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The RGB-D Triathlon: Towards Agile Visual Toolboxes for Robots

Fabio Cermelli1, Massimiliano Mancini2,3, Elisa Ricci3,4 and Barbara Caputo1,5

Abstract— Deep networks have brought significant advances
in robot perception, enabling to improve the capabilities of
robots in several visual tasks, ranging from object detection
and recognition to pose estimation, semantic scene segmentation
and many others. Still, most approaches typically address
visual tasks in isolation, resulting in overspecialized models
which achieve strong performances in specific applications but
work poorly in other (often related) tasks. This is clearly
sub-optimal for a robot which is often required to perform
simultaneously multiple visual recognition tasks in order to
properly act and interact with the environment. This problem
is exacerbated by the limited computational and memory
resources typically available onboard to a robotic platform.
The problem of learning flexible models which can handle
multiple tasks in a lightweight manner has recently gained
attention in the computer vision community and benchmarks
supporting this research have been proposed. In this work we
study this problem in the robot vision context, proposing a new
benchmark, the RGB-D Triathlon, and evaluating state of the
art algorithms in this novel challenging scenario. We also define
a new evaluation protocol, better suited to the robot vision
setting. Results shed light on the strengths and weaknesses of
existing approaches and on open issues, suggesting directions
for future research.

I. INTRODUCTION

Recent years have witnessed great advances in computer
and robot vision thanks to deep networks [1]. Deep models
are used in many applications in robot vision, ranging from
egomotion estimation [2] to depth prediction [3], [4], object
grasping [5], [6] semantic segmentation [7], [8], etc.

A common procedure for addressing a specific visual
recognition problem consists in fine-tuning an existing pre-
trained model on a given, problem-specific dataset. While
this strategy leads to excellent performance on the specific
problem and setting, it ignores two key aspects of robot
vision. The first is that robots need visual abilities for several
tasks. For instance, to complete a simple carrying task a robot
needs to localize itself, detect and recognize the objects in
front of it and estimate their poses (see Fig. 1). Clearly,
having an overspecialized network for each specific task
would scale poorly. Second, the multiple tasks that a robot
is required to solve are often closely related (see Fig. 1).
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Fig. 1. The ability of a robot to perform multiple tasks at the same time
is crucial. For example, to manipulate correctly the object in the scene
above, a robot should understand the class of the object, its orientation
and the overall context where it operates. Image courtesy of NVIDIA
Robotics Research Lab, Seattle (news.developer.nvidia.com/
nvidia-opens-robotics-research-lab-in-seattle/).

Hence, addressing the tasks jointly would probably lead to an
increased accuracy as well as to an improved computational
efficiency with respect to training task-specific networks.

To deal with this issue, over the years Multi- Task Learn-
ing (MTL) [9] approaches have been developed. MTL refers
to jointly learn a set of classification/regression models,
each associated to a specific task, by leveraging information
about task relatedness, e.g. sharing models’ parameters. By
reducing the number of parameters, MTL also decreases
the time needed for model training and inference. MTL has
been successfully applied in robotics: Teichmann et al. [10]
proposed an architecture performing jointly object detection,
classification, and semantic segmentation. Similarly, in [11]
Rahmatizadeh et al. described a technique to train a con-
troller to perform several complex picking and placing tasks.

MTL assumes that the data for all the tasks are available
during training. In robotics this assumption is often unrealis-
tic and the ability to add new tasks sequentially is crucial
[12], [13]. However, a well-known problem of sequential
learning is that, while learning how to perform a new task,
an algorithm typically forgets about previous tasks. This
catastrophic forgetting [14], [15] must be kept into account
while developing visual recognition models.

Sequential Multi-Task Learning (SMTL) algorithms [16],
[17], [18], [19], [20] automatically address the catastrophic
forgetting problem by considering a common network back-
bone and introducing a small set of task-specific network
parameters. In practice, during training, for each new task
these methods instantiate and learn few task-specific param-
eters (see Fig. 2), while the other network’s weights are
kept fixed. While interesting and effective, these approaches
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Fig. 2. The Sequential Multi-Task learning problem. During training (left) a sequence of tasks are presented to the network, one by one. For each task, a
set of task-specific parameters are learned (colored blocks), freezing the shared ones (grey blocks). During inference (right) multiple tasks can be solved
by combining the pretrained network with the task-specific parameters, thus keeping low the overhead in terms of memory requirements.

have been considered only in computer vision and it is not
clear if they can also be used in a robotic setting where the
computational/memory requirements are especially relevant.

