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Abstract—Recurrent Neural Networks (RNNs) such as those
based on the Long-Short Term Memory (LSTM) architecture are
state-of-the-art deep learning models for sequence analysis. Given
the complexity of RNN-based inference, IoT devices typically
offload this task to a cloud server. However, the complexity of
RNN inference strongly depends on the length of the processed
input sequence. Therefore, when communication time is taken
into account, it may be more convenient to process short input
sequences locally and only offload long ones to the cloud. In this
paper, we propose a low-overhead runtime tool that performs this
decision automatically. Results based on performance profiling
of real edge and cloud devices show that our method is able
to reduce the total execution time of the system by up to 20%
compared to solutions that execute the RNN inference fully locally
or fully in the cloud.

I. INTRODUCTION AND RELATED WORK

Deep Neural Networks (DNNs) have become the state-of-
the-art models for a variety of machine learning (ML) tasks;
in particular, Recurrent Neural Networks (RNNs) based on
the Long-Short Term Memory (LSTM) model are increasingly
used for advanced sequence analysis, e.g. in speech recogni-
tion, neural machine translation, sentiment analysis, etc.

The high accuracy achieved by DNNs on these tasks comes
at the cost of a significant computational complexity for
training and inference [1]. Therefore, currently both tasks are
typically executed in high-performance cloud servers equipped
with GPUs and multi-core CPUs. While this is acceptable for
training, which is often a one-time task, several benefits in
terms of responsiveness, energy efficiency and security could
derive from executing inference (fully or partially) in edge
nodes, such as mobile or IoT devices [1]–[14].

To enable the complete execution of DNN inference at the
edge, many researchers have proposed fast and energy-efficient
hardware accelerators [1]–[7]. These specialized designs ex-
ploit the parallelism of the matrix multiplication kernels that
dominate DNN inference, and leverage techniques such as
weight quantization and pruning to reduce the memory bottle-
neck. While initially being focused mostly on Convolutional
Neural Networks (CNNs), research on DNN acceleration has
recently started to consider also RNNs/LSTMs [6], [7].

More recently, however, other works have shown that, in
most instances, the energy- and latency-optimal solution is
not obtained performing inference entirely on the edge node
or on the cloud, but rather partitioning of the computation
between the two [12]–[14]. The work in [12] proposes a 3-
level hierarchical ML framework for multiple-source data,

in which sensors, edge gateways and cloud servers each
perform a partial inference step on their locally available data,
leveraging results from the previous levels and forwarding
theirs to the next levels. In such a way, the amount of data
transmitted between levels is dramatically reduced, positively
impacting latency and energy consumption, at the cost of a
possible decrease in accuracy. In [13] the authors present a
similar approach, in which rather than splitting a task into
multiple partial classifications, the architecture of a single
NN is modified so that the first layers only process data
from a single sensor, thus allowing the corresponding output
activations to be produced at the edge. The subsequent layers
aggregate activation vectors from multiple sensors and are
executed in the cloud. This solution simplifies the design
of the NN, which can be directly trained end-to-end with
back-propagation. The authors of [14] focus on single-source
computer vision applications and propose to perform CNN-
based inference on the edge only up to a certain layer, and
complete it in the cloud. A runtime environment is proposed
to determine the optimal split-layer depending on the network
conditions and on the load of the cloud server.

All these works perform input-independent design choices.
However, it has been shown that input-dependent optimiza-
tions of DNN inference can yield superior energy, latency,
and accuracy results [8]–[11]. In fact, different inputs may
require a different number of features [8], a different weight
quantization [9], a different inference algorithm [10] or even
a different NN [11]. This is particularly true for RNNs, whose
complexity strongly depends on input length [10].

In this work, we propose a framework that applies input-
dependent optimizations to the problem of edge-cloud parti-
tioning of DNN inference, focusing in particular on LSTM-
based recurrent networks; to the best of our knowledge, ours
is the first work addressing this problem. Our method decides
at runtime whether to perform inference locally on the edge or
remotely in the cloud, depending on the length of the processed
input sequence, as well as on the current context of the system
(e.g. network latency). Results based on the profiling of real
edge and cloud devices show that our method can reduce
the total inference time by up to 20%, compared to solutions
running fully locally or fully in the cloud.

II. PROPOSED METHOD

A conceptual scheme of our framework is shown in Fig-
ure 1. We propose to add a small runtime (Mapping Engine) on



the edge node, in charge of deciding where to perform a RNN-
based1 inference between the node itself and a cloud server.
We assume that both the edge node and the server maintain a
local copy of the same RNN model and of its trained weights,
hence both can execute an entire inference independently.
In general, the two devices can leverage different inference
engines, such as the light-weight ARM-NN for the edge node,
and the more flexible Tensorflow for the cloud.
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Fig. 1. Conceptual scheme of the proposed framework.

The runtime takes four inputs, i.e.:
• The input sequence to be processed by the RNN.
• Two regression models to forecast the inference execution

time, one for the edge node and one for the cloud server.
• Context information, such as the status of the network

link (e.g. 3/4G or WiFi) connecting edge and cloud.
Using this information, it selects whether to perform inference
locally or on the cloud for that input, with the goal of mini-
mizing the total latency. The main features of the framework
are described in the following sections.

A. Edge and Cloud Execution Time Modeling

RNNs differ from standard feed-forward deep neural net-
works (such as CNNs) because of the presence of feedback,
which allows them to process sequences of data and learn
temporal relationships among inputs. As shown in Figure 2a
for a LSTM, the two output vectors produced by the network
when processing the i-th input of the sequence (xi), called cell
state (ci) and hidden state (hi), are fed-back to the network
at step i+1. The functional details of RNN/LSTM cells (blue
blocks) are omitted for sake of space; the reader can refer
to [15]. In practice, when performing inference on an input
sequence of length N , the LSTM is unrolled (i.e. replicated)
N times, as shown in Figure 2b. Each copy of the LSTM
performs the same operations and shares the same weight
matrices (learned during training).

Figure 2b suggests that the computational complexity for in-
ference in a LSTM grows linