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ON THE FIRST FREQUENCY OF REINFORCED

PARTIALLY HINGED PLATES

ELVISE BERCHIO, ALESSIO FALOCCHI, ALBERTO FERRERO, AND DEBDIP GANGULY

Abstract. We consider a partially hinged rectangular plate and its normal modes. The dynamical
properties of the plate are influenced by the spectrum of the associated eigenvalue problem. In order to
improve the stability of the plate, we place a certain amount of denser material in appropriate regions. If
we look at the partial differential equation appearing in the model, this corresponds to insert a suitable
weight coefficient inside the equation. A possible way to locate such regions is to study the eigenvalue
problem associated to the aforementioned weighted equation. In the present paper we focus our attention
essentially on the first eigenvalue and on its minimization in terms of the weight. We prove the existence
of minimizing weights inside special classes and we try to describe them together with the corresponding
eigenfunctions.

1. Introduction

Following [16] one may view a bridge as a long narrow rectangular thin plate Ω hinged at two opposite
edges and free on the remaining two edges: this plate well describes decks of footbridges and suspension
bridges which, at the short edges, are supported by the ground. We refer to the monograph [17] for
a detailed survey of old and new mathematical models for suspension bridges. Up to scaling, we may
assume that the plate has length π and width 2` with 2`� π so that

Ω = (0, π)× (−`, `) ⊂ R2 .

There is a growing interest of engineers on the shape optimization for the design of bridges and, in
particular, on the sensitivity analysis of certain eigenvalue problems, see [19, Chapter 6]. As pointed out
by Banerjee [3], the free vibration analysis is a fundamental pre-requisite before carrying out a flutter
analysis. Whence, in the the stability analysis of the plate a central role is played by the following
eigenvalue problem:

(1)


∆2u = λu in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−`, `)
uyy(x,±`) + σuxx(x,±`) = uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0 for x ∈ (0, π) ,

where σ denotes the Poisson ratio of the material forming the plate. Throughout the paper we consider
σ ∈ (0, 1/2), a range of values that includes most of the elastic materials. The boundary conditions on
the short edges tell that the plate is hinged; these conditions are attributed to Navier, since their first
appearance in [23]. We refer to [4] for the derivation of (1) from the total energy of the plate. Note that
in [16] the whole spectrum of (1) was determined, while in [6] the results were exploited to study the
so-called torsional stability of suspension bridges for small energies. Furthermore, in [4] the variation
of the eigenvalues, under domain deformations, which may not preserve the area, was investigated, see
also [7] for related results about Dirichlet polyharmonic eigenvalue problems.

In the engineering literature the critical threshold for the wind velocity at which a form of dynamical
instability, named flutter, arises, is commonly related to the distance between the square of the fre-
quencies of certain oscillating modes. We refer to [4] for a discussion of possible formulas to compute
the above mentioned threshold. In particular, it follows that a possible way to increase this threshold
is by increasing the distance between eigenvalues. Having this goal in mind, in order to improve the
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stability of the plate, we study the effect of inserting a denser material within it. This can be modelled
in mathematical terms by a suitable weight function p; for this reason we study the weighted eigenvalue
problem:

(2)


∆2u = λ p(x, y)u in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−`, `)
uyy(x,±`) + σuxx(x,±`) = uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0 for x ∈ (0, π) ,

where, for α, β ∈ (0,+∞) with α < β fixed, p belongs to the following family of weights:

(3) Pα,β :=

{
p ∈ L∞(Ω) : α 6 p 6 β a.e. in Ω and

∫
Ω
p dxdy = |Ω|

}
.

The spectral analysis of (2) should indicate where to place the denser material within the plate. In
this respect, the condition on the integral of p is posed in order to make the comparison with the case
p ≡ 1 consistent. It is worth mentioning that a related linear problem has been recently treated in [5],
by studying the equation

∆2u =
f(x, y)

1 + dχD(x, y)
in Ω

subject to the boundary conditions in (2), where χD is the characteristic function of D ⊂ Ω and d is a
positive constant. The solution u of this equation describes the vertical displacement of the plate under
the action of a load f and the weight 1/(1 + dχD(x, y)) is seen as an aerodynamic damper placed in D
in order to reduce the action of the external force. The spectral analysis of (2) can help to complete
and enrich the results obtained in [5].

Coming back to (2), the natural starting point of the study is the investigation of the effect of p on
the first eigenvalue λ1(p), namely to study:

inf
p∈Pα,β

λ1(p).

The minimization of the first eigenvalue for the second order Dirichlet version of (2), named composite
membrane problem, has been studied in [8]-[11],[25], while the minimization of the first eigenvalue for
the equation in (2) under Dirichlet or Navier boundary conditions, named composite plate problem, has
been studied in [1],[2],[13]-[14]. Finally, we refer to [21] for a detailed stability analysis, upon variation
of p, of the weighted eigenvalues of general elliptic operators of arbitrary order subject to several kinds
of homogeneous boundary conditions. In this field of research, typical results are existence of optimal
pairs and their qualitative properties, such as symmetry or symmetry breaking. From this point of view
a crucial obstruction, when passing from the membrane to the plate problem, namely from the second
to the fourth order case, is represented by the loss of maximum and comparison principles which usually
enter either in the study of the simplicity of the first eigenvalue and in the techniques applied to prove
symmetry results, such as reflections methods or moving planes techniques. Nevertheless, a suitable
choice of the boundary conditions (e.g. Navier or Steklov b.c.) or of the geometry of the domain
(e.g. small perturbations of balls) may yield the validity of so-called positivity preserving property
which basically means that solutions, of the associated linear problem, maintain the sign of data.
Concerning problem (2), the difficulties in its analysis, are even increased by the choice of the unusual
boundary conditions for which no positivity preserving property is known. As far as we are aware,
the minimization of the first eigenvalue of problem (2) has not been considered in literature, hence the
present paper represents the first contribution on this topic. In our analysis we take advantage of the
fact that Ω is a planar domain and, when restricting the class of weights, some explicit computations
can be performed. On the other hand, we exploit a sort of restricted positivity preserving property
with respect to the y variable, that we prove in Theorem 3.8 below, having its own theoretical interest.
We note that the above mentioned restriction on admissible weights is also justified by the applicative
nature of our problem. Indeed, it is known that minimization problems, like the composite membrane
problem, naturally lead to homogenization [22], see also [20] for a stiffening problem for the torsion of
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a bar. Homogenization would lead to optimal designs with reinforcements scattered throughout the
structure, namely designs impossible to reproduce for engineers. In order to avoid homogenization, the
class of admissible reinforcements should be sufficiently small. See also Nazarov-Sweers-Slutskij [24],
where only “macro” reinforcements are considered, although in a fairly different setting.

As we have already remarked, in order to improve the stability of the plate, the final goal of the
spectral analysis of problem (2) is to maximize the distance between selected oscillating modes. The
present paper has to be meant as a first contribution in this direction and it should be hopefully followed
by the optimization analysis of the higher eigenvalues. This, together with the further investigation of
the positivity properties of the operator in (2), represents a promising topic of research that we plan
to develop in our future studies.

The paper is organised as follows. Section 2 is devoted to the description of the notations and of
some results about the case p ≡ 1. In Section 3 one can find the main results of the paper which
are proved in Sections 6 and 7. In Section 4 we show some numerical results on the behaviour of the
eigenvalues which complement our theoretical analysis. Finally, in Section 5 we show the validity of
a positivity preserving property for a one dimensional fourth order problem, coming from a suitable
Fourier decomposition of solutions to the plate problem.

2. Notations and known results when p ≡ 1

From now onward we fix Ω = (0, π)× (−`, `) ⊂ R2 with ` > 0 and 0 < σ < 1
2 . The natural functional

space where to set problem (2) is

H2
∗ (Ω) =

{
u ∈ H2(Ω) : u = 0 on {0, π} × (−`, `)

}
.

H2
∗ (Ω) is a Hilbert space when endowed with the scalar product

(u, v)H2
∗

:=

∫
Ω

[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dx dy

and associated norm

‖u‖2H2
∗(Ω) = (u, u)H2

∗(Ω) ,

which is equivalent to the usual norm in H2(Ω), see [16, Lemma 4.1]. Then problem (2) may also be
formulated in the following weak sense

(4) (u, v)H2
∗(Ω) = λ

∫
Ω
p(x, y)uv dx dy ∀v ∈ H2

∗ (Ω),

where p belongs to the family of weights Pα,β defined in (3) with α, β ∈ (0,+∞) and α < β fixed. We
point out that condition p ∈ Pα,β implies α 6 1 6 β since

∫
Ω p dx dy = |Ω|. Moreover, we observe that

it is not restrictive to assume α < 1 < β when we focus our analysis on weights that do not coincide
a.e. with the constant function p ≡ 1. Indeed, if we assume that β = 1, it must be p = 1 a.e. in Ω since
otherwise we would have

∫
Ω p dx dy < |Ω|; similarly, if we assume that α = 1, it must be p = 1 a.e. in

Ω. For this reason, since the aim of our research is to study the effect of a non constant weight on the
first eigenvalue of (2), in what follows we will always assume α < 1 < β.

The bilinear form (u, v)H2
∗

is continuous and coercive and p ∈ L∞(Ω) is positive a.e. in Ω, therefore
standard spectral theory of self-adjoint operators shows that the eigenvalues of (2) may be ordered
in an increasing sequence of strictly positive numbers diverging to +∞ and that the corresponding
eigenfunctions form a complete orthonormal system in H2

∗ (Ω).
Since p ∈ L∞(Ω), by elliptic regularity the eigenfunctions are at least in C2(Ω). Furthermore, the

first eigenvalue is characterized by

(5) λ1(p) := min
u∈H2

∗(Ω)\{0}

‖u‖2H2
∗

‖√p u‖22
.

When p ≡ 1 the spectrum of (2) has been completely characterized. We recall the following statement
from [16], including some refinements on the eigenvalues estimates proved in [4].



4 ELVISE BERCHIO, ALESSIO FALOCCHI, ALBERTO FERRERO, AND DEBDIP GANGULY

Proposition 2.1. Let p ≡ 1 in (2). The set of eigenvalues of (2) may be ordered in an increasing
sequence of strictly positive numbers diverging to +∞ and any eigenfunction belongs to C∞(Ω); the set
of eigenfunctions of (2) is a complete system in H2

∗ (Ω). Moreover:
(i) for any m > 1, there exists a unique eigenvalue λ = µm,1 ∈ ((1 − σ2)m4,m4) with corresponding
eigenfunction[µ1/2

m,1 − (1− σ)m2
] cosh

(
y
√
m2+µ

1/2
m,1

)
cosh

(
`
√
m2+µ

1/2
m,1

) +
[
µ

1/2
m,1 + (1− σ)m2

] cosh

(
y
√
m2−µ1/2m,1

)
cosh

(
`
√
m2−µ1/2m,1

) sin(mx) ;

(ii) for any m > 1 and any k > 2 there exists a unique eigenvalue λ = µm,k > m4 satisfying(
m2 + π2

`2

(
k − 3

2

)2)2
< µm,k <

(
m2 + π2

`2
(k − 1)2

)2

and with corresponding eigenfunction[µ1/2
m,k − (1− σ)m2

] cosh

(
y
√
µ
1/2
m,k+m2

)
cosh

(
`
√
µ
1/2
m,k+m2

) +
[
µ

1/2
m,k + (1− σ)m2

] cos

(
y
√
µ
1/2
m,k−m2

)
cos

(
`
√
µ
1/2
m,k−m2

) sin(mx) ;

(iii) for any m > 1 and any k > 2 there exists a unique eigenvalue λ = νm,k > m4 with corresponding
eigenfunctions[ν1/2

m,k − (1− σ)m2
] sinh

(
y
√
ν
1/2
m,k+m2

)
sinh

(
`
√
ν
1/2
m,k+m2

) +
[
ν

1/2
m,k + (1− σ)m2

] sin

(
y
√
ν
1/2
m,k−m2

)
sin

(
`
√
ν
1/2
m,k−m2

) sin(mx) ;

(iv) for any m > 1 satisfying `m
√

2 coth(`m
√

2) >
(

2−σ
σ

)2
there exists a unique eigenvalue λ = νm,1 ∈

(µm,1,m
4) with corresponding eigenfunction[ν1/2

m,1 − (1− σ)m2
] sinh

(
y
√
m2+ν

1/2
m,1

)
sinh

(
`
√
m2+ν

1/2
m,1

) +
[
ν

1/2
m,1 + (1− σ)m2

] sinh

(
y
√
m2−ν1/2m,1

)
sinh

(
`
√
m2−ν1/2m,1

) sin(mx) .

Finally, if

(6) the unique positive solution s > 0 of: tanh(
√

2s`) =

(
σ

2− σ

)2 √
2s` is not an integer,

then the only eigenvalues are the ones given in (i)− (iv).

In the following, to avoid too many distinctions, we will always assume that (6) holds.
By Proposition 2.1 and [16, Section 7] it is readily deduced that the first eigenvalue of problem (2)

with p ≡ 1 is µ1,1, namely λ1(1) = µ1,1, it is simple and up to constant multiplier the first eigenfunction
is given by

(7) u1(x, y) =

[µ1/2
1,1 − (1− σ)

] cosh

(
y
√

1+µ
1/2
1,1

)
cosh

(
`
√

1+µ
1/2
1,1

) +
[
µ

1/2
1,1 + (1− σ)

] cosh

(
y
√

1−µ1/21,1

)
cosh

(
`
√

1−µ1/21,1

) sinx .

Hence, u1 is positive in Ω, convex in the y−variable and concave in the x−variable.

3. Main results

As in Section 2 we always assume

0 < σ <
1

2
and α < 1 < β (α, β ∈ (0,+∞)).

Then, recalling (3), we focus on the infimum problem

(8) λα,β := inf
p∈Pα,β

λ1(p),

where λ1(p) is defined in (5).
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Definition 3.1. A couple (p, up) ∈ Pα,β × H2
∗ (Ω) is called optimal pair if p achieves the infimum in

(8) and up is an eigenfunction of λ1(p) .

Adapting to our case [9, Theorem 13] and [13, Theorem 1.4], we show that there exists an optimal
pair (p, up) for problem (8) and up and p are suitably related. Using the language of the control theory
we find that p is a bang-bang function; more precisely we prove

Theorem 3.2. There exists and optimal pair (p, up) ∈ Pα,β×H2
∗ (Ω). Furthermore, p and up are related

as follows

(9) p(x, y) = αχS(x, y) + βχΩ\S(x, y) for a.e. (x, y) ∈ Ω ,

where χS and χΩ\S are the characteristic functions of the sets S and Ω \ S and S ⊂ Ω is such that

|S| = β−1
β−α |Ω| and S = {(x, y) ∈ Ω : u2

p(x, y) 6 t} for some t > 0.

Theorem 3.2 states that the plate has to be made of two materials, but it gives no information about
the location of the materials and hence, no practical information on how to build the plate. To this
aim, a more explicit suggestion is provided by the following

Proposition 3.3. Let p ∈ Pα,β satisfy one of the following assumptions

(i) p = p(y) is even and there exists z ∈ (0, `) such that

p(y) 6 1 for y ∈ [0, z] and p(y) > 1 for y ∈ [z, `) .

(ii) p = p(x) is symmetric with respect to the line x = π
2 and there exists s ∈ (0, π2 ) such that

p(x) 6 1 for x ∈ (0, s] and p(x) > 1 for x ∈ [s,
π

2
] .

Then,

(10) λ1(p) 6 λ1(1) = µ1,1 ,

where µ1,1 is as defined in Proposition 2.1-(i).

Remark 3.4. The same idea of the proof of Proposition 3.3-(i) can be repeated to prove that (10) holds
if p ∈ Pα,β satisfies

(iii) p = p(y) is even and there exist 2N + 2 points 0 = y0 < y1 < y2 < ... < y2N+2 = ` such that

p(y) 6 1 for y ∈ [y2h, y2h+1] , p(y) > 1 for y ∈ [y2h+1, y2h+2] and

∫ y2h+2

y2h

(p− 1) dy = 0 ,

for all h = 0, ..., N .

Since the weights considered in Proposition 3.3 prove to be effective in lowering the first frequency
of (1), by combining Proposition 3.3 with Theorem 3.2, we include in the list of candidate solutions to
problem (8) the weights:

(11) p(y) = αχ
(− `(β−1)

β−α ,
`(β−1)
β−α )

(y) + βχ
(−`,`)\(− `(β−1)

β−α ,
`(β−1)
β−α )

(y) y ∈ (−`, `)

and

p(x) = βχ
(π
2
β−1
β−α ,

π
2
β−2α+1
β−α )

(x) + αχ
(0,π)\(π

2
β−1
β−α ,

π
2
β−2α+1
β−α )

(x) x ∈ (0, π) .

In Section 4 we obtain numerically a positive eigenfunction, denoted by u1,p(x, y), corresponding to
λ1(p) with p(y) as in (11). In Figure 1 on the left, we plot z = u2

1,p(x, y) and we use it to determine
qualitatively what should be the set S predicted by Theorem 3.2. In Figure 1 on the right we compare
the weight p(x, y) in (9) (bottom), with this choice of the set S, and the weight p(y) (top). From these
plots we infer that (p(y), u1,p(x, y)) is not a theoretical optimal pair of (8).

On the other hand, in Theorem 3.5 below we prove that p(y) belongs to an optimal pair if we properly
restrict the class of admissible weights to a suitable subset of Pα,β.
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Figure 1. On the left, plot of the eigenfunction u2
1,p(x, y), corresponding to λ1(p) with

p(y) as in (11), intersected with t > 0. On the right, plot of p(y) (top) and plot of the
sublevel set S = {(x, y) ∈ Ω : u2

1,p(x, y) 6 t} (bottom).

Theorem 3.5. Let us define

Pα,β = {p ∈ Pα,β : p = p(y) is even, p is piecewise continuous in (−`, `)

and ∃ z ∈ (0, `) : p(y) 6 1 in [0, z] , p(y) > 1 in [z, `)} .

When β < min{1/µ1,1 , 16(1− σ2)} the following statements hold:

(i) if p1, p2 ∈ Pα,β and there exists z ∈ (0, `) such that

p1(y) 6 p2(y) in [0, z] and p1(y) > p2(y) in [z, `) ,

then

λ1(p1) 6 λ1(p2) ;

(ii) we have

min
p∈Pα,β

λ1(p) = λ1(p) ,

where p is as defined in (11).

Remark 3.6. Concerning the meaning of the upper bound β < min{1/µ1,1 , 16(1−σ2)} in Theorem 3.5
a couple of remarks are in order. The proof of Theorem 3.5 is achieved by studying a family of related
1-dimensional eigenvalue problems. Indeed, any eigenfunction of (2) can be expanded in Fourier series
as follows

u(x, y) =

+∞∑
m=1

ϕm(y) sin(mx)

with ϕm ∈ C2([−`, `]) and, if p = p(y), for every m > 1 fixed, ϕm satisfies the weak form of the problem:

(12)


ϕ′′′′(y)− 2m2ϕ′′(y) +m4ϕ(y) = λp(y)ϕ(y) in (−`, `)
ϕ′′(±`)− σm2ϕ(±`) = 0

ϕ′′′(±`)− (2− σ)m2ϕ′(±`) = 0 .

See Section 7 for the details. In particular, if we denote by λ1(p) the first eigenvalue of (2) and by
λ1(p,m) the first eigenvalue of (12) with m > 1 fixed, assumption β 6 16(1− σ2) ensures that

(13) λ1(p) = min
m>1

{
λ1(p,m)

}
= λ1(p, 1) ,
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see Lemma 7.1 below. On the other hand, the condition β < 1/µ1,1 allows to prove that the first

eigenfunction of λ1(p, 1) is monotone in (0, `), and this information yields the comparison between
weights of Theorem 3.5-(i), see Lemma 7.3. The numerical results we state in Section 4 suggest that
both the upper bounds on β are merely technical conditions.

It is worth noting that, in order to lower the first eigenvalue of ∆2 under Dirichlet or Navier boundary
conditions, since the eigenfunctions vanish on the boundary, one expects that the weight is more effective
if it achieves its lowest value close to the boundary, see e.g. [13, Theorem 1.5]. Theorem 3.5 shows that
the partially hinged boundary conditions lead to a complete different situation since the weight p(y)
achieves its lowest value α far from the free long edges, see Figure 1 on the right (top). This behaviour
is somehow related to the monotonicity of the first eigenfunction, as shown by Theorem 3.7 below, cfr.
Figure 2.

Theorem 3.7. Let Pα,β be the family of weights defined in Theorem 3.5 with β < min{1/µ1,1 , 16(1−
σ2)}. Then, for any p ∈ Pα,β the first eigenvalue λ1(p) of (4) is simple. Furthermore, if u1,p is an
eigenfunction of λ1(p) then u1,p is of one sign in Ω and moreover u1,p can be written as u1,p(x, y) =
ϕ1,p(y) sin(x) with ϕ1,p(y) even and strictly monotone in (0, `).

Figure 2. Qualitative plot of u1,p(x, y) = ϕ1,p(y) sin(x).

Unfortunately, the above statement does not carry over to all weights p ∈ Pα,β. This is related to
the well-know loss of comparison principles for fourth order elliptic operators. Indeed, the proof of
Theorem 3.7 strongly relies on a sort of restricted positivity preserving property with respect to the y
variable that we prove by separating variables. More precisely, we have

Theorem 3.8. Let m > 1 be an integer. Furthermore, let u ∈ H2
∗ (Ω) be the weak solution to the

problem
∆2u = f(y) sin(mx) in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−`, `)
uyy(x,±`) + σuxx(x,±`) = uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0 for x ∈ (0, π) ,

namely

(u, v)H2
∗

=

∫
Ω
f(y) sin(mx) v ∀v ∈ H2

∗ (Ω) .

Then, u(x, y) = wm(y) sin(mx) for some wm ∈ H2(−`, `) and the following implication holds

f > 0 in (−`, `) (f 6≡ 0) ⇒ wm(y) > 0 in [−`, `] .
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4. Numerical Results

In this section, for any m > 1, we compute numerically the first eigenvalue λ1(p,m) of problem (12)
with p as defined in (11). More precisely, we take

pα,β(y) =

{
β y ∈ (−`,−y) ∪ (y, `)

α y ∈ (−y, y)

with 0 < α < 1 < β and y = `(β−1)
β−α , so that

∫ `
0 pdy = `. In terms of engineering applications, this

means that we are dealing with a weight given by the pairing of two materials having different densities
α and β, properly placed on rectangular strips, having the length of the whole plate. Furthermore, we
assume that the deck of the bridge is composed by a mixture of concrete and steel, hence the Poisson
ratio is variable between 0.15 and 0.3; for this reason in what follows we take σ = 0.2.

Note that, since pα,β(y) is an even function, to determine all eigenvalues of (12), we may focus on even
and odd eigenfunctions. Indeed, if ϕ(y) is an eigenfunction which is neither odd or even, it is readily

verified that also ϕev(y) := ϕ(y)+ϕ(−y)
2 and ϕod(y) := ϕ(y)−ϕ(−y)

2 are eigenfunctions, respectively even
and odd, corresponding to the same eigenvalue of ϕ(y). On the other hand, since the first eigenvalue
of (12) is simple and the corresponding eigenfunctions are of one sign in [−`, `], see Remark 3.6 and
Theorem 3.7, we infer that ϕ must be an even function, whence to compute λ1(p,m) we may concentrate
on even eigenfunctions that we named ϕev. For any m > 1 we have that

(14) ϕev(y) =


h1(−y) on [−`,−y]

h2(y) on (−y, y)

h1(y) on [y, `]

where h1 and h2 satisfy:

(15)



h′′′′1 (y)− 2m2h′′1(y) +m4h1(y) = λβh1(y) on (y, `)

h′′′′2 (y)− 2m2h′′2(y) +m4h2(y) = λαh2(y) on [0, y)

h′′1(`)− σm2h1(`) = 0, h′′′1 (`)− (2− σ)m2h′1(`) = 0,

h′2(0) = 0, h′′′2 (0) = 0,

h1(y) = h2(y), h′1(y) = h′2(y),

h′′1(y) = h′′2(y), h′′′1 (y) = h′′′2 (y) .

Note that the compatibility conditions between the functions h1 and h2, ensure that ϕev ∈ C3([−`, `]),
while h′2(0) = h′′′2 (0) = 0 come from ϕev(−y) = ϕev(y) and its regularity. Clearly, the analytical
expression of h1(y) and h2(y) depends on the roots of the characteristic polynomials related to the first
two equations in (15); we denote them respectively by ζ1 and ζ2 and we find that they satisfy

ζ2
1 = m2 ±

√
λβ ζ2

2 = m2 ±
√
λα.

Therefore, the sign of m2 −
√
λβ and m2 −

√
λα determines different kinds of solutions. We introduce

the following notations

ηα :=

√
m2 +

√
λα, ηβ :=

√
m2 +

√
λβ, ωα :=

√
|m2 −

√
λα|, ωβ :=

√
|m2 −

√
λβ| ,

and we distinguish five cases:

a) m4 > λβ > λα, implying λ < m4/β and

h1(y) = a1 cosh
(
ηβy
)

+ b1 sinh
(
ηβy
)

+ c1 cosh
(
ωβy

)
+ d1 sinh

(
ωβy

)
,

h2(y) = a2 cosh
(
ηαy
)

+ c2 cosh
(
ωαy

)
,
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b) m4 = λβ, so that ηα = m
√

1 +
√
α/β, ωα = m

√
1−

√
α/β and

h1(y) = a1 cosh
(√

2my
)

+ b1 sinh
(√

2my
)

+ c1y + d1 ,

h2(y) = a2 cosh
(
ηαy
)

+ c2 cosh
(
ωαy

)
,

c) λα < m4 < λβ, implying m4/β < λ < m4/α and

h1(y) = a1 cosh
(
ηβy
)

+ b1 sinh
(
ηβy
)

+ c1 cos
(
ωβy

)
+ d1 sin

(
ωβy

)
,

h2(y) = a2 cosh
(
ηαy
)

+ c2 cosh
(
ωαy

)
,

d) m4 = λα, so that ηβ = m
√

1 +
√
β/α, ωβ = m

√√
β/α− 1 and

h1(y) = a1 cosh
(
ηβy
)

+ b1 sinh
(
ηβy
)

+ c1 cos
(
ωβy

)
+ d1 sin

(
ωβy

)
,

h2(y) = a2 cosh
(√

2my
)

+ c2 ,

e) m4 < λα < λβ, implying λ > m4/α and

h1(y) = a1 cosh
(
ηβy
)

+ b1 sinh
(
ηβy
)

+ c1 cos
(
ωβy

)
+ d1 sin

(
ωβy

)
,

h2(y) = a2 cosh
(
ηαy
)

+ c2 cos
(
ωαy

)
.

The six coefficients involved in the definition of h1 and h2 can be determined, in each of the five cases,
by imposing the boundary and compatibility conditions. We present here only case c), since the others
cases can be treated similarly.

First of all we assume that h1 satisfies the boundary conditions, i.e.

(BCs)

{
h′′1(`)− σm2h1(`) = 0

h′′′1 (`)− (2− σ)m2h′1(`) = 0
⇒


(η2
β − σm2)[a1 cosh(ηβ`) + b1 sinh(ηβ`)]+

−(ω2
β + σm2)[c1 cos(ωβ`) + d1 sin(ηβ`)] = 0

(η2
β + (σ − 2)m2)ηβ[a1 sinh(ηβ`) + b1 cosh(ηβ`)]+

(ω2
β − (σ − 2)m2)ωβ[c1 sin(ωβ`)− d1 cos(ωβ`)] = 0,

then we impose the compatibility conditions, i.e.

i)

ii)

iii)

iv)


h1(y) = h2(y)

h′1(y) = h′2(y)

h′′1(y) = h′′2(y)

h′′′1 (y) = h′′′2 (y)

⇒



a1 cosh
(
ηβy
)

+ b1 sinh
(
ηβy
)

+ c1 cos
(
ωβy

)
+ d1 sin

(
ωβy

)
+

−a2 cosh
(
ηαy

)
− c2 cosh

(
ωαy

)
= 0

a1ηβ sinh
(
ηβy
)

+ b1ηβ cosh
(
ηβy
)
− c1ωβ sin

(
ωβy

)
+ d1ωβ cos

(
ωβy

)
+

−a2ηα sinh
(
ηαy

)
− c2ωα sinh

(
ωαy

)
= 0

a1η
2
β cosh

(
ηβy
)

+ b1η
2
β sinh

(
ηβy
)
− c1ω2

β cos
(
ωβy

)
− d1ω

2
β sin

(
ωβy

)
+

−a2η
2
α cosh

(
ηαy

)
− c2ω2

α cosh
(
ωαy

)
= 0

a1η
3
β sinh

(
ηβy
)

+ b1η
3
β cosh

(
ηβy
)

+ c1ω
3
β sin

(
ωβy

)
− d1ω

3
β cos

(
ωβy

)
+

−a2η
3
α sinh

(
ηαy

)
− c2ω3

α sinh
(
ωαy

)
= 0.

We should solve a system of six equations and six unknowns; through some algebraic manipulations,
we reduce it to a system of four equations and four unknowns v = (a1, b1, c1, d1)T . More precisely, we
get
(16)

(BCs)

[η2
α(h1(y)− h2(y))− (h′′1(y)− h′′2(y))]ωα sinh(ωαy) = [η2

α(h′1(y)− h′2(y))− (h′′′1 (y)− h′′′2 (y))] cosh(ωαy)

[ω2
α(h1(y)− h2(y))− (h′′1(y)− h′′2(y))]ηα sinh(ηαy) = [ω2

α(h′1(y)− h′2(y))− (h′′′1 (y)− h′′′2 (y))] cosh(ηαy).

To system (16) we associate a square matrix depending on the eigenvalues M(λ) ∈M4(R), hence (16)
rewrites M(λ)v = 0; since we are interested in not trivial solutions we end up with the equation

(17) f(λ) := det M(λ) = 0 with λ > 0.



10 ELVISE BERCHIO, ALESSIO FALOCCHI, ALBERTO FERRERO, AND DEBDIP GANGULY

In this way, for any m > 1 fixed, the zeroes of the function f(λ) in the interval m4/β < λ < m4/α, if
they exist, are the eigenvalues corresponding to eigenfunctions ϕev as in (14) with h1 and h2 as in c).
This procedure can be applied to each of the five cases a)− e).

The computation by hand of (17) is very involved, thus we perform it numerically in all the five cases
listed above. Our experiments reveal that cases b) and d) do not occur if 1 6 m 6M , for a suitable M
which, for all tested values of α and β, satisfies M ≈ 6/`. This implies large M for small `, as common
in plates for bridges. Therefore, we focus on cases a)-c)-e). We tested several values of 0 < α < 1 < β

Figure 3. Plot of f(λ) in the cases a) (dashed), c) and e). Here λ
ev
m,k := λ

ev
k (pα,β,m).

and 1 6 m 6 M always obtaining the same qualitative plot of f(λ). Figure 3 shows the following
facts: we do not find eigenvalues in case a), since f(λ) > 0 for all λ ∈ (0,m4/β); the first eigenvalue

λ
ev
1 (pα,β,m) falls always in case c); all the other eigenvalues corresponding to even functions fall in

case e). Furthermore, our numerical results yield the following bounds on eigenvalues corresponding
to even eigenfunctions:

m4

β
< λ

ev
1 (pα,β,m) = λ1(pα,β,m) < m4, λ

ev
k (pα,β,m) >

m4

α
for k > 2 .

We are now interested in checking if (13) holds when the upper bound on β of Theorem 3.5 is not
satisfied (see also Lemma 7.1 below), i.e. if

λ
ev
1 (pα,β,m) > λ

ev
1 (pα,β, 1) for m > 2

when β � 16(1 − σ2). To this aim we study the behaviour of the maps β 7→ λ
ev
1 (pα,β,m) and m 7→

λ
ev
1 (pα,β,m). In Figure 4 we plot some points of the map β 7→ λ

ev
1 (pα,β, 1) for α = 0.5, we register a

similar behaviour for λ
ev
1 (pα,β,m) with m > 2. On the other hand, in Table 1 we put the values of

λ
ev
1 (pα,β,m) for m = 1, . . . , 10, computed taken p ≡ 1, and for two suitable choices of α and β with β

satisfying or not the smallness assumption on β of Theorem 3.5.

Case λ
ev
1,1 λ

ev
2,1 λ

ev
3,1 λ

ev
4,1 λ

ev
5,1 λ

ev
6,1 λ

ev
7,1 λ

ev
8,1 λ

ev
9,1 λ

ev
10,1

p ≡ 1 0.960009 15.3610 77.767 245.798 600.145 1244.59 2306.05 3934.57 6303.42 9609.09

α = 0.5, β = 1.5 0.959999 15.3599 77.759 245.755 599.982 1244.10 2304.82 3931.85 6297.92 9598.78

α = 0.5, β = 20 0.959982 15.3589 77.747 245.688 599.724 1243.34 2302.88 3927.53 6289.17 9582.33

Table 1. The eigenvalues λ
ev
m,1 := λ

ev
1 (pα,β,m) with m = 1, . . . , 10 and ` = π

150 .
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Figure 4. Plot of β 7→ λ
ev
1 (pα,β, 1) with ` = π

150 (α = 0.5).

All the numerical experiments performed suggest that

the map β 7→ λ
ev
1 (pα,β,m) is decreasing and λ

ev
1 (pα,β,m) > (m− 1)4 for all β > 1

and the trend does not change varying ` and α. In particular, the above lower bound for λ
ev
1 (pα,β,m)

does not depend on β and, jointly with the fact that λ
ev
1 (pα,β,m) < m4, supports the conjecture that

the map m 7→ λ
ev
1 (pα,β,m) is increasing

for any β > 1, hence the assumption β � 16(1−σ2) of Theorem 3.5 seems a merely technical condition.

5. A positivity preserving property

In this section we state and prove some results about a positivity preserving property for the fourth
order differential operator

(18) Lmϕ = ϕ′′′′ − 2m2ϕ′′ +m4ϕ , m ∈ N+ , ϕ : [−`, `]→ R ,

subject to the boundary conditions:{
ϕ′′(±`)− σm2ϕ(±`) = 0

ϕ′′′(±`)− (2− σ)m2ϕ′(±`) = 0 .

As in Section 3 we fix 0 < σ < 1
2 . These results have their own independent interest and will be

exploited in the proofs of Section 7.
For every m ∈ N+, it will be convenient to consider the following scalar product in H2(−`, `):

(19) 〈ϕ, φ〉m :=

∫ `

−`

(
ϕ′′φ′′ + 2m2(1− σ)ϕ′φ′ − σm2(ϕ′′φ+ ϕφ′′) +m4ϕφ

)
dy

which defines an equivalent norm in H2(−`, `) that we will denote by |||φ|||2m = (φ, φ)m.

Theorem 5.1. Let m > 1 be an integer and let f ∈ L2(−`, `). Furthermore, assume that w ∈ H2(−`, `)
is a weak solution to the problem

(20)


w′′′′(y)− 2m2w′′(y) +m4w(y) = f(y) y ∈ (−`, `)
w′′(±`)− σm2w(±`) = 0

w′′′(±`)− (2− σ)m2w′(±`) = 0 .

namely

(21) 〈w, φ〉m =

∫ `

−`
fφ for all φ ∈ H2(−`, `) ,

where 〈·, ·〉m is defined in (19). Then the following implication holds

f > 0 in (−`, `) (f 6≡ 0) ⇒ w(y) > 0 in [−`, `] .
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Hence, the operator Lm defined in (18), under the boundary conditions in (20), satisfies the positivity
preserving property.

As a consequence of Theorem 5.1 we have

Corollary 5.2. Let m > 1, be an integer. Furthermore, set K := {φ ∈ H2(−`, `) : φ > 0 in (−`, `)}
and assume that w ∈ H2(−`, `) satisfies

(22) 〈w, φ〉m 6 0 for all φ ∈ K ,

where 〈·, ·〉m is defined in (19). Then

either w ≡ 0 or w < 0 in (−`, `) .

Proof. Let f ∈ K and let φf be the unique solution to

〈φf , ψ〉m =

∫ `

−`
fψ dy for all ψ ∈ H2(−`, `) .

By Theorem 5.1, φf ∈ K. Inserting φf in (22) we infer∫ `

−`
fw dy = 〈w, φf 〉m 6 0 for all f ∈ K .

Hence, w 6 0 in (−`, `). By contradiction, assume that w 6< 0 in (−`, `). Then, if Z := {y ∈ (−`, `) :
w(y) = 0}, we have that the characteristic function of Z satisfies χZ > 0 and χZ 6≡ 0. Let now
φ0 ∈ H2(−`, `) satisfy

〈φ0, ψ〉m =

∫ `

−`
χZψ dy for all ψ ∈ H2(−`, `) .

Since, by elliptic regularity, φ0 ∈ C3([−`, `]) and, by Theorem 5.1, φ0 > 0 in [−`, `], we deduce that for
every φ ∈ H2(−`, `) there exist t1 6 0 6 t0: φ+ t0φ0 > 0 and φ+ t1φ0 6 0 in [−`, `]. Furthermore, by
definition of φ0 we have

〈φ0, w〉m =

∫ `

−`
χZw dy = 0 .

Combining this with (22), we deduce

0 > 〈φ+ t0φ0, w〉m = 〈φ,w〉m
and

0 6 〈φ+ t1φ0, w〉m = 〈φ,w〉m .
Namely,

〈φ,w〉m = 0 for all φ ∈ H2(−`, `) .
Taking φ = w in the above inequality we conclude w ≡ 0 in (−`, `) and the proof follows. �

We conclude this section with the proof of Theorem 5.1.

Proof of Theorem 5.1.
The proof follows by a direct inspection of the sign of the unique solution to (21). First we note that,

for m > 1 fixed and f ∈ L2(−`, `), all solutions to the equation

w′′′′(y)− 2m2w′′(y) +m4w(y) = f in D′(R) ,

where f denotes the trivial extension of f to R, write

w(y) = c1 cosh(my) + c2 sinh(my) + c3y cosh(my) + c4y sinh(my) + wp(y) ,

with c1, c2, c3, c4 ∈ R and

wp(y) = (qm ∗ f)(y) =

∫ +∞

−∞
qm(t)f(y − t) dt
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where

qm(y) =
(1 +m|y|)e−m|y|

4m3
.

Exploiting the regularity of qm, it follows that all the above solutions belong to C3(R) (the regularity
can be improved by increasing the regularity of f); the thesis can be reached proving that

(23) w̃(y) = c1 cosh(my) + c2 sinh(my) + c3y cosh(my) + c4y sinh(my) > 0

since wp(y) > 0.
If we fix the constants c1, c2, c3, c4 ∈ R in such a way that:{

w′′(±`)− σm2w(±`) = 0

w′′′(±`)− (2− σ)m2w′(±`) = 0 ,

then the restriction of w to [−`, `], that we will still denote with w, is the unique solution to (21). More
precisely, by imposing the above conditions we obtain the system

(c1m
2 + 2c4m) cosh(m`) + (c2m

2 + 2c3m) sinh(m`) + c3m
2` cosh(m`) + c4m

2` sinh(m`) + w′′p (`) =

σm2[c1 cosh(m`) + c2 sinh(m`) + c3` cosh(m`) + c4` sinh(m`) + wp(`)]

(c1m
2 + 2c4m) cosh(m`)− (c2m

2 + 2c3m) sinh(m`)− c3m2` cosh(m`) + c4m
2` sinh(m`) + w′′p (−`) =

σm2[c1 cosh(m`)− c2 sinh(m`)− c3` cosh(m`) + c4` sinh(m`) + wp(−`)]
(c2m

3 + 3c3m
2) cosh(m`) + (c1m

3 + 3c24) sinh(m`) + c4m
3` cosh(m`) + c3m

3` sinh(m`) + w′′′p (`) =

−(σ − 2)m2[(c2m+ c3) cosh(m`) + (c1m+ c4) sinh(m`) + c4m` cosh(m`) + c3m` sinh(m`) + w′p(`)]

(c2m
3 + 3c3m

2) cosh(m`)− (c1m
3 + 3c24) sinh(m`)− c4m3` cosh(m`) + c3m

3` sinh(m`) + w′′′p (−`) =

−(σ − 2)m2[(c2m+ c3) cosh(m`)− (c1m+ c4) sinh(m`)− c4m` cosh(m`) + c3m` sinh(m`) + w′p(−`)]
which decouples in the following two systems

c1[2m2(1− σ) cosh(m`)] + c4[4m cosh(m`) + 2m2(1− σ)` sinh(m`)] =

σm2[wp(`) + wp(−`)]− [w′′p (`) + w′′p (−`)]
c1[2m3(σ − 1) sinh(m`)] + c4[2m2(σ + 1) sinh(m`) + 2m3(σ − 1)` cosh(m`)] =

−(σ − 2)m2[w′p(`)− w′p(−`)]− [w′′′p (`)− w′′′p (−`)]
c2[2m2(1− σ) sinh(m`)] + c3[4m sinh(m`) + 2m2(1− σ)` cosh(m`)] =

σm2[wp(`)− wp(−`)]− [w′′p (`)− w′′p (−`)]
c2[2m3(σ − 1) cosh(m`)] + c3[2m2(σ + 1) cosh(m`) + 2m3(σ − 1)` sinh(m`)] =

−(σ − 2)m2[w′p(`) + w′p(−`)]− [w′′′p (`) + w′′′p (−`)] .
By setting

Fm(`) := (3 + σ) sinh(m`) cosh(m`)−m`(1− σ) > 0 ,

Fm(`) := (3 + σ) sinh(m`) cosh(m`) +m`(1− σ) > 0 ,

Am(`) := (1 + σ) sinh(m`)− (1− σ)m` cosh(m`) , Bm(`) := 2 cosh(m`) + (1− σ)m` sinh(m`) ,

Am(`) := (1 + σ) cosh(m`)− (1− σ)m` sinh(m`) , Bm(`) := 2 sinh(m`) + (1− σ)m` cosh(m`) ,

Vm(`) := σm2wp(`)− w′′p (`) , Wm(`) := (σ − 2)m2w′p(`) + w′′′p (`) ,

Vm(−`) := σm2wp(−`)− w′′p (−`) , Wm(−`) := (σ − 2)m2w′p(−`) + w′′′p (−`) ,
the solutions to the above systems write

c1 =
mAm(`)[Vm(`) + Vm(−`)] +Bm(`)[Wm(`)−Wm(−`)]

2m3(1− σ)Fm(`)

c2 =
mAm(`)[Vm(`)− Vm(−`)] +Bm(`)[Wm(`) +Wm(−`)]

2m3(1− σ)Fm(`)

c3 =
m cosh(m`)[Vm(`)− Vm(−`)]− sinh(m`)[Wm(`) +Wm(−`)]

2m2Fm(`)

c4 =
m sinh(m`)[Vm(`) + Vm(−`)]− cosh(m`)[Wm(`)−Wm(−`)]

2m2Fm(`)
.
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By exploiting the symmetry of qm, for i = 0 and i = 2, we have

w(i)
p (`) =

∫ 2`

0

q(i)
m (t)f(`− t) dt , w(i)

p (−`) =

∫ 2`

0

q(i)
m (t)f(−`+ t) dt ,

while, for i = 1 and i = 3, we have

w(i)
p (`) =

∫ 2`

0

q(i)
m (t)f(`− t) dt , w(i)

p (−`) = −
∫ 2`

0

q(i)
m (t)f(−`+ t) dt ,

where w
(i)
p and q

(i)
m denotes, respectively, the i-th derivate of wp and of qm. Hence,

Vm(`) =

∫ 2`

0

e−mt

4m
(1 + σ −mt(1− σ))f(`− t) dt , Wm(`) =

∫ 2`

0

e−mt

4
(2 +mt(1− σ))f(`− t) dt

and

Vm(−`) =

∫ 2`

0

e−mt

4m
(1 + σ −mt(1− σ))f(−`+ t) dt , Wm(−`) = −

∫ 2`

0

e−mt

4
(2 +mt(1− σ))f(−`+ t) dt .

First of all we study the sign of the coefficients c1 and c4. Since Fm(`) > 0, c1 has the same sign of

mAm(`)[Vm(`) + Vm(−`)] +Bm(`)[Wm(`)−Wm(−`)] =∫ 2`

0

e−mt

4
[Am(`)(1 + σ −m(1− σ)t) +Bm(`)(2 +m(1− σ)t)] [f(`− t) + f(−`+ t)] dt

(24) = [sinh(m`)((1 + σ)2 + 2m`(1− σ)) + cosh(m`)(4− (1− σ2)m`)]

∫ 2`

0

e−mt

4
[f(`− t) + f(−`+ t)] dt+

(25) +m(1−σ)[2 cosh(m`)−(1 +σ) sinh(m`)+(1−σ)m`(cosh(m`)+sinh(m`))]

∫ 2`

0

e−mtt

4
[f(`−t)+f(−`+t)] dt .

We observe that

(26) 2 cosh(z) > (1 + σ) sinh(z)

for z > 0 and for all σ ∈ (0, 1/2), implying that (25) is positive; about the sign of (24) we introduce the map

z 7→ g(z) := sinh(z)((1 + σ)2 + 2z(1− σ)) + cosh(z)(4− (1− σ2)z)

and we compute its derivative

g′(z) = 2σ(1 + σ) cosh(z) + 2(3− σ) sinh(z) + z(1− σ)[2 cosh(z)− (1 + σ) sinh(z)].

Thanks to (26), for z > 0 we obtain g′(z) > 0 so that g(z) is always positive (g(0) = 4) and in particular c1 > 0.
The sign of c4 depends on

m sinh(m`)[Vm(`) + Vm(−`)]− cosh(m`)[Wm(`)−Wm(−`)] =∫ 2`

0

e−mt

4

[
(1 + σ) sinh(m`)− 2 cosh(m`)−mt(1− σ)(sinh(m`) + cosh(m`))

]
[f(`− t) + f(−`+ t)] dt

that, applying again (26), gives c4 < 0 for all σ ∈ (0, 1/2) and m` > 0.
For our purposes we need to compare the absolute value of c4 and c3; since the sign of c3 is not known a priori,

we study the sign of 2m2(|c4| ± c3), i.e.∫ 2`

0

e−mt

4Fm(`)

[
2 cosh(m`)− (1 + σ) sinh(m`) +mt(1− σ)(sinh(m`) + cosh(m`))

]
[f(`− t) + f(−`+ t)] dt

±
∫ 2`

0

e−mt

4Fm(`)

[
(1 + σ) cosh(m`)− 2 sinh(m`)−mt(1− σ)(sinh(m`) + cosh(m`))

]
[f(`− t)− f(−`+ t)] dt .

Recalling that 0 < Fm(`) < Fm(`), we obtain the positivity of

m(1−σ)[sinh(m`)+cosh(m`)]

{[
1

Fm(`)
∓ 1

Fm(`)

]∫ 2`

0

e−mtt

4
f(`−t) dt+

[
1

Fm(`)
± 1

Fm(`)

]∫ 2`

0

e−mtt

4
f(−`+ t) dt

}
;

thus 2m2(|c4| ± c3) > 0 if

2 cosh(m`)− (1 + σ) sinh(m`)

Fm(`)
± (1 + σ) cosh(m`)− 2 sinh(m`)

Fm(`)
> 0;
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the achievement follows from the positivity of
(

cosh(z)∓ sinh(z)
)(

2± (1 + σ)
)

for all z > 0 and σ ∈ (0, 1/2).
Fixed m > 1, we set

ψ̃(t) := mw̃(t/m) = c1m cosh t+ c2m sinh t+ c3t cosh t+ c4t sinh t

and we focus on the qualitative behaviour of ψ̃ where, from above, c1 > 0, c4 < 0 and c4 < c3 < −c4. Clearly,

ψ̃(t) is continuous and differentiable on R, moreover

ψ̃(0) = mc1 > 0 ; ψ̃(t) ∼ c3 ± c4
2

te|t| → −∞ for t→ ±∞ .

This fact implies that ψ̃(t) has at least two zeros of opposite sign on R; we prove now that ψ̃(t) has exactly two
distinct zeros on R.

We know that ψ̃(t) = 0 if and only if

α(t) := (c2m+ c4t) tanh t+ c3t+ c1m = 0 .

Computing α′(t) = 1
2 cosh2(t)

(2c3 cosh2(t) + c4 sinh(2t) + 2c4t+ 2c2m) we observe that

(27) ∃! t ∈ R : α′(t) = 0 .

This follows because β(t) := 2c3 cosh2(t) + c4 sinh(2t) + 2c4t + 2c2m is always decreasing on R; indeed c4 < 0,

|c4| > |c3| so that β′(t) = 2(c3 sinh(2t) + c4 cosh(2t) + c4) < 0. Moreover β(t) ∼ c3 ± c4
2

e2|t| → ∓∞ for t→ ±∞.

Now let us suppose for contradiction that ψ̃(t) has more than two zeros on R, for instance it has 3 distinct zeros
t1 < t2 < t3; this implies that α(t) has 3 distinct zeros, then, the Rolle’s Theorem applied to α(t) in the intervals
[t1, t2] and [t2, t3] ensures the existence of at least two points in which α′(t) = 0 on R and this contradicts (27).

Hence, ψ̃, and in turn also w̃, has exactly two zeros of opposite sign on R.
Since w̃(y) has exactly two zeros of opposite sign on R and w̃(0) > 0, if we prove that w̃(±`) > 0 the thesis

follows. To this aim we study the sign of w̃(±`) = c1 cosh(m`) ± c2 sinh(m`) ± c3` cosh(m`) + c4` sinh(m`), in
particular we consider

2m2w̃(`) =

∫ 2`

0

e−mt

4m
[Cm(`)f(`− t) + Cm(`)f(−`+ t)] dt+

∫ 2`

0

e−mtt

4
[Dm(`)f(`− t) +Dm(`)f(−`+ t)] dt

2m2w̃(−`) =

∫ 2`

0

e−mt

4m
[Cm(`)f(`− t) + Cm(`)f(−`+ t)] dt+

∫ 2`

0

e−mtt

4
[Dm(`)f(`− t) +Dm(`)f(−`+ t)] dt

where

Cm(`)=
4

1− σ

(
cosh2(m`)

Fm(`)
+

sinh2(m`)

Fm(`)

)
+

(1 + σ)2

2(1− σ)
sinh(2m`)

(
1

Fm(`)
+

1

Fm(`)

)
−m`(1 + σ)

(
1

Fm(`)
− 1

Fm(`)

)
Dm(`) = 2

(
cosh2(m`)

Fm(`)
+

sinh2(m`)

Fm(`)

)
− 1 + σ

2
sinh(2m`)

(
1

Fm(`)
+

1

Fm(`)

)
+m`(1− σ)

(
1

Fm(`)
− 1

Fm(`)

)
Cm(`)=

4

1− σ

(
cosh2(m`)

Fm(`)
− sinh2(m`)

Fm(`)

)
+

(1 + σ)2

2(1− σ)
sinh(2m`)

(
1

Fm(`)
− 1

Fm(`)

)
−m`(1 + σ)

(
1

Fm(`)
+

1

Fm(`)

)
Dm(`) = 2

(
cosh2(m`)

Fm(`)
− sinh2(m`)

Fm(`)

)
− 1 + σ

2
sinh(2m`)

(
1

Fm(`)
− 1

Fm(`)

)
+m`(1− σ)

(
1

Fm(`)
+

1

Fm(`)

)
.