This paper aims at studying SMTL in the robot vision
context, presenting the first SMTL benchmark for robot
vision while testing state of the art algorithms on this
setting. Moreover, to take into account the peculiarities of
the robotics scenario, we propose a new evaluation protocol
which allows to compare different SMTL algorithms con-
sidering not only their recognition performances but also
their memory requirements and their ability to deal with
multiple/different input modalities (i.e. RGB-D).

Contributions. To summarize, the contributions of this work
are three-fold.

• We propose the first benchmark for sequential multi-
task learning in robotics, the RGB-D Triathlon. It con-
siders different input modalities and three fundamental
tasks: object recognition, pose estimation and scene
classification. On the considered dataset, we evaluate
several state of the art SMTL methods: the serial [16]
and parallel [17] residual adapters, Piggyback [19] and
Binarized Affine Transfom (BAT) [20].

• We propose a new metric for the SMTL task
which considers both model accuracy and the mem-
ory/computational requirements.

• We release a toolbox enabling researchers to develop
their own method for SMTL and compare it with
baseline methods. Our code can be found at https:
//github.com/fcdl94/RobotChallenge.

II. RELATED WORKS

Our work is related to many previous studies in the area
of visual learning, e.g. those addressing the problems of
incremental and multi-task learning. In the following we first
review recent benchmarks proposed in computer and robot
vision involving multiple tasks. Then we describe the relation
between our work and previous studies on incremental and
multi-task learning. We consider only deep neural models,
due to their clear advantages in performance compared to
shallow models.

Learning from Multiple Tasks/Domains: Benchmarks.
Benchmarks are fundamental tools to advance research in
visual recognition and robot perception. For instance, in
robot vision, datasets as SeqSLAM [21], RGB-D SLAM
[22], allowed the development of methods for addressing
loop-closing, SLAM [23] and semantic mapping [24]. In
computer vision, datasets and challenges as ImageNet [25],
Common Objects in Context (COCO) [26] and Places [27]
have brought significant progresses, enabling to learn deep
architectures which are not only effective for a single cate-
gorization problem but that can also serve as general purpose
models to address other recognition tasks [1].

Recently, the idea of learning universal representations
[28] and task-agnostic deep models, able to perform well
over multiple tasks and/or domains, has attracted attention
[16], [20], fostering the creation of new datasets and chal-
lenges. A notable example is the Robust Vision Challenge
(http://www.robustvision.net), which aims to facilitate the de-
velopment of robust models, i.e. models which must perform
well on a specific problem (e.g. depth estimation, semantic
segmentation) but on different settings (e.g. environments,
sensors). Another interesting benchmark is the Visual Do-
main Decathlon [16], which promotes the developments
of SMTL models considering ten different categorization
problems. Drawing inspiration from these initiatives in the
computer vision community, in this paper we propose a
novel benchmark to stimulate research in robot perception.
In particular, with respect to the aforementioned SMTL
benchmarks, we consider a setting where i) the tasks to
be addressed are different (namely, pose estimation, object
recognition and scene classification); ii) the evaluation pro-
tocol is newly designed, in order to take into account not
only the per-task performances but also the computational
complexity of the model; iii) different input modalities are
considered (i.e. RGB, Depth and RGB-D).

Sequential Multi-Task Learning. Given a pretrained model
and a set of tasks whose data are available at different
times, the goal of Sequential Multi-Task Learning [20] is to
learn a network able to address all tasks while keeping low
the overhead in terms of required parameters. In computer
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vision, this task has been tackled by methods addressing the
aforementioned Visual Domain Decathlon challenge [16],
[17], [19], [20]. These models differ on how they extend
a pretrained model to new tasks, considering for instance
adding task-specific network modules [16], [17] or changing
the network parameters by means of binary masks [19], [20].
In robot perception, this task has not been addressed yet, thus
we will take these models as baseline approaches.

