ANN entity while the last layer sends the outputs to the
output ports of the ANN entity. For the sake of performance
and low-power consumption, we use only memories integrated
on the FPGA chip, therefore sacrificing the possibility to build
large ANNs. A state machine is employed to load the weights
into the various memories of the layers.

A. The implementation of the ANN layers
Each layer is composed of an input memory, an elaboration

unit and an output memory. We identify three stages:
1) the layer loads the inputs from the previous layer to the

input memory, one at a time;
2) the layer elaborates the inputs and obtains the output

values;
3) the layer saves the output values into the output memory,

once at a time, while they are being evaluated.
Each of the three stages is controlled by its own state

machine. Using a series of set-reset signals each stage com-
municates with the others: when the flag is high, data is ready
and is being used; when the flag is low data is not used and
is being overwritten.

The elaboration unit for the fully-connected and convo-
lutional layers reproduces the neuron mathematical model
by Multiply and Accumulator (MAC) operations. One MAC
generates the weighted sum of a single neuron; many iterations
are required to evaluate all the neurons of the layer. Multiple
parallel MACs can be exploited to evaluate more than one
neuron per iteration: the number of MACs employed is one
of the parameters to be chosen by the designer. For a fully-
connected layer, during one iteration all the N values in the
input RAM are being read and used in parallel to evaluate
the output of multiple neurons. For a convolutional or max-
pooling layer instead only the inputs inside the receptive field
are being read and its position is updated at the end of each
iteration; the same weights are used until all the positions of
the receptive field have been evaluated.

After each iteration, the outputs of the MACs are being
sent one at a time through a block which applies the activation
function and finally they are memorized in the output memory.
The type of activation function employed is also a parameter
chosen by the designer. The generic structure of these layers
with their elaboration unit is shown in Fig. 4. With this
structure it is possible to evaluate the outputs of many neurons
in parallel even if the FPGA RAM structures have only one
input and one output port.

The elaboration unit for the max-pooling layer is much
simpler. It simply checks if the input is greater to the value in
an accumulator. If it is, it saves it as the new accumulator
value. When this is done for a whole pool of values, the
maximum is obtained.

Fig. 4. Generic structure of the fully-connected and convolutional layers.
The number of outputs for the fully-connected layers is only S, given that
Hout = 1 and Wout= 1. The MAC address selects the MAC outputs one at a
time in order to save them in the output RAM. Max-pooling layers are similar
but use a block for the evaluation of the maximum instead of MACs, weights
and the activation function.

B. Coding a completely parametrized structure in VHDL

In order to have a completely parametrized structure it is
necessary to use the VHDL to its extents. A set of functions is
necessary to evaluate the many internal parameters of the net
given the values wanted by the designer. For example, given
the parameters of a convolutional layer, the compiler must use
the Eq. 2 in order to retrieve its number of outputs.

At the same time the code must ensure maximum flexibility
to the designer, letting him choose an arbitrary amount of
layers, neurons and instantiated MACs. In a file we define for
each layer a VHDL record structure which allows us to store
different types of constants into an object. All the records are
stored in an unconstrained array where every element represent
one of the layers of the ANN. From the top level entity to the
bottom of the structure these parameters are forwarded through
generic mapping. By using the generate VHDL structures, the
ANN is built based on these parameters.

The designer decides the number of bits of the data and
the weights used in the ANN; these values are fixed point
so the number of fractional bits also must be declared. Then
they select the dimensions of the input data volume. Finally
for each layer the designer chooses the type of layer, the
number of neurons and instantiated MACs, the dimensions of
the receptive field, the stride, the padding and the activation
function type. Many of these parameters do not apply to all
the types of layers so when they are not necessary they are
being ignored.

IV. PERFORMANCE

We evaluate the performance of an FPGA and µC imple-
mentation of the ANN and we compare them. The µC is
programmed reducing to the minimum any kind of overhead
due to operations which are not strictly necessary. We use Intel
Cyclone 10 LP as FPGA, while we choose the stm32l452re
of the STM32 family based on ARM Cortex M4 as µC.

