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Abstract—Self-organizing maps are an unsupervised machine
learning technique that offers interpretable results by identifying
topological properties in high-dimensional datasets and project-
ing them on a 2-dimensional grid. An important problem of
self-organizing maps is the computational expensiveness of their
training phase. In this paper, we propose a fast approach to train
self-organizing maps. The approach consists of 2 steps. First, a
small map identifies the most relevant areas from the entire high-
dimensional input space. Then a larger map (initialized from
the small one) is fine-tuned to further explore the local areas
identified in the first step. The resulting map has performance
(measured in terms of accuracy and quantization error) on par
with self-organizing maps trained with the standard approach,
but with a significantly reduced training time.

Index Terms—self-organizing maps, unsupervised learning,
fast training, clustering

I. INTRODUCTION

Self-organizing maps (SOMs) are a type of artificial neural
network used for unsupervised learning. They consist in a
(typically) 2-dimensional grid of nodes, each with its own
set of weights. During the training process, these weights
are iteratively updated, becoming centroids for the clusters
that emerge in the data. This process maintains the dataset’s
topological properties on the 2D grid. Centroids that are close
in the input space will be close on the grid and further away
from dissimilar ones.

The purpose of self-organizing maps is to model a possibly
high-dimensional problem using a low-dimensional represen-
tation. This offers insights on the dataset properties and, by
building a 2-dimensional grid, it may be adopted as a useful
visualization technique. Additionally, the trained nodes can
be used for quantizing the points in the dataset (e.g. for
compression, or bucketing purposes).

In recent years, self-organizing maps have been used in a
large number of works in a variety of fields (among the others,
hydrology [1], physics [2], cytometry [3] and sociology [4]). In
particular, all of these works leverage the self-organizing map’s
interpretability by extracting 2-dimensional visualizations and
making use of the topological properties that self-organizing
maps learn.

Self-organizing maps, however, have some limitations. A
prominent one is their long training time. During training, each
data point needs to be compared against each of the nodes of
the grid. The size of this grid defines how granular the results

will be. Hence, a larger self-organizing map typically offers
better insights, but at the cost of a higher training time.

In this paper, we propose an approach for training self-
organizing maps that relies on 2 steps. In the first step, a
fraction of the available dataset is used to train a smaller SOM.
The weights of the model learned this way are then used to
initialize the weights of the larger, final SOM. In the second
step, the larger SOM is fine-tuned using the remaining fraction
of the dataset. This approach maintains performance compa-
rable with standard self-organizing maps, but at a fraction of
the training time. Thus, larger problems that would not have
otherwise been tractable, become approachable. We analyze
in-depth the performance of our approach, by considering
several factors. It allows us to both define meaningful values
for the required hyperparameters, and understand how the
model works in specific situations (e.g. when data is scarce).

The rest of the paper is organized as follows. Section
II introduces the related work. Section III first provides an
overview of SOMs, then presents the proposed approach.
Section IV provides a performance assessment in a variety
of scenarios. Finally, Section V contains a discussion of the
results achieved and makes some comparisons with other
techniques, while Section VI concludes the paper with some
final considerations.

II. RELATED WORK

Self-organizing maps were first introduced in [5]. Origi-
nally, weight initialization for the nodes was done randomly
and resulted in already well-performing maps. Another well-
established approach is to perform the initialization based on
the adoption of the first principal components. This approach
has been shown to have substantial practical advantages over
alternative ones [6].

These approaches to initialization, though, introduce a sig-
nificant computational overhead to the training of the self-
organizing map. Further studies focused, instead, on fast
initialization techniques that helped SOMs converge more
quickly. Among these, [7] adopts the centroids extracted with
the k-means algorithm as initial nodes for the map (with a
heuristic for the placement of the nodes to preserve some
topological order). Then, the weights are fine-tuned with a
partial training of the SOM. Another approach, presented in
[8], consists in the following three steps: (1) identify – within
the dataset – those points that are furthest apart from one



another (thus building a “hyperbox” that wraps the points in
their space) and use them as initial weights for the corners
of the grid, (2) assign the weights of the edges of the grid
as an interpolation of the corner weights and (3) fill the rest
of the weights through similar interpolations. This approach,
as the authors point out, requires O(M2) comparisons (M
being the number of points in the dataset) and is sensitive
to outliers. To work around these problems, the proposed
solution is once again based on using an initial k-means step
to quantize the dataset. These works address the problem
introduced in this paper. However, our approach does not
rely on k-means nor any other algorithm other than self-
organizing maps. The proposed approach will be shown to
train significantly faster than k-means: in these terms, this
makes the proposed approach a better candidate for larger
datasets.