Multi-Task and Incremental Learning. The formulation of
our task is strictly related to MTL and incremental learning.
Similar to ours, the goal of MTL is to train a model on
multiple tasks. Different works addressed MTL in various
contexts of robot perception, ranging from reinforcement
learning [29], learning from demonstrations [11], grasping
[30] and scene understanding [10]. Differently from standard
MTL settings, we focus on the sequential setting, where we
do not have access to the data of all the tasks beforehand
but we receive them one after the other, sequentially.

SMTL is also closely related to incremental learning
[13]. Our aim is also to progressively add knowledge to
a model without forgetting the previously learned concepts,
overcoming the problem of catastrophic forgetting [31]. Still,
differently from the incremental and the incremental class
learning problems [32], [33], [34], [35], we want to add tasks
to the network and not consider new categories, thus we need
a separate output space for each new task.

III. AN SMTL BENCHMARK FOR ROBOT PERCEPTION

As stated above, the aim of this work is to foster research
in developing robot systems which are able to sequentially
learn to perform several visual tasks by applying SMTL
methodologies. This is crucial for many reasons. First, the
memory resources typically available in a robotic platform
are limited, thus it is practically unfeasible to store a new
deep network for each novel visual task a robot is asked
to solve. Second, we may be interested in extending the
visual capabilities of an existing robotic system, in order
to solve new tasks not considered at the initial stage of
deployment. In a nutshell, SMTL techniques aim to learn
a set of classification/regression models for multiple tasks
sequentially. The challenge is to learn new task-specific
models while keeping the number of task-specific parameters
as low as possible.

Formally, the SMTL task is defined as follows. Suppose
we have a pretrained deep model, with parameters Θ0 and
a set T = {T1, · · · , TN} of N tasks. For each task we have
an input space X ⊂ <H×W×C , with C depending on the
input modality (i.e. 1 for depth maps, 3 for RGB images
and 4 for RGB-D), a feature space Zt and an output space
Yt. For simplicity, let us define as φΘt : X → Zt a task-
specific mapping from the input space to the feature space
Zt. The mapping is parametrized by the set Θt = {θ0, θt}
which comprises the shared (θ0 ∈ Θ0) and task-specific (θt)
parameters. Moreover, let us denote as ψΩt : Zt → Yt
the function mapping the feature space to the task-specific
output space, parametrized by Ωt. In our case, Ωt are just the

weights of the output layer of our neural network. Finally,
let us define the mapping from the input to the output space
Φt : X → Yt, where Φt = ψΩt ◦ φΘt . We also denote as
ρt = |θt|, the memory size (in bits) required to store the
task-specific parameters θt ∈ Θt and as αt a task-specific
performance measure (e.g. classification accuracy). The goal
of an SMTL algorithm is to learn a set of task-specific
mappings Φt while i) maximizing αt and ii) keeping ρt as
low as possible for any Tt ∈ T .

To stimulate the research community in robot vision on
SMTL, in this paper we propose a dataset consisting of three
different tasks and introduce an evaluation metric suitable
to the STML setting. The dataset is a collection of three
datasets commonly used in the robotics community, but in
this paper we propose their joint adoption for studying the
novel problem of SMTL.

In the following subsections, we present the dataset and the
tasks we proposed. Then, we describe the novel evaluation
protocol we introduced for SMTL in robotics.

A. The RGB-D Triathlon Dataset

The proposed dataset considers three fundamental tasks:
object recognition, pose estimation and scene classification.
In choosing the tasks and benchmarks we follow three
principles, namely i) the importance of the perception task
for robotics; ii) the impact that the dataset has had in the past
within the community; iii) the possibility of defining a stan-
dard training/testing protocol. Differently from challenges in
computer vision [16], we propose three different settings: i)
use only RGB images, ii) use only depth images, iii) use both
RGB and depth images. Each setting is independent from the
others, such as to permit the researchers to work only on the
setting which is more relevant to their application.

Task 1. Object Recognition. Object recognition is of utmost
importance in robot perception. This task consists in assign-
ing to an input image depicting an object the corresponding
semantic class label. Object recognition algorithms are fun-
damental tools for robots because i) knowing the category
of an object allows reasoning on how the object can be
manipulated and ii) they enable more complex tasks such
as object detection.