Testing needs suitable case studies: we test a fully-
connected ANN (FCNN) for the recognition of hand move-
ments which uses forearm electromyographic signals as inputs

4

This is the author’s version of the article that has been presented at IEEE PRIME2019
The editorial version of the paper is available at http://dx.doi.org/10.1109/PRIME.2019.8787830

For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org
Copyright (C) 2019 IEEE. Personal use is permitted.

TABLE I
RESOURCE ALLOCATION FOR THE ANNS ON FPGA

FCNN 2 layers FCNN 3 layers CNN 3 layers
Memory bits 4% 11% 47%
M9k RAMs 13/30 23/30 16/30
9-bit multipliers 9/30 17/30 10/30
Logic Elements 16% 29% 22%

[2] and then we test a convolutional ANN (CNN) for the
recognition of handwritten digits we can find in the MNIST
data-set [4]. The weights employed by the ANNs are obtained
beforehand using Matlab™ Deep Learning Tool™. Data and
weights are 9-bit fixed point values with 5-bit fractional part.

The ANN must fit in the chosen FPGA chip which has a
limited amount of resources. In particular, each layer employs
one 9-bit multiplier per MAC and a number of M9k RAMs
equal to 2 + MACsnum. In Table I there is a summary of
resource allocation for the most significant ANNs employed in
the test (8 MACs/layer for FCNN and 5 MACs/layer for CNN)
on the smallest chip from the Intel Cyclone 10 LP family.

With Intel Quartus Prime timing analyzer and power an-
alyzer we obtain the maximum operative frequency and the
power consumption (P) of the FPGA chip during the elab-
oration. By running a testbench we also obtain the average
time per operation. On µC we measure top directly on device
with an internal counter. The value of P is obtained from the
datasheet of the µC. With these informations we estimate the
energy consumption Eop = top · P .

A. Fully-connected ANN performance

We instantiate an ANN composed of 2, 3 or 4 fully-
connected layers and 32 neurons each with the exception of
the last which has 3 neurons. There are 16 input values and 3
output values. The ANN best compromise between area and
performance is with about 8 MACs per layer. In this working
condition the FPGA architecture takes about 100 cycles on
average to perform a complete elaboration, while the µC takes
600 cycles at his best. Additionally in Fig. 5 we can see the
energy spent by the FPGA and the µC for each complete
operation. With about 8 MACs per layer the FPGA energy
consumption is basically minimum for each configuration and
this is especially evident for a high number of layers.

Fig. 5. Comparison between the energy per operation consumed by the FPGA
and by the µC for the fully-connected ANN implementation.

B. Convolutional ANN performance

We instantiate two different setups for the convolutional
ANN: setup A uses a convolutional, a max-pooling and a fully-
connected layer; setup B uses two consecutive convolutional
layers, then a max pooling one and finally a fully-connected
layer. The input volume size is 20× 20× 1 and there are 10
outputs, one for each digit value. All the layers (except for the
max-pooling one) use 10 neurons. With 5 MACs per layer, the
FPGA takes less than one tenth of the number of cycles taken
by the µC to perform one complete operation. In Fig. 6 we
can see the energy spent by the FPGA and the µC for each
complete operation. FPGA still consumes far less than the µC
but only if we keep the level of parallelism high enough.

Fig. 6. Comparison between the energy per operation consumed by the FPGA
and by the µC for the convolutional ANN implementation.

V. CONCLUSIONS

In this paper we have presented the design of a completely
parametrized implementation of a non-recurrent ANN, whose
target is fast development on FPGA. Everything is written in
VHDL, improving portability of the code. The architecture
consists of fully-connected, convolutional and max-pooling
layers which can be combined arbitrarily. The structure does
not include back-propagation algorithms in order to improve
the performance of the net. With this framework a designer
can try different ANN setups and measure their performance
with little effort in order to find the best solution to a given
problem. Simulations show that the implementation on FPGA
is far better than the one on µC both from the point of view
of speed and from the point of view of energy consumption.

REFERENCES

[1] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, pp. 2295–2329, Dec 2017.

[2] A. Marchioni, M. Mangia, F. Pareschil, R. Rovatti, and G. Setti,
“Rakeness-based compressed sensing of surface electromyography for
improved hand movement recognition in the compressed domain,” in 2018
IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4,
Oct 2018.

[3] M. Nielsen, Neural Networks and Deep Learning. 2018.
[4] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten

digits website,” Retrieved November 2018.