There have also been efforts toward building distributed
versions of self-organizing maps to cut down the training
time. One such work is presented in [9]. The SOM is divided
into non-overlapping smaller maps that are distributed across
different workers. For each point of the training set, each
worker first identifies the local “winning” node (see Subsection
III-A for more details), then all workers are synchronized to
identify the global “winner”. Finally, with this knowledge,
each worker updates its map’s weights. The union of all maps
results in the final SOM. More recently, other distributed
approaches to self-organizing maps have been proposed in
[10]. They introduce a Map-Reduce approach where the map
function is tasked with identifying the winning neuron for
each point of the dataset (which is split across multiple
workers) and emitting a (winning node, input point) key-value
pair. Then the reduce function performs batch updates for
each of the self-organizing map nodes. Both these distributed
approaches leverage multiple workers to distribute the training
of standard SOMs. Our approach is instead based on a single
worker. However, our approach can be easily distributed across
multiple workers using either [9] or [10]. This is possible
because our algorithm is based on the training of standard
SOMs.

III. FAST SELF-ORGANIZING MAPS TRAINING

This section will first offer a brief formal introduction to
self-organizing maps, with considerations on their training
complexity, followed by the presentation of the proposed 2-
step approach to self-organizing maps training.

A. Self-Organizing Maps

A self-organizing map (or SOM) is comprised of a set of
neurons, or nodes, displaced on a 2-dimensional grid (for
simplicity, we assume the grid to be of Q × Q nodes). Let
X ∈ RM×N be the available dataset, where each of the M
rows represents a point in RN . Each node nj of the SOM is
associated with a weight vector wj ∈ RN , typically randomly
initialized. Additionally, at any step t of the training phase
and for each node nj a set of neighbors N(nj , t) can be
defined (i.e. a set of nodes close to nj on the grid). The time

Fig. 1: 16× 16 trained SOM

dependency is necessary to have the neighborhoods change
throughout the training (e.g. by shrinking them during later
steps). During the training phase, for each point x ∈ X , the
closest node nc according to a distance (e.g. the Euclidean
one) is identified as:

nc = argmin
nj

‖wj − x‖ (1)

nc will also be referred to as the “winning” node. The weights
of the nodes in the neighborhood of nc, {wj | nj ∈ N(nc, t)},
are updated to better resemble x:

wj(t+ 1) = wj(t) + α(t)βjc(t)(x− wj(t)) (2)

where α(t) is the learning rate and βjc(t) is a coefficient that
dampens the learning as the neurons get further away from
the winner. By training the neighboring nodes as well as the
winning one, a topological order forms among neurons, where
nodes that model similar points are close to one another. An
example of a 16 × 16 SOM trained with the MNIST dataset
(see Section IV for more details) is shown in Figure 1. Each
cell of the grid represents one of the nodes trained by the
self-organizing map. The 784 pixels that represent each node
(28× 28, the resolution of each MNIST digit) are the weights
learned. The grid shows how weights evolve to resemble
samples of the dataset, with similar shapes being close to one
another. An interesting example of how “similar” nodes end up
close to one another is the following. The first row of Figure
1 has nodes that resemble the digits “7” and “1”. “1”s that
present a slant are placed closer to the “7”s because of their
greater similarity.



(a) Step 0 (random initialization) (b) Step 1

(c) Step 2 (d) Step 3

(e) Inputs

Fig. 2: First three weight updates during the training of an
8× 8 SOM

Figure 2 shows the first three training steps of a self-
organizing map. Figure 2a shows the initial random weights.
Figure 2b shows how the weights are updated after the left-
most of the inputs in Figure 2e is used for the training. One of
the random nodes has a slightly higher similarity to the input.
The weights of this node are then updated (based on Equation
2) to better resemble the input, along with the weights of its
neighbors. The same happens in Figures 2c and 2d for the
second and third inputs.

During the training phase, for each of the points in the
dataset, the distance from each node of the grid is computed.
For a square Q × Q grid, MQ2 operations are performed.
This sets an upper bound to the maximum size of the SOM.
Since having a larger number of nodes in a SOM helps
better represent a dataset (and build more meaningful clusters),
this limitation hinders the potential adoption of SOMs for
processing very large datasets.