We consider the popular RGB-D Object Dataset (ROD)
[36]. It contains 300 common household objects organized
in 51 categories. The dataset was recorded using a Kinect
style 3D camera that gathers 30 synchronized and aligned
640 × 480 RGB and depth images per second. Each object
was placed on a turntable during the recording and it was
captured during a whole rotation. For each object, there are
three video sequences, corresponding to the camera mounted
at a different height (so that the object is seen from different
angles, i.e. approximately 30, 45, and 60 degrees relative to
the horizon). The performance of a model on this task is
evaluated as the accuracy on the test samples. We use the
same evaluation protocol of [36] subsampling the dataset by
taking every fifth frame, resulting in 41,877 RGB-D images
for training and evaluation. They defined 10 pre-defined



(a) RGB-D Object dataset [36] (b) NYU Depth V2 [37] (c) LineMOD [38]

Fig. 3. Images taken from the datasets included in the benchmark. For each image, the top row shows the RGB version, the middle row the raw depth,
and the bottom row the depth images colored with the Surface method [39].

training and test splits for cross-validation, and in each split,
one random object instance from each class is left out from
the training set and used for testing. This results in roughly
35,000 training images and 7,000 test images in each split.
At test time, the classifier has to assign the correct label
to a previously unseen object instance from each of the 51
classes. For training and test we use the first split among the
ten available.

Task 2. 3D Pose Estimation. Pose estimation refers to the
task of predicting the pose of an object with respect to the
viewer’s camera. This task is important in robotics, e.g. due
to the information it provides for grasping and manipulating
an object [5]. The pose estimation task can be decomposed
in two sub-tasks: the localization of the object in the image
and the estimation of the rotation matrix between the object
and the camera. Even though many works attempt to perform
both sub-tasks at the same time [40], [41], following [42],
[43] in this paper we assume that the object is always
centered in the input image, reducing the pose estimation
task only to the latter sub-task, i.e. 3D pose estimation.

We consider the LineMOD dataset [38]. We choose this
dataset since it is a standard benchmark in robotics and it also
provides depth information, as opposed to other benchmarks
[44]. It contains 18,000 RGB-D images of 15 different
objects classes. We adopt the cropped version of the dataset
that was proposed in [43]. In this version all the images are
squared with size 64×64 pixels and they contain the objects
centered in the scene. The ground truth of the pose is given
in the form of 3 × 3 rotation matrix that maps the camera
world coordinate into the camera coordinates.

Some methods tested on this dataset consider the use of
both synthetic and real images [45], [46]. In this paper, in
order to have a simpler experimental setup, we follow [47]
and we consider a setting where only real images are used
for training and testing the models. In particular, we use 80%
of the images for training and 20% for testing.

For evaluating the performances of a model in the pose
estimation task we consider both the prediction of the pose
of the object and its semantic class. In particular, we consider
a pose to be correctly estimated if the predicted object class
is correct and the geodesic error of the predicted rotation is
less then 20 degrees.

Task 3. Scene Classification. This task consists of assigning
to an image a label that indicates the place where the
picture was taken. Semantically localizing a robot provides
relevant information on how the robot should interact with
the environment.

We use the popular NYU-Depth V2 dataset [37], employed
by many previous works [48], [49], [50]. The dataset contains
1,449 pairs of synchronized RGB and depth images, gathered
from a wide range of commercial and residential buildings
in three different US cities, comprising 464 different indoor
scenes across 27 scene classes. Anyway, most of these
scene classes are not well represented, thus, following [51],
we reorganized the original 27 categories into 10 classes
(i.e. the 9 most represented categories and the rest). The
dataset is split in training and test data. Following [37], 795
images belong to training data and 654 to the test set. The
performance of the model is evaluated as the classification
accuracy on the test set.

Finally, we show sample images (RGB, depth and col-
orized depth [39]) for each dataset included in our benchmark
in Figure 3.

B. The Evaluation Metrics

The RGB-D Triathlon, as we defined it in section III,
requires a new evaluation metric, going beyond the mere
comparison of standard accuracies. To this extent, in the
following we define a metric which takes into account the
two properties a good SMTL algorithm should have: i)
single-task performances as close as possible to those of task-
specific architectures ii) number of task-specific parameters
as low as possible.