The final part of the proof is devoted to prove that the coefficients Cm(`), Dm(`), Cm(`) and Dm(`) are positive.
We recall that

1

Fm(`)
+

1

Fm(`)
=

(3 + σ) sinh(2m`)

Fm(`)Fm(`)
> 0

1

Fm(`)
− 1

Fm(`)
=

2m`(1− σ)

Fm(`)Fm(`)
> 0 ,
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and we introduce four maps related respectively to the previous coefficients

z 7→ p(z) :=
2(3 + σ)

1− σ
sinh(2z) cosh(2z) + 4z +

(1 + σ)2(3 + σ)

2(1− σ)
sinh2(2z)− 2(1− σ2)z2

z 7→ q(z) :=
3 + σ

2
sinh(2z)[2 cosh(2z)− (1 + σ) sinh(2z)] + 2(1− σ)z + 2(1− σ)2z2

z 7→ r(z) :=
2(3 + σ)

1− σ
sinh(2z) + z[4 cosh(2z)− 2(1 + σ) sinh(2z)]

z 7→ s(z) := (3 + σ) sinh(2z) + (1− σ)z[2 cosh(2z)− (1 + σ) sinh(2z)] + (1− σ)(3 + σ)z sinh(2z).

Thanks to (26) q(z), r(z) and s(z) are always positive for z > 0 and for all σ ∈ (0, 1/2). The same conclusion
holds for the maps p(z), due to the following inequality

(1 + σ)2(3 + σ)

1− σ
sinh2(2z) > 3 sinh2(2z) > (1− σ2)(2z)2 .

This completes the proof.

6. Proof of Theorem 3.2 and Proposition 3.3

6.1. Proof of Theorem 3.2. We start with the existence issue.

Lemma 6.1. The infimum in (8) is achieved.

Proof. Let {pm}m ⊂ Pα,β be a minimizing sequence for λα,β , i.e.

λ1(pm) = λα,β + o(1) as m→∞ .

Furthermore, let upm ∈ H2
∗ (Ω) be a (normalized) eigenfunction to λ1(pm), namely λ1(pm) = ||upm ||2H2

∗(Ω) and∫
Ω
pm u

2
pm dx dy = 1. This immediately implies ||upm ||H2

∗
6 C, for some positive constant C. Therefore, using the

compact embedding of H2
∗ (Ω) ↪→ L2(Ω), we can extract two subsequences, still denoted by upm , such that

upm ⇀ u in H2
∗ (Ω) as m→∞,

upm → u in L2(Ω) as m→∞.
Moreover, pm ∈ Pα,β implies ||pm||L∞(Ω) 6 β and therefore up to a subsequence, pm ⇀ p in L2(Ω) as m→∞,

so that also p satisfies the integral condition in (3). Since strongly closed convex sets are weakly closed, we infer
that α 6 p 6 β a.e. in Ω. Hence, p ∈ Pα,β . On the other hand, we obtain

∣∣∣∣∫
Ω

(pm u
2
pm − p u

2)dx dy

∣∣∣∣ =

∣∣∣∣∫
Ω

pm(u2
pm − u

2) dx dy +

∫
Ω

u2(pm − p) dx dy
∣∣∣∣

6 β
∫

Ω

|(upm − u)(upm + u)| dx dy + ‖u‖L∞(Ω)

∫
Ω

|u| |pm − p| dx dy

= 2β ‖u‖L2(Ω) ‖upm − u‖L2(Ω) + o(1) = o(1) as m→∞ ,

where we have exploited the fact that H2
∗ (Ω) ⊂ L∞(Ω) since Ω is a planar domain. In particular, we conclude

that
∫

Ω
p u2 dx dy = 1. Furthermore,

λ1(p) 6 ||u||2H2
∗
6 lim inf

m→∞
||upm‖2H2

∗
= λα,β .

Whence

λα,β 6 λ1(p) = ||u||2H2
∗
6 λα,β .

Therefore, the couple (p, u) is an optimal pair and up = u; this completes the proof.
�
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To problem (8) we associate the following infimum problem

(28) Λα,β := inf
η∈Nα,β

min
u∈H2

∗(Ω)\{0}

||u||2H2
∗(Ω) + λα,β(β − α)

∫
Ω
η u2 dx dy∫

Ω
u2 dx dy

,

where λα,β is as in (8) and

Nα,β =

{
η ∈ L∞(Ω) : 0 6 η 6 1 a.e. in Ω and

∫
Ω

η dx dy =
β − 1

β − α
|Ω|
}
.

The proof of Lemma 6.1 with minor changes shows that also problem (28) admits an optimal pair (η, uη) ∈
Nα,β ×H2

∗ (Ω). Furthermore, there is an one-to-one correspondence between problems (8) and (28). Indeed, to
any η ∈ Nα,β we can associate pη ∈ Pα,β by setting

pη = β − η(β − α).

Clearly α 6 pη 6 β and ∫
Ω

pη dx dy = β|Ω| − (β − α)

∫
Ω

η dx dy = |Ω|.

Viceversa to any p ∈ Pα,β we can associate ηp ∈ Nα,β by setting

ηp =
β − p
β − α

.

Clearly 0 6 η 6 1 and
∫

Ω
ηp dx dy = β−1

β−α |Ω|. Furthermore, we have

Lemma 6.2. Let λα,β and Λα,β be as defined in (8) and in (28). There holds

Λα,β = λα,β β.

Proof. We shall prove the lemma in two steps.

Step 1 : Let p ∈ Pα,β and up ∈ H2
∗ (Ω) such that λα,β is achieved for this optimal pair and let ηp = β−p

β−α ∈ Nα,β .

Clearly we have

Λα,β 6 min
u∈H2

∗(Ω)\{0}

||u||2H2
∗(Ω) + λα,β(β − α)

∫
Ω
ηp u

2 dx dy∫
Ω
u2 dx dy

= min
u∈H2

∗(Ω)\{0}

||u||2H2
∗(Ω) − λα,β

∫
Ω
p u2 dx dy + λα,ββ

∫
Ω
u2 dx dy∫

Ω
u2 dx dy

6
||up||2H2

∗(Ω) − λα,β
∫

Ω
p u2

p dx dy∫
Ω
u2
p dx dy︸ ︷︷ ︸
=0

+λα,ββ = λα,β β.

Step 2 : Let now η ∈ Nα,β and pη ∈ Pα,β with η =
β−pη
β−α , i.e., pη = β−η(β−α). Then for any u ∈ H2

∗ (Ω)\{0}

||u||2H2
∗(Ω) + λα,β(β − α)

∫
Ω
η u2 dx dy∫

Ω
u2 dx dy

=
||u||2H2

∗(Ω) − λα,β
∫

Ω
pη u

2 dx dy + λα,ββ
∫

Ω
u2 dx dy∫

Ω
u2 dx dy

.(29)

Since, pη ∈ Pα,β implies λα,β 6
||u||2

H2
∗(Ω)∫

Ω
pη u2 dx dy

for any u ∈ H2
∗ (Ω) \ {0} and η ∈ Nα,β , passing to the infima, (29)

yields

Λα,β > λα,β β.

This completes the proof. �

Finally, we prove that the optimal pair of problem (28) can be characterised as follows
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Lemma 6.3. Let (η, u) ∈ Nα,β×H2
∗ (Ω) be an optimal pair of problem (28). Then, η and u are related as follows

η(x, y) = χSu(x, y) for a.e. (x, y) ∈ Ω ,

where χSu is the characteristic function of a set Su ⊂ Ω such that |Su| = β−1
β−α |Ω| and

Su = {(x, y) ∈ Ω : u2(x, y) 6 t}
for some t > 0.

Proof. The proof is along the line of [13, Proposition 3.3]. For the sake of completeness we shall outline the main
ideas.

Step 1. Let u ∈ H2
∗ (Ω) be such that ||u||2 = 1 and consider the functional I : Nα,β → R

I(η) :=

∫
Ω

η u2 dx dy .

We prove that the infimum problem
Iα,β := inf

η∈Nα,β
I(η)

admits a solution η = χSu , where Su ⊂ Ω is such that |Su| = β−1
β−α |Ω| and satisfies one of the following

(30) Su ⊆ {(x, y) ∈ Ω : u2(x, y) = 0} or {(x, y) ∈ Ω : u2(x, y) < t} ⊆ Su ⊆ {(x, y) ∈ Ω : u2(x, y) 6 t},
where t is defined as

(31) t := sup

{
s > 0 : |{(x, y) ∈ Ω : u2(x, y) < s}| < β − 1

β − α
|Ω|
}
.

Let Su ⊂ Ω be as above, then χSu ∈ Nα,β and one obtains

Iα,β 6 I(χSu) =

∫
Su

u2 dx dy.

On the other hand we claim that the following inequality holds

I(η) > I(χSu) for any η ∈ Nα,β .
If this is true then one immediately obtain Iα,β = I(χSu) and this concludes the proof of step 1.

We prove the validity of the claim by considering the cases t > 0 and t = 0 separately.
If t > 0, we argue as follows∫

Ω

u2(χSu − η) dx dy(32)

=

∫
{u2<t}

u2 (χSu − η) dx dy +

∫
{u2>t}

u2 (χSu − η) dx dy +

∫
{u2=t}

u2 (χSu − η) dx dy

6 t
∫
{u2<t}

(χSu − η) dx dy − t
∫
{u2>t}

η dx dy + t

∫
{u2=t}

(χSu − η) dx dy

= t

∫
Ω

(χSu − η) dx dy = 0 .

If t = 0 the proof follows with minor changes.
Step 2. We prove that if (η, u) is an optimal pair as in the statement of the lemma and if Su is the

corresponding set defined according to Step 1, then (χSu , u) is still an optimal pair.
Set

Sα,β :=

{
S ⊂ Ω : |S| = β − 1

β − α
|Ω|
}
.

Since {χS : S ∈ Sα,β} ⊂ Nα,β , we have

Λα,β 6 inf
S∈Sα,β

min
u∈H2

∗(Ω)\{0}

||u||2H2
∗(Ω) + λα,β(β − α)

∫
Ω
χS u

2 dx dy∫
Ω
u2 dx dy

.

On the other hand, letting (η, u) an optimal pair as in the statement of the lemma, from Step 1 we have

||u||2H2
∗(Ω) + λα,β(β − α)

∫
Ω

η u2 dx dy > ||u||2H2
∗(Ω) + λα,β(β − α)

∫
Ω

χSu u
2 dx dy
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and therefore

Λα,β =
||u||2H2

∗(Ω) + λα,β(β − α)
∫

Ω
η u2 dx dy∫

Ω
u2 dx dy

>
||u||2H2

∗(Ω) + λα,β(β − α)
∫

Ω
χSu u

2 dx dy∫
Ω
u2 dx dy

> inf
S∈Sα,β

min
u∈H2

∗(Ω)\{0}

||u||2H2
∗(Ω) + λα,β(β − α)

∫
Ω
χS u

2 dx dy∫
Ω
u2 dx dy

.