B. 2-Step Training Approach

To reduce the time complexity of SOM training, we propose
to split the training phase in two steps. The first consists in

training a smaller SOM, to produce a “coarse” grid with a
low number of nodes that contains a coarse topology of the
dataset. As a second step, this grid is extended to the final
one with a larger number of nodes, to capture local topologies
(e.g., sub-clusters that form within any of the coarse clusters).
Hence, the initial effort of converging from the entire N -
dimensional input space to its meaningful portions is done
on a smaller number of nodes, thus requiring a significantly
lower computational effort.

To achieve this model expansion for a Q×Q map, a single
P × P (where Q = nP, n ∈ N) SOM has been trained with
a fraction η of the original dataset (Figure 3 shows one SOM
with P = 8). Then, the trained nodes are replicated n2 times
in their locality, thus building a Q × Q SOM (as shown in
Figure 4, where n = 2 and the replicated nodes are the ones
from Figure 3). This SOM is then trained with the remaining
1−η portion of the dataset. This fine-tuning process is shown
in Figure 5. With this 2-step training, only a fraction of the
training requires working on Q2 nodes.

The complexity of training a single Q×Q SOM, as already
stated, is ∝MQ2. Instead, building a single P×P map with a
fraction η of the dataset is ∝ ηMP 2. If the small SOM is then
replicated n2 times to build a Q×Q SOM (with Q = nP ) and
the resulting grid is trained with the remainder of the dataset
(i.e. 1− η), the required time is ∝ (1− η)Mn2P 2, resulting
in a total training time ∝ (η(1− n2) + n2)MP 2. In terms of
complexity, both approaches are O(MP 2), but the proposed
approach reduces the training time by a factor ρ, defined as:

ρ(n, η) =
n2

η + n2(1− η)
(3)

Thus, it is evident that η = 0 is a special case in which the
entire dataset is used to train the large SOM and none of it is
used to train the small one. In this case ρ(n, 0) = 1, which is
equivalent to training a SOM with the standard approach. The
opposite edge case, η = 1, is the one where the entire dataset
is used to train the smaller SOM, resulting in a time gain of
n2. In this case, no fine-tuning is done on the large SOM. In
terms of performance (including training time), the resulting
SOM is identical to a P × P one.

Additionally, for a fixed Q, a larger value of n implies a
smaller P , thus leading to a faster training of the smaller SOM.
The following limit holds:

lim
n→+∞

ρ(n, η) =
1

1− η
(4)

This introduces a bound on the training time reduction that
can be achieved with the proposed approach. This bound
corresponds to the time gain that can be obtained by only
training the larger SOM on the smaller fraction of data (i.e.,
a scenario in which the training time of the smaller SOM is
negligible).

IV. EXPERIMENTAL RESULTS

In this section, standard SOMs (which will be considered
as being the baseline) are compared to self-organizing maps



Fig. 3: An 8× 8 SOM.

Fig. 4: A 16×16 SOM with replicated nodes from Figure 3. In
red are the 4 nodes replicated from the single node highlighted
in red in Figure 3

Fig. 5: A 16×16 SOM after the fine-tuning of the SOM from
Figure 4

trained with the proposed 2-step approach. The comparisons
are based on the following metrics:

• Training time: while Equation 3 already defines the
theoretical time improvement, the actual training time is
experimentally measured to verify its accordance with the
expected result.

• Quantization error: SOMs can be used to quantize a set
of points with the trained nodes. Given a dataset X , the
quantization error qe is defined as:

qe =
1

|X|
∑
x∈X
‖x− wc‖ (5)

This is an indication of how well the map can represent
a given dataset with a limited number of “buckets”.

• Accuracy: given a labelled dataset, the trained SOM can
be used as a classifier. After training, each (labelled) input
in the training set is assigned to a node (the winning one
for the given point). Each node is then assigned a class
label based on the labels of the points that have been
assigned to it (with majority voting). Next, new points
can be assigned the label of the node that is closest to
them. For this classifier, its accuracy (i.e., the fraction of
correctly classified elements) can be computed.

Both quantization error and accuracy have been computed on
a separate test set.

For each experiment, three different SOMs have been built:
a baseline (i.e. the “standard” SOM) and two SOMs built with
the proposed technique, respectively with n = 2 and n = 7.

The experiments have been performed on a machine running
Ubuntu 16.04, equipped with an Intel Xeon X5650 (6 cores,
12 threads) @ 2.66 GHz and 32 GB of memory. The source
code has been developed using Python 3.5, with the Mini-
Som library for the implementation of self-organizing maps
and scikit-learn [11] for the comparisons with k-means (an
implementation of the optimized algorithm presented in [12]
has been used, unless otherwise stated). The main dataset used
is MNIST [13], which is comprised of 28 × 28 hand-written
digits from 0 to 9, divided into a training set of 60,000 entries
and a test set of 10,000.

The presented experiments will cover various aspects of the
proposed approach. First, analyses of the performance as η
and Q vary are presented in Subsections IV-A and IV-B. Then,
Subsection IV-C explores scenarios with smaller datasets. The
baseline and the proposed approach are then compared to
another clustering technique, k-means, in Subsection IV-D.
Datasets other than MNIST are used in Subsection IV-E as a
validation of the proposed approach and finally, in Subsection
IV-F, the algorithms are run on larger datasets to assess their
scalability.

A. Effect of varying η

η is the fraction of dataset used to build the small SOM.
Hence, 1− η is used to train the larger SOM.

Two special cases are given:



• η = 0. In this case, the entire dataset is used to build the
large SOM. The training time is expected to be the same
as the one for the baseline case.

• η = 1. In this case, the entire dataset is used to build
the small SOM. The training time should be reduced
by a factor of n2 (as only the small SOM is trained).
The performance in terms of accuracy and quantization
error are expected to be the most degraded, since this
corresponds to reducing the SOM size by a factor of n2

(the final SOM will still have the expected number of
nodes, but they will be repeated in groups of n2).

The performance for 0 < η < 1 are expected to be in
between these two edge cases. Indeed, Figures 6, 7 and 8 show
this behavior for 28× 28 SOMs (this size has been chosen as
it presents satisfactory results when trained with the baseline
approach, as well as being suitable for n ∈ {2, 7}).

In terms of training time, the results behave as expected.
The case n = 7 is faster than n = 2. The ratio of the time
curves is also in accordance with Equation 3, when computing
ρ(7, η)/ρ(2, η) (i.e., the expected ratio of the training times for
the two values of n, as a function of η).

In terms of accuracy and quantization error on the test set,
a significant degradation occurs for η > 0.8. This happens
because of the insufficient data for the training of the larger
SOM. For this reason, the study of the performance as Q
changes have been performed for η = 0.8 (in this case, based
on Equation 4, the maximum time gain possible should be 5x).

B. Effect of varying Q

Varying Q alters the shape of the final SOM. It drives the
time complexity with a squared factor, making the problem
intractable for large values.

In this analysis Q ranges between 5 and 60. The selection
of this range is based on a heuristics adopted in literature,
recommending a number of nodes ≈ 5

√
M (M being the

cardinality of the dataset) [14]. For MNIST, it corresponds,
approximately, to a square map with Q = 35. Considering
that, as mentioned in [15], a “trial-and-error” approach – if
feasible – may identify the best size for the SOM, the range
5÷ 60 has been used for more exhaustive results.

The most significant result is related to training time, as
shown in Figure 9. The reduction in time with the proposed
technique is in accordance with the one expected from Equa-
tion 3. In particular, ρ(2, 0.8) = 2.5, and the experimental
training time gain is approximately 3x, while ρ(7, 0.8) ≈ 4.6,
the same as the rounded experimental result.

The second significant result involves quantization error
(Figure 10) and accuracy (Figure 11). As expected, as Q
grows, the quantization error reduces and the accuracy in-
creases. It is particularly interesting, though, that the degrada-
tion of the performance for the proposed SOMs is particularly
limited, if not negligible in some cases (on average, the
degradation is smaller than 1% of the baseline). Hence, this
effect, combined with the lowered training time, yields similar
performance with a much lower computational effort or, with
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the same effort, it allows achieving better performance, by
training a larger SOM.