To define the metrics, we will consider two standard trans-
fer learning methods: fine-tuning and feature extractor. Fine-
tuning (FT) replicates the pretrained backbone architecture
for every task and fine-tunes it independently: this produces
a different network for each task. Since the full architecture
is replicated and fine-tuned, ρt = ρ0, where ρ0 = |Θ0|
denotes the memory size required to store the parameters
of the pretrained backbone architecture, excluding the final
output layer. Feature extractor (FE) keeps a single backbone
architecture but for each task it instantiates a new output
layer. The weights of the network are frozen (i.e. they are
not optimized) and only the task-specific output layers are



learned. In this model, ρt = 0 since θt = ∅ and only the
classifier ψΩt is learned. In the text we will denote as αFE

t and
αFT
t the performance on the task Tt of the feature extractor

and fine-tuning baseline respectively.
In the following, we review standard and previous eval-

uation metrics (i.e. [16]), highlighting their drawbacks and
proposing a new metric, the Locally Linear Score, overcom-
ing them.

Average Accuracy (AvgA). Obviously, the most straight-
forward metric one can adopt is the average accuracy per
task. Assuming the task-specific performance measures (i.e.
accuracies) to be directly comparable (i.e. normalized on the
same range) we can compute the performance score as:

SAvgA =
1

N

N∑
t=1

αt. (1)

Obviously, this choice has the drawbacks of not considering
i) the complexity of each task and ii) the amount of memory
required to store the task-specific parameters.

Decathlon Score (DS). In order to jointly consider all the
tasks and measuring the performance of SMTL methods,
Rebuffi et al. proposed the Decathlon Score [16]. This metric
favors methods that perform well on all tasks at the same
time over methods which have mixed performances (i.e. high
accuracy on some tasks and low on the others). The metric is
based on the definition of a minimal accuracy per task αmin

t

under which the score obtained for the task Tt is zero. The
minimal accuracy is set in [16] to the accuracy obtained by
doubling the error on the task εFT

t = 1 − αFT
t of the task-

specific fine-tuned model, namely:

αmin
t = max(0, 1− 2 · εFT

t ) = max(0, 2 · αFT
t − 1) (2)

The overall score is computed as follows:

SDS =

N∑
t=1

ηt max(0, αt − αmin
t )γt , (3)

ηt = 1000 · (1− αmin
i )−γi (4)

where γt ≥ 1 is a coefficient which rewards accuracy
improvements and it has been set to 2 in [16]. The parameter
ηt normalizes the score of each task in order to constrain it
in the range [0, 1000]. The advantage of this score is that it
emphasizes the consistency of the performances across tasks,
penalizing models which achieve very good performances
but just on few tasks.

While this metric takes into account the complexity of
each task by defining αmin

t , it does not contain any term
reflecting the amount of memory required for storing the
task-specific parameters. A possibility to include this in the
score is by revisiting DS as follows (RevDS):

SRevDS =

N∑
t=1

ηt · λ−
ρt
ρ0 · max(0, αt − αmin

t )γt (5)

where λ > 1 is a coefficient weighting the impact of the
memory size required to store the task-specific parameters ρt.

TABLE I
A COMPARISON OF THE PROPERTIES OF SMTL METRICS

considers
complexity

of tasks

penalizes
additional
parameters

compares
to feature
extractor

compares
to fine
tuning

Avg.A 7 7 7 7
DS 3 7 7 3

RevDS 3 3 7 3
LL 3 3 3 3

The higher is λ, the higher is the impact of the parameters.
We set λ = 10 in our experiments.

This metric preserves the positive aspects of the DS
while considering also the memory consumption. However,
it requires to set several parameters (e.g. λ, γ) and it does
not take into account the actual benefits that the task-specific
parameters may bring with respect to a baseline where just
the final output layer is learned.