This proves that

Λα,β = inf
S∈Sα,β

min
u∈H2

∗(Ω)\{0}

||u||2H2
∗(Ω) + λα,β(β − α)

∫
Ω
χS u

2 dx dy∫
Ω
u2 dx dy

and in particular that (χSu , u) is an optimal pair.
Step 3. Let (χSu , u) be the optimal pair introduced in Step 2 and let t be the number t in (30) corresponding

to u. Let

At = {(x, y) ∈ Ω : u2(x, y) = t} .
We prove that t > 0 and that |At \ Su| = 0.

Suppose by contradiction that t = 0. Since u ∈ H4(Ω) we can write the Euler-Lagrange equation related to
(28) almost everywhere and we have

Λα,β u = ∆2u+ λα,β(β − α)χSu u = ∆2u a.e. in Ω .

Since u satisfies the partially hinged boundary conditions this means that it must be one of the eigenfunctions
listed in Proposition 2.1 which is impossible since the set of zeroes of any of the eigenfunctions of Proposition 2.1
has zero measure thus contradicting the definition of Su which forces Su to be a set of positive measure. This
proves that t > 0.

Suppose now by contradiction that |At \ Su| > 0, we have that

∆2u+ λα,β(β − α)χSu u = Λα,βu a.e. in Ω .

Now, exploiting the fact that u is constant in At and t > 0, we infer

Λα,β = λα,β(β − α)χSu a.e. in At .

and hence, since λα,β(β − α)χSu = 0 a.e. in At \ Su and |At \ Su| > 0, we obtain Λα,β = 0 and this is absurd.
Step 4. We complete the proof of the lemma. First of all, we observe that by Step 3, it is not restrictive, up

to a set of zero measure, to assume that At \ Su = ∅ in such way that At ⊆ Su and, in turn,

(33) Su = {(x, y) ∈ Ω : u2(x, y) 6 t} .

It remains to prove that η = χSu a.e. in Ω. Since (η, u) and (χSu , u) are both optimal pairs we have

∆2u+ λα,β(β − α)χSu u = Λα,βu a.e. in Ω ,

∆2u+ λα,β(β − α)η u = Λα,βu a.e. in Ω ,

thus implying that

(χSu − η)u = 0 a.e. in Ω .

It is easy to check that η = χSu a.e. in {(x, y) ∈ Ω : u2(x, y) > t} being t > 0. In order to prove that η = χSu
a.e. in {(x, y) ∈ Ω : u2(x, y) < t}, we apply (32) to u, χSu and η observing that the inequality (32) is an equality
being (η, u) and (χSu , u) both optimal pairs. In particular we have that∫

{u2<t}
u2 (χSu − η) dx dy = t

∫
{u2<t}

(χSu − η) dx dy ,

which implies

(34)

∫
{u2<t}

(u2 − t) (χSu − η) dx dy = 0 .

But the function (u2 − t) (χSu − η) 6 0 in {(x, y) ∈ Ω : u2(x, y) < t}, as one can deduce by (33), and hence by
(34) we conclude that χSu = η a.e. in the same set.

We have so proved that χSu − η = 0 a.e. in Ω and this completes the proof of the lemma. �



20 ELVISE BERCHIO, ALESSIO FALOCCHI, ALBERTO FERRERO, AND DEBDIP GANGULY

Proof of Theorem 3.2 completed.
The existence of an optimal pair (p, u) ∈ Pα,β×H2

∗ (Ω) follows from Lemma 6.1. If we put η := β−p
β−α by Lemma

6.2 we deduce that (η, u) is an optimal pair for Λα,β = λα,β β. Moreover by Lemma 6.3 we also have that η = χSu
a.e. in Ω with Su = {(x, y) ∈ Ω : u2(x, y) 6 t} and t as in (31). Hence we conclude that

p = β − η(β − α) = αχSu + βχScu .

6.2. Proof of Proposition 3.3. We prove the two statements separately.

Proof of Proposition 3.3-(i).
We know that the function u1(x, y) = ϕ1(y) sinx introduced in (7) is an eigenfunction corresponding to the

least eigenvalue of (2) with p ≡ 1. Furthermore,

min
u∈H2

∗(Ω)\{0}

‖u‖2H2
∗(Ω)

‖u‖22
=
‖u1‖2H2

∗(Ω)

‖u1‖22
= µ1,1 .

Now, by exploiting the fact that ϕ1 is even and increasing in (0, `) and p = p(y) is even, we deduce that∫
Ω

(1− p(y))u2
1(x, y) dx dy = 2

∫ π

0

∫ `

0

(1− p(y))ϕ2
1(y) sin2 x dx dy

6 2ϕ2
1(z)

∫ π

0

∫ z

0

(1− p(y)) sin2 x dx dy + 2ϕ2
1(z)

∫ π

0

∫ `

z

(1− p(y)) sin2 x dx dy

= ϕ2
1(z)π

∫ `

0

(1− p(y)) dy = 0 ,

where in the last step we have exploited the fact that
∫

Ω
p(y) dx dy = |Ω|, therefore

∫ `
0
p(y) dy = `. Hence,∫

Ω

u2
1(x, y) dxdy 6

∫
Ω

p(y)u2
1(x, y) dxdy .

From the above inequality we infer

µ1,1 =
‖u1‖2H2

∗(Ω)

‖u1‖22
> min
u∈H2

∗(Ω)\{0}

‖u‖2H2
∗(Ω)

‖√pu‖22
= λ1(p) ,

and the proof of the statement follows.

Proof of Proposition 3.3-(ii).
The idea of the proof is similar to that applied to prove statement (i). By exploiting the fact that sin(π−x) =

sin(x) and p(π − x) = p(x) for all x ∈ (0, π2 ), we deduce that∫
Ω

(1− p(x))u2
1(x, y) dx dy = 2

∫ `

−`

∫ π
2

0

(1− p(x))ϕ2
1(y) sin2 x dx dy

6 2 sin2(s)

∫ `

−`

∫ s

0

(1− p(x))ϕ2
1(y) dx dy + 2 sin2(s)

∫ `

−`

∫ π
2

s

(1− p(x))ϕ2
1(y) dx dy

= 2 sin2(s)

(∫ `

−`
ϕ2

1(y) dy

) (∫ π
2

0

(1− p(x)) dx

)
= 0 ,

where in the last step we have exploited the assumption
∫

Ω
p(x) dx dy = |Ω|, hence

∫ π
2

0
p(x) dx = π

2 . From the
above inequality the proof follows as for statement (i).

7. Proof of Theorem 3.5, Theorem 3.7 and Theorem 3.8

In this section we restrict the admissible weights to the family Pα,β defined in Theorem 3.5. Clearly,
∫ `

0
p dy = `

for all p ∈ Pα,β . Furthermore, for m positive integer, 〈·, ·〉m will denote the scalar product in H2(−`, `) defined

in (19) with equivalent norm |||φ|||2m = (φ, φ)m.
Let u be an eigenfunction of (4), its Fourier expansion reads

u(x, y) =

+∞∑
m=1

ϕm(y) sin(mx)
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with ϕm ∈ C2([−`, `]) since u ∈ H4(Ω) (at least). Inserting u in (4), we get that, for every m > 1 fixed, ϕm
satisfies the equation

(35) 〈ϕ, φ〉m = λ

∫ `

−`
p(y)ϕφdy for all φ ∈ H2(−`, `)

which is the weak formulation of the problem (12). Notice that, by elliptic regularity, any solution ϕ ∈ H2(−`, `)
of (12) , lies in H4(−`, `) ⊂ C3([−`, `]). Hence, the boundary conditions in (12) are satisfied pointwise. Since the
bilinear form 〈ϕ, φ〉m is continuous and coercive the eigenvalues of problem (35) may be ordered in an increasing
sequence of strictly positive numbers diverging to +∞ and the corresponding eigenfunctions form a complete
system in H2(−`, `). Whence, for what remarked so far, when p = p(y) there is a one to one correspondence
between eigenvalues of (35) and eigenvalues of (4). In particular, if we denote by λ1(p) the first eigenvalue of (4)
and by λ1(p,m) the first eigenvalue of (35) with m > 1 fixed, namely

λ1(p) := min
u∈H2

∗(Ω)\{0}

‖u‖2H2
∗(Ω)

‖√pu‖22
and λ1(p,m) := min

ϕ∈H2(−`,`)\{0}

|||ϕ|||2m
‖√pϕ‖22

,

it is natural to conjecture that
λ1(p) = min

m>1

{
λ1(p,m)

}
= λ1(p, 1) .

Unfortunately, for p ∈ Pα,β fixed, due to the negative terms in the norm ||| ·|||m, the monotonicity of m 7→ λ1(p,m)
is not easy to detect and we do not have a proof of the above equality for general p; in Section 4 we give some
suggestions through numerical experiments. Nevertheless, we have the following partial result

Lemma 7.1. If p ∈ Pα,β then

λ1(p,m) 6 µm,1 < m4 ,

where the µm,1 are the numbers defined in Proposition 2.1-(i).
If furthermore β 6 16(1− σ2), then

(36) λ1(p,m) > λ1(p, 1) for all m > 2 .

Proof. Let

ϕm(y) :=

[µ1/2
m,1 − (1− σ)m2

] cosh

(
y
√
m2+µ

1/2
m,1

)
cosh

(
`
√
m2+µ

1/2
m,1

) +
[
µ

1/2
m,1 + (1− σ)m2

] cosh

(
y
√
m2−µ1/2

m,1

)
cosh

(
`
√
m2−µ1/2

m,1

) ,
From Proposition 2.1 it is readily deduced that ϕm(y) is an eigenfunction corresponding to the least eigenvalue
of (35) with p ≡ 1 and m > 1 fixed (otherwise we will find an eigenvalue of (2) not included in those listed in
Proposition 2.1). Furthermore,

min
ϕ∈H2(−`,`)\{0}

|||ϕ|||2m
‖ϕ‖22

=
|||ϕm|||2m
‖ϕm‖22

= µm,1 .

Now, by exploiting the fact that ϕm is even and increasing in (0, `), the first part of the proof follows with the
same argument of Proposition 3.3-(i), hence we omit it.

Next we turn to the second estimate. Let ϕm,p(y) be an eigenfunction corresponding to the least eigenvalue

of (35), with m > 2 fixed and with p ∈ Pα,β satisfying the assumption of Lemma 7.1. In particular, ϕm,1 = ϕm,
with ϕm as given above. Since p(y) 6 (1− σ2)24 for every y ∈ (−`, `), we get

λ1(p,m) =
|||ϕm,p|||2m
‖√pϕm,p‖22

>
1

(1− σ2)m4

|||ϕm,p|||2m
‖ϕm,p‖22

>
µm,1

(1− σ2)m4
.