C. Behavior with low-cardinality datasets

Intuitively, the 2-step approach leverages a large portion of
data to “identify” the regions of the high-dimensional space
where the data is distributed, displacing the centroids of the
small SOM there. Then, the centroids are replicated and fine-
tuned with the remainder of the data.
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As such, an important scenario to be studied is the one
where only limited data is available. To further explore this
case, a new kind of experiment has been devised. Here, Q and
η have been fixed (to 28 and 0.8 respectively). Then, subsets of
the entire dataset have been used to (1) train a standard SOM
and (2) apply the proposed 2-step approach. These subsets
used are fractions of the original dataset X , ranging from 0%
(i.e. an “empty” training set) to 100% (i.e. the entire dataset)
of X . Let ζ be the used fraction of X . Then, the proposed
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approach exploits a fraction ζη of the dataset for the training
of the small SOM, and ζ(1− η) for the large SOM.

The expected result in terms of training time is the same
one as before, where the training of the 2-step approach is sig-
nificantly faster than the baseline approach. In this case, since
n and η are fixed, the training time is only linearly dependent
on ζ. Indeed, Figure 12 shows this linear dependence.

In terms of accuracy and quantization error, the performance
of the baseline and of the proposed approach are expected to



be similar as ζ varies. A divergence between the curves would
imply that the 2-step model only provides satisfactory results
because the fraction 1−η of data used for the final fine-tuning
is still sufficient to learn a model from scratch (thus making
the proposed approach no better than a random initialization).
As shown in Figures 13 and 14, though, there only is a slight,
constant performance degradation between the two models.
This is evidence of the fact that there is indeed an advantage
in using the 2-step approach that is not only due to the dataset
size.

D. Comparison with k-means

To understand how the proposed SOM approach fares in
absolute terms, a performance comparison with other state-
of-the-art unsupervised techniques is needed. Of the many
unsupervised algorithms, k-means [16] is one of the most rel-
evant for this comparison, because of the many traits it shares
with self-organizing maps. Indeed, both algorithms rely on the
definition of the number of clusters to be identified (k for k-
means, Q2 for SOMs) and both introduce an iterative approach
where centroids are identified by repeated adjustments.

Self-organizing maps have an advantage over other clus-
tering algorithms: The output of SOMs is a 2-dimensional
grid in which nodes are distributed based on the similarity
among one another. This is not the case with k-means, which
instead provides points in a (possibly) high-dimensional space,
with no relationships between one another. The output of
self-organizing maps proves particularly useful when used in
combination with visualization techniques for interpreting the
results (instead of reducing the dimensionality of the results
through other typically computationally expensive algorithms,
such as PCA or t-SNE), or as a pre-processing step where
the points are distributed into buckets that have a concept
of neighborhood and of distance (e.g. Manhattan) in a low-
dimensional space.

Comparisons between various unsupervised algorithms have
already been done extensively in literature. One study in
particular [17] is focused on comparing self-organizing maps
and k-means. The results presented in that work highlight
how, on the datasets used for the study, k-means has a slight
performance boost when compared to SOMs. As such, we
expect this to be the case for the proposed 2-step SOM.

The performance of the three algorithms (k-means, standard
and 2-step SOM) are compared in terms of training time, quan-
tization error and accuracy. As expected, k-means performs
better than either SOMs in terms of quantization error and
accuracy, as shown in Figures 16 and 17. In particular, k-
means is approximately a constant 2-3% more accurate than
SOMs for larger values of Q, completely in accordance with
the results presented in [17].

In terms of training time, instead, two important clarifica-
tions needs to be made.
• Most implementations of k-means are executed multiple

times, each with a different initialization. This is done
to help avoid local minima solutions. To present a fair
comparison, the k-means results presented are all based
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on a single initialization. The results in terms of accuracy
and quantization error do not vary significantly when
using multiple initializations, but the training time for
P initializations is clearly P times that of a single
initialization

• The adopted k-means implementation parallelizes part
of the workload, by distributing it across 12 concurrent
workers. The adopted SOM library, on the other hand,
runs a single worker. Running k-means without paral-



lelization leads to heavily slower training times when
compared to self-organizing maps (so much so that a
comparison between the them would be meaningless).
Hence, only the parallel training times are reported for
k-means.

Figure 15 shows the training time for the different al-
gorithms. It is particularly interesting that, with a standard
implementation, self-organizing maps are slower than the
parallelized version of k-means. This, paired with the slight
underperformance in terms of other metrics, made SOMs not
competitive with other unsupervised algorithms.

The proposed 2-step approach, on the other hand, is faster
than k-means. Additionally, as already mentioned, SOMs in-
troduce a level of interpretability that is missing from k-means
and other unsupervised techniques. While this interpretability
comes with a slight degradation in performance, this trade-off
is still useful for those domains where data mining techniques
are used in human-in-the-loop scenarios.