Locally Linear Score (LL). In this work we propose a novel
metric which considers both the memory requirement and the
accuracy, while getting rid of the coefficients required by DS
and RevDS. It is computed as follows:

SLL =
1000

N

N∑
t=1

Rt ·At (6)

where:

Rt = max(0, 1− ρt
ρ0

) and At =
max(0, αt − αFE

t )

αFT
t − αFE

t

(7)

This metric contains two terms. The first element, Rt,
penalizes the increase of the memory size required to store
the task-specific parameters. The second element, At, nor-
malizes the single task performance by considering i) the
gain obtained by introducing task-specific parameters αt with
respect to not introducing them (i.e. αFE

t ) and ii) the ratio
between this gain and the one obtained by fine-tuning the
full architecture (i.e. αFT

t ).
From Eq. (6) and (7), if an SMTL model does not require

any task-specific parameter (i.e. ρt = 0), Rt = 1 and only the
second term At will be considered for computing the score.
In the case ρt > 0, At will be linearly scaled by the ratio
ρt/ρ0. SLL = 0 if the size of the task-specific parameters is
equal (or greater) to the size of the shared ones, as in the
full fine-tuning case where ρt = ρ0.

For the accuracy component At the rationale is similar.
Since we require the single-task performance αt of an SMTL
model to be at least better than the performance obtained by
not adding any parameter (i.e. the feature extractor baseline,
αFE
t ), we set the score to zero if αt ≤ αFE

t . At the same
time, we use the difference among αFEt and αFTt as a
normalization factor to check how well a model is able to
fill the performance gap existing between the task-agnostic
baseline (i.e. αFE

t ) and the full task-specific counterpart (i.e.
αFT
t ). The properties of this new metric and a comparison

with the metrics previously defined is reported in Table I.
Finally, we highlight that while in the current version of

the challenge N = 3, the evaluation metrics we have defined



are applicable to any number of tasks and to any backbone
architecture, given the corresponding αFE

t and αFT
t . This will

allow to easily extend the benchmark in the future. Moreover,
we do not specify any fixed order for the tasks: this choice
allows researchers to experiment with different sequences,
with the possibility of exploring the relations among the
tasks.

IV. EXPERIMENTS

In this section, we test state of the art SMTL algorithms
[16], [17], [19], [20] on our RGB-D Triathlon. We first
present the baseline methods and describe the implemen-
tation details, then we discuss the results of our evaluation.

A. SMTL methods

Together with the FT and FE baselines, introduced in
Section III, we evaluated four state of the art SMTL methods
in our experiments: series [16] and parallel residual adapters
[17], Piggyback [19], and binarized affine transformation
(BAT) [20].

In the series residual adapter (RS) [16] task-specific
parameters correspond to residual adapter modules added in
series after the convolutional layer of each residual unit. In
parallel residual adapter (RP) [17] the task-specific modules
are added in parallel to the convolutional layers of each
residual block and not serially. In both cases, the residual
adapter is implemented as a convolutional layer with kernel
size 1× 1 (plus a batch-normalization layer in [16]).

Piggyback (PB) [19] makes use of task-specific binary
masks that are added to each convolutional layer of a
backbone network. These binary masks multiply point-wise
the original network weights, de facto producing new con-
volutional filters for the task of interest.

Similarly to [19], BAT [20] uses task-specific binary masks
that are paired with each convolutional layer of a backbone
network. Differently from [19] the masks are not applied
through a point-wise multiplication but are used to perform
an affine transformation of the convolutional filters, creating
a new set of task-specific weights.

B. Implementation

All the methods we evaluated require a pretrained architec-
ture. We use the ResNet-18 [52] pretrained on ImageNet [25].
This network has been chosen as it guarantees a good trade-
off between accuracy and speed.

All the methods have been tested on three settings, cor-
responding to different inputs: RGB only, depth only and
RGB-D. To handle the depth images we took inspiration
from [39], processing the depth images using the Surface++
approach. For the single modality case, we simply consider
as backbone network the ResNet-18. For the RGB-D setting
we fuse by concatenation the features of two ResNet-18, one
processing only RGB images and the other only depth maps.
The fused features are passed through a fully connected layer
that we use as the output layer, similarly to [53].

To fairly compare all the methods, the same set of
hyperparameters is used for all the methods in each task.

TABLE II
COMPARISON BETWEEN RESNET-18 [52] FINE-TUNED ON THE TASK

AND STATE OF THE ART METHODS IN THE RGB-D SETTING.