Then, the thesis follows by recalling that, from Proposition 2.1-(i), µm,1 ∈ ((1− σ2)m4,m4) for every m > 1 and

from the first part of the proof λ1(p, 1) < 1. �

Hence, under the assumptions of Lemma 7.1, we have

λ1(p) = λ1(p, 1) 6 µ1,1 = λ1(1) .

In particular, the weights considered in Lemma 7.1 prove to be effective in lowering the first frequency of (2), which
is one of the main goal of the present analysis. In the following we refine the result by carrying on a more deeper
analysis. First we note that, from above, if ϕ1,p(y) is an eigenfunction of λ1(p, 1), then u1,p(x, y) := ϕ1,p(y) sin(x)
is an eigenfunction of λ1(p). Therefore, ϕ1,p(y) and u1,p(x, y) have the same sign.

We now discuss the sign of ϕ1,p(y) and the simplicity of λ1(p) in
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Lemma 7.2. Let m > 1 integer fixed and let p ∈ Pα,β. Then, the first eigenvalue λ1(p,m) of problem (35) is
simple and the first eigenfunction ϕm,p(y) is of one sign in [−`, `].
Furthermore, if β 6 16(1−σ2) the same conclusion holds for the first eigenvalue λ1(p) of (4), namely it is simple
and the corresponding eigenfunction is given by u1,p(x, y) = ϕ1,p(y) sin(x), hence of one sign in Ω.

Proof. We apply the decomposition with respect to dual cones technique, see [18, Chapter 3] suitably combined
with Theorem 5.1. Let K = {ϕ ∈ H2(−`, `) : ϕ > 0 in (−`, `)} and let K∗ be its dual cone, namely

K∗ := {ψ ∈ H2(−`, `) : 〈ψ, φ〉m 6 0 for all φ ∈ K} ,
where 〈·, ·〉m is defined in (19). Then, for any ϕ ∈ H2(−`, `) there exists a unique (χ, ψ) ∈ K ×K∗ such that

ϕ = χ+ ψ , 〈χ, ψ〉m = 0 .

Now we know that

λ1(p,m) = min
ϕ∈H2(−`,`)\{0}

|||ϕ|||2m
‖√pϕ‖22

=
|||ϕm,p|||2m
‖√pϕm,p‖22

.

For contradiction, assume that ϕm,p changes sign. Then, we may decompose ϕm,p = χm,p + ψm,p with χm,p ∈
K \ {0} and ψm,p ∈ K∗ \ {0}.

In the remaining part of this proof we need some results on a positivity preserving property which is treated
in Section 5.

From Corollary 5.2, we deduce that ψm,p < 0 in (−`, `). Then, replacing ϕm,p with χm,p − ψm,p, exploiting
the fact that χm,p − ψm,p > ϕm,p in (−`, `) and the orthogonality of χm,p and ψm,p in H2(−`, `), we infer

|||χm,p − ψm,p|||2m
‖√p(χm,p − ψm,p)‖22

<
|||ϕm,p|||2m
‖√pϕm,p‖22

,

a contradiction. Hence ϕm,p > 0 in (−`, `) and since ϕm,p solves (35), by Theorem 5.1 with f = λ1(p,m) p(y)ϕm,p,
we conclude that ϕm,p > 0 in [−`, `].

The simplicity follows by noting that if ϕm,p and ϕ̄m,p are two linearly independent positive minimizers, then
ϕm,p + tϕ̄m,p is a sign-changing minimizer for some t < 0 suitably chosen, a contradiction. �

Next we focus on the sign of ϕ′1,p(y) and we prove

Lemma 7.3. If p ∈ Pα,β is such that β < 1/µ1,1 and if ϕ1,p is a positive eigenfunction of (35) with m = 1

corresponding to the first eigenvalue λ1(p, 1), then ϕ1,p is increasing in (0, `).

Proof. For shortness we will write ϕ1 instead of ϕ1,p. Since p is even, being ϕ1 positive, we infer that it is an
even function. Hence, since ϕ1 ∈ C3([−`, `]) it satisfies ϕ′1(0) = 0 = ϕ′′′1 (0).

If p is continuous, then ϕ1 ∈ C4([−`, `]) and it satisfies the equation in (12) pointwise. We recall that the
boundary conditions in (12) are satisfied pointwise also when p is not continuous. Since ϕ1 is positive, β < 1/µ1,1

and, by Lemma 7.1, we know that λ1(p, 1) 6 µ1,1, from the equation we infer

(37) ϕ′′′′1 (y)− 2ϕ′′1(y) = (λ1(p, 1)p(y)− 1)ϕ1(y) 6 (µ1,1p(y)− 1)ϕ1(y) < 0 in (−`, `)
If p is not continuous, since only a finite number of points of jump discontinuity are allowed in (−`, `), say {τj}rj=1

for some integer r, the above inequality holds in each interval (τj , τj+1). Furthermore, for any j = 1, ..., r, the
right and left fourth order derivative at τj exists and they are given by (ϕ1)′′′′± (τj) = limy→τ±j

ϕ′′′′1 (y).

First we show that

(38) ϕ′1 never vanishes in (0, `) .

By contradiction, let y1 ∈ (0, `) be such that ϕ′1(y1) = 0. Since ϕ′1(0) = 0 and ϕ1 ∈ C3([−`, `]), there exists
y0 ∈ (0, y1) such that ϕ′′1(y0) = 0 and, by (37), (ϕ1)′′′′+ (y0) < 0. Next the following two cases may occur.
• CASE 1: ϕ′′′1 (y0) 6 0. From above, ϕ′′′1 is negative and, in turn, also ϕ′′1 is negative in a right neighborhood

of y0. Since the boundary conditions in (12) yield ϕ′′1(`) = σϕ1(`) > 0, we infer that there exists y2 > y0 such
that ϕ′′1(y2) = 0, ϕ′′′1 (y2) > 0 and ϕ′′1(y) 6 0 in (y0, y2). Whence, by (37), ϕ′′′′1 (y) < 0 in (y0, y2) or in each of
the subintervals (τj , τj+1) contained in (y0, y2). Since ϕ′′′1 is continuous in [y0, y2], in any case, we have that it is
strictly decreasing in [y0, y2], hence ϕ′′′1 (y) < 0 in (y0, y2] in contradiction with ϕ′′′1 (y2) > 0.

• CASE 2: ϕ′′′1 (y0) > 0. We distinguish two further cases.

CASE 2a: ϕ′′1(0) 6 0. By (37), (ϕ1)′′′′+ (0) < 0, hence ϕ′′′1 (y) < 0 in a right neighborhood of 0. Then, since
ϕ′′′1 (y0) > 0, there exists y3 ∈ (0, y0) such that ϕ′′′1 (y) < 0 in (0, y3) and ϕ′′′1 (y3) = 0. In turn, ϕ′′1 < 0 in
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(0, y3) and by (37) ϕ′′′′1 (y) < 0 in (0, y3) (or in each of the subintervals (τj , τj+1) contained in (y0, y3)). Since
ϕ′′′1 is continuous this implies that it is strictly decreasing in [0, y3]. Since ϕ′′′1 (0) = 0, we infer ϕ′′′1 (y3) < 0, a
contradiction.

CASE 2b: ϕ′′1(0) > 0. From ϕ′′′1 (y0) > 0 and ϕ′′1(y0) = 0 we infer that ϕ′′1 is negative in a left neighborhood
of y0. Then, since ϕ′′1(0) > 0, there exists y4 ∈ (0, y0) such that ϕ′′1(y) > 0 in (0, y4) and ϕ′′1(y4) = 0. In turn,
recalling that ϕ′′1(y0) = 0, there exists y5 ∈ (y4, y0) such that ϕ′′′1 (y5) = 0 and, by (37), we infer that ϕ′′′1 (y) < 0
in (y5, y0), in contradiction with ϕ′′′1 (y0) > 0.

Next we come back to the proof of the statement. By (38) we know that either ϕ′1(y) < 0 in (0, `) or ϕ′1(y) > 0
in (0, `).

Assume that ϕ′1(y) < 0 in (0, `), then ϕ′′1(0) 6 0. Indeed, if ϕ′′1(0) > 0, since ϕ′1(0) = 0, then ϕ′1 is positive in
a right neighborhood of 0, a contradiction. From ϕ′′1(0) 6 0, together with (37) and ϕ′′′1 (0) = 0, it follows that
ϕ′′′1 is negative in a right neighborhood of 0 and, in turn, also ϕ′′1 is negative in a right neighborhood of 0. Since,
from the boundary conditions ϕ′′1(`) = σϕ1(`) > 0, we deduce that there exists y ∈ (0, `) such that ϕ′′1(y) = 0,
ϕ′′′1 (y) > 0 and ϕ′′1(y) 6 0 in (0, y) . But then, from (37), ϕ′′′1 is strictly decreasing in [0, y] and, recalling that
ϕ′′′1 (0) = 0 we reach a contradiction. �

All the above statements yield the proof of Theorem 3.5.

Proof of Theorem 3.5 completed.
The key point is to note that, by Lemma 7.3, we have

(39) p ∈ Pα,β ⇒ ϕ1,p increasing in (0, `).

Indeed, since by (39) ϕ1,p2 is increasing in (0, `), to prove (i) we may argue as in the proof of the first part of

Lemma 7.1 with ϕ1,p2
instead of ϕm. In particular, we readily infer that λ1(p1, 1) 6 λ1(p2, 1) and since, from

Lemma 7.1, λ1(p, 1) = λ1(p) for all p ∈ Pα,β , the proof of (i) follows.

Next we prove (ii). Set y := `(β−1)
β−α , for every p ∈ Pα,β there holds

p(y) > p(y) in [0, y] and p(y) 6 p(y) in [y, `) .

Then, we may argue again as in the proof of the first part of Lemma 7.1 with ϕ1,p instead of ϕm and conclude

λ1(p, 1) > λ1(p, 1) .

Once more, from Lemma 7.1, λ1(p, 1) = λ1(p) for all p ∈ Pα,β and the statement of Theorem 3.5 follows.

Proof of Theorem 3.7.
The proof readily follows by combining the statements of Lemma 7.2 and Lemma 7.3.

Proof of Theorem 3.8.
The proof readily follows as a corollary of Theorem 5.1 by exploiting the same separation of variables performed

in the Proof of Theorem 3.5.
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