E. Additional datasets

To validate the proposed technique, the 2-step training
approach has been also applied to the following datasets (in
addition to MNIST):
• Fashion-MNIST [18]. A dataset of fashion items (e.g.

shirts, trousers, bags) that maintains the same image size
(28 × 28 grayscale), the same train-test splits (60,000
training points, 10,000 test points) and the same number
of classes (ten) as MNIST. This is intended as a more
challenging alternative to MNIST

• CIFAR-10 [19]. A collection of 32 × 32 color images
divided into 10 categories, with a training set of 50,000
samples and a test set of 10,000

• Character Trajectories [20]. A UCI dataset that contains
a collection of multiple, labelled samples of pen tip
trajectories recorded while writing individual characters.
For each character, three time series are collected: the pen
tip velocity for the x and y axes, and the pressure applied
to the pen tip. The dataset is available in a normalized
form, but with various time series lengths (depending on
how long it took to draw the character). For uniformity,
all signals have been upsampled to match the longest
time series available (205 samples). The training/test split
ratio has been set to 6/1 (i.e. the same used for MNIST).
The dataset contains the data for 2,858 hand-written
characters, each belonging to one of 20 classes. Given
the low number of rows for this datasets, all algorithms
have iterated 10 times over the training set

The results obtained and the SOM configurations are dis-
played in Table I. The results obtained on these additional
datasets are consistent with the ones presented for MNIST.
A significant (up to 8x for (η, n) = (0.9, 7)) training time
speed-up occurs for the 2-step approach, at the cost of
a slight degradation in performance. In terms of accuracy,
this degradation is ≈ 1% for all cases, with the exception
of Character Trajectories. For that dataset, the performance

degradation is slightly more impactful – 2 to 4% less than
the baseline case. Considering that the test set for this dataset
is comprised of only 409 samples, every misprediction has
a more significant impact on the performance degradation
compared to the other datasets. Similar considerations can be
made in terms of quantization error.

F. Algorithm scalability

To assess the time gain of the proposed approach on larger
scales, two synthetic dataset have been used. These have
been generated using scikit-learn’s make_blobs functional-
ity, which generates clusters based on a Gaussian distribution
of values. Dataset 500k includes 500,000 entries, each in a
500-dimensional space, with a total of 50 separate clusters.
Dataset 1M, instead, contains 1,000,000 entries in a 1,000-
dimensional space, with 100 clusters.

The training times have been measured for Q ∈ {50, 100}
for the baseline approach, for k-means and for the 2-step
approach with (η, n) = (0.8, 5). Considering that all models
successfully identified the clusters in the datasets (i.e. all
accuracies are 1), only the results in terms of training time
are proposed in Table II.

All 2-step versions have a training speed-up in accordance
with ρ(5, 0.8) ≈ 4.3 (on average, the experimental factor is of
4.5, with a standard deviation of 0.1). For both datasets, scikit-
learn’s version of k-means that implements [12] runs out of
memory before completion. Hence, scikit-learn’s version based
on [16] has been used instead. This introduces an impactful
increase in training time. This makes k-means even slower than
standard self-organizing maps: for Dataset 1M and Q = 100,
the execution of k-means was stopped after 3 days, while the
baseline SOM finishes in less than 35 hours and the 2-step
approach in less than 8. This makes SOMs (and particularly
with the proposed approach) an attractive alternative for very
large datasets.

V. DISCUSSION

Differently from other pre-training methods presented in the
related work, the 2-step approach is based on the training
of two standard self-organizing maps, without other time-
consuming operations involved. This means that existing
works on the parallelized training of SOMs (e.g. [9]) can be
applied to the training of the two SOMs of our approach for a
further training time reduction. This reduction is proportional
to the number of parallel workers. In [9], assuming that the
training of a Q×Q SOM is distributed onto m2 parallel work-
ers, the training time for the entire SOM will be ∝MQ2/m2,
since m2 smaller SOMs are being trained simultaneously. This
reduces the training time of a large SOM down to the time
needed to train a SOM that is 1/m2 of the original one.