ROD LineMOD NYU

ROD
CNN+Fisher [56] 93.8 - -

(DE)2CO [57] 93.6 - -
FusionNet enhanced [58] 93.5 - -

LineMOD Zakharov et al. [45] - 93.22 -
Wohlhart et al. [43] - 96.22 -

NYU Du et al. [50] - - 67.5
Song et al. [48] - - 66.7

Ours ResNet-18 93.9 96.9 68.4

The networks are trained using Stochastic Gradient Descent
(SGD) [54] with momentum except for Piggyback and BAT
where SGD is used for the classification layer and Adam
[55] is used for the rest of the network, as suggested in [19],
[20]. The networks are trained for 30 epochs in each setting,
with a batch-size equal to 32 and weight decay 5 ·10−5. The
learning rate of the SGD optimizer is set to 0.005 for every
task and method, while the Adam learning rate is adapted
for each task, using 1 ·10−5 for ROD, 5 ·10−5 for LineMOD
and 1 · 10−4 for NYU. The learning rates are decayed by a
factor of 10 after 20 epochs.

To implement all the baselines we used the PyTorch frame-
work. The code of the networks and the training procedure
are publicly available1.

C. Results

Comparison with state of the art. Before analyzing the
performance of SMTL methods, we conduct a preliminary
experiment to evaluate the performance of ResNet-18 with
FT on the considered tasks. In Table II we report our results
on the RGB-D setting.

For ROD [36] we only report the three best performing
methods in the literature [56], [57], [58]. In [58] an ensemble
of deep models is used, extracting depth information through
different colorization techniques. In [57] a deep architectures
is considered to learn how to map depth data to three channel
images. In [56] depth data are encoded with Fisher vectors
without adopting colorization approaches.

For the LineMOD dataset [38] we consider two state of
the art approaches [45], [43]. In [43] a convolutional network
is used to map the image space to a descriptor space where
the pose and object classes are predicted through a nearest
neighbour classifier. The method in [45] builds upon [43],
introducing a triplet loss function with a dynamic margin.
These works employ a slightly different settings than ours
since they use synthetic images. We report as accuracy
measure a metric that consider correct a test image only if
the angular error is below 20 degree.

For the NYU Depth V2 dataset [37] we report two state
of the art methods [50], [48]. Du et al. [50] introduce a two-
step training strategy that translates RGB images to depth
ones. In [48] Song et al. propose to learn from scratch the
depth features with the help of depth patches.

1https://github.com/fcdl94/RobotChallenge
2The metric does not consider classification

pytorch.org
https://github.com/fcdl94/RobotChallenge


TABLE III
RESULTS IN TERM OF ACCURACY FOR EACH TASK IN THE RGB-D

TRIATHLON. THE BEST METHOD IS BOLD.

Setting Method ROD LineMOD NYU AvgA%

RGB

FT 90.8 96.7 67.5 85.0
FE 87.6 13.9 57.9 53.1
PB [19] 89.4 95.9 68.4 84.6
BAT [20] 92.9 95.0 68.1 85.3
RS [16] 90.9 89.7 67.1 82.6
RP [17] 91.3 89.9 68.3 83.2

Depth

FT 83.3 87.0 59.2 76.5
FE 78.3 7.6 43.1 43.0
PB [19] 83.5 83.2 56.6 74.4
BAT [20] 83.7 87.0 57.3 76.0
RS [16] 83.6 79.8 61.2 74.8
RP [17] 83.7 76.9 57.3 72.6

RGB-D

FT 93.9 96.9 68.4 86.4
FE 91.6 14.8 60.2 55.5
PB [19] 89.6 96.6 66.7 84.2
BAT [20] 93.5 95.2 68.1 85.6
RS [16] 93.7 93.8 70.9 86.1
RP [17] 93.8 92.1 67.5 84.5

The results in Table II clearly show a fine-tuned ResNet-18
is a competitive baseline by itself on each task, confirming
the appropriateness of our choice.