The only additional time the 2-step approach (with n = m)
requires, compared to the distributed approach, is the time
it takes to train a large SOM with a small (20%, for η =
0.8) fraction of the dataset. Hence, the 2-step approach, which
runs on a single worker, may reach comparable training times



Dataset Method Q η n Training time (s) Quantization error Accuracy (%)

MNIST baseline 28 - - 323.13 1232.71 90.29
k-means 28 - - 202.92 1162.21 94.17
2-step 28 0.7 2 136.16 1242.02 89.71
2-step 28 0.8 2 116.49 1247.04 88.96
2-step 28 0.9 2 87.95 1262.59 89.02
2-step 28 0.7 7 103.79 1243.75 89.57
2-step 28 0.8 7 73.58 1245.86 89.39
2-step 28 0.9 7 41.38 1263.18 89.07

Fashion-MNIST baseline 28 - - 312.01 1031.78 77.93
k-means 28 - - 178.32 976.97 80.21
2-step 28 0.7 2 139.05 1037.45 77.75
2-step 28 0.8 2 111.13 1042.90 77.51
2-step 28 0.9 2 87.79 1053.60 77.20
2-step 28 0.7 7 102.89 1039.47 77.50
2-step 28 0.8 7 72.62 1044.39 77.98
2-step 28 0.9 7 41.71 1053.46 77.32

CIFAR-10 baseline 28 - - 1464.72 2394.83 32.88
k-means 28 - - 568.33 2335.88 35.16
2-step 28 0.7 2 640.77 2402.47 32.20
2-step 28 0.8 2 516.65 2407.27 32.12
2-step 28 0.9 2 373.68 2418.99 31.56
2-step 28 0.7 7 474.76 2403.36 32.12
2-step 28 0.8 7 322.18 2406.28 32.19
2-step 28 0.9 7 171.98 2421.23 31.94

Character Trajectories baseline 28 - - 92.45 5.51 94.87
k-means 28 - - 38.20 5.45 97.56
2-step 28 0.7 2 42.81 5.93 92.67
2-step 28 0.8 2 35.44 6.25 91.20
2-step 28 0.9 2 28.28 6.68 90.71
2-step 28 0.7 7 30.84 5.94 92.67
2-step 28 0.8 7 22.36 6.27 92.42
2-step 28 0.9 7 13.10 6.73 90.22

TABLE I: Performance on multiple datasets

Dataset Method Q η n Training time
(hh:mm:ss)

Dataset 500k baseline 50 - - 01:50:58
k-means 50 - - 04:25:36
2-step 50 0.8 5 00:25:14

baseline 100 - - 08:47:22
k-means 100 - - 16:52:35
2-step 100 0.8 5 01:54:45

Dataset 1M baseline 50 - - 07:30:49
k-means 50 - - 23:54:43
2-step 50 0.8 5 01:40:46

baseline 100 - - 34:27:02
k-means 100 - - Stopped after 72h
2-step 100 0.8 5 07:26:50

TABLE II: Performance on Dataset 500k and Dataset 1M

with respect to the distributed approach in [9] requiring m2

workers.

Finally, we observe that works such as [7] and [8] both
rely on an initial k-means for the initialization of the weights
in the SOM. Based on the time-wise comparison presented
in Subsection IV-D, the 2-step approach has been shown to
be faster than k-means. As such, using k-means as a pre-
processing step, only to perform further fine-tuning on the
obtained result is bound to have a training time higher than
that of 2-step self-organizing maps.

VI. CONCLUSIONS

In this paper, we presented a 2-step training approach for
self-organizing maps. With this approach, a large portion of
the training set is used to initialize a small self-organizing
map, while the rest of the dataset is used to fine-tune a larger
SOM obtained from replicating the small SOM’s nodes.

It has been shown that this approach has slightly worse
performance (in terms of accuracy and quantization error)
when compared to a standard self-organizing map. Despite
that, the training time of the proposed approach is significantly
(approximately 2x to 8x, based on the experimental results)
faster than the standard (baseline) approach. Larger datasets
have been adopted to demonstrate how the 2-step training can
make larger problems tractable.

All self-organizing maps perform slightly worse than k-
means in terms of accuracy and quantization error. However,
the 2-step approach has a significantly lower training time
than k-means, making it a valid choice for larger problems.
Additionally, the lower performance w.r.t. k-means is com-
pensated by a higher degree of interpretability. To obtain
similarly interpretable results with other clustering algorithms
requires the application of additional techniques, with heavy
computational overheads. Hence, self-organizing maps can be
considered a well-performing, lighter and more interpretable
alternative to other unsupervised techniques.
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