Results on the RGB-D Triathlon. In this subsection, we
compare SMTL methods on our RGB-D Triathlon. We
first analyze the performance of all SMTL techniques and
compare it with FT and FE. Table III reports the accuracy for
each method, setting and task. AvgA% denotes the average
accuracy in percentage. Looking at the results for different
modalities, in two out of three settings FT guarantees the
best accuracy. This is somehow expected as this corresponds
to use a separate network for each task. Moreover, FE
corresponds to the worst performance, as considering the
backbone network purely as a feature extractor is a sub-
optimal strategy. Interestingly, the SMTL methods are very
competitive with FT, despite they use few task-specific
parameters (see also Table IV). In particular, in the RGB
setting BAT outperforms FT. We ascribe this behavior to the
regularization effect introduced by the use of binary masks.
Comparing different SMTL techniques, in the Depth only
and RGB only settings BAT outperforms RS, RP and PB.

Table IV provides a better comparison of all the methods
considering different evaluation metrics, settings and tasks.
In the table, the Par column reports the average per task
of the ratio between the memory required by task-specific
parameters ρt and by parameters of the backbone network
ρ0, in formulas 1

N

∑N
t=1 ρt/ρ0. For instance, FT corresponds

to the value 1 since it implies learning all the weights of a
ResNet-18 for all the three tasks and FE corresponds to 0 as
only the classifier is learned.

It is interesting to discuss the different metrics. We focus
on the comparison between BAT and RS in the RGB-D
setting, which are the best performing methods among SMTL
techniques. In term of the average accuracy AvgA%, RS
considerably outperforms BAT. However, looking at Table III
we can see that RS is not always the best performer. Even if

TABLE IV
BASELINES SCORE FOR THE RGB-D TRIATHLON. THE BEST METHOD IS

BOLD, THE SECOND BEST IS UNDERLINED.

Setting Method Par AvgA% DS RevDS LL

RGB

FT 1.00 85.0 750 8 0
FE 0.00 53.1 229 229 0
PB [19] 0.03 84.6 577 463 853
BAT [20] 0.03 85.3 693 556 1196
RS [16] 0.16 82.6 500 169 818
RP [17] 0.13 83.2 542 228 922

Depth

FT 1.00 76.5 750 8 0
FE 0.00 43.0 213 213 0
PB [19] 0.03 74.4 598 480 909
BAT [20] 0.03 76.0 741 595 957
RS [16] 0.16 74.8 582 197 865
RP [17] 0.13 72.6 501 211 824

RGB-D

FT 1.00 86.4 750 8 0
FE 0.00 55.5 237 237 0
PB [19] 0.03 84.2 451 362 560
BAT [20] 0.03 85.6 514 413 890
RS [16] 0.16 86.1 524 177 891
RP [17] 0.13 84.5 481 203 818

it achieves a very high accuracy in NYU, BAT outperforms
RS in the LineMOD dataset and they are comparable in
ROD. This result underlines the need for a metric that jointly
consider all tasks. Indeed, the two methods have similar
performance considering the Decathlon Score metric (DS)
because DS ranks higher methods that are accurate in all the
tasks. However, DS does not penalize methods which add
several parameters. Oppositely, the Revised Decathlon Score
(RevDS) strongly penalizes the addition of parameters. Thus,
under RevD, we note a remarkable change in the ranking
and BAT significantly outperforms RS. Actually, RS obtain a
worse score than all the SMTL methods. Finally, considering
the proposed Locally Linear score (LL), RS and BAT are
comparable, as this metric is the only one which reflects the
best trade-off between accuracy and use of extra parameters.

V. CONCLUSIONS

We presented a novel benchmark for robot visual systems,
namely the RGB-D Triathlon. This dataset allows to compare
model in the sequential multi-task learning scenario where,
starting from a pretrained deep architecture, the goal is
to learn models for diverse visual tasks while i) obtaining
performances as close as possible to fine-tuned task-specific
architectures; ii) keeping as low as possible the number of
additional parameters required per-task; and iii) not changing
the performances on old tasks. We introduce a novel metric
for the SMTL problem which takes into accounts both the
performances and the number of parameters. We then evalu-
ated state of the art SMTL methods on the new benchmark
and released our source code for promoting further research
on the topic. We hope that the RGB-D Triathlon will help to
stimulate research in robot perception. While in the RGB-D
Triathlon we considered a specific setting, our definition of
tasks, metrics and baselines is modular and can be easily
extended in other applications.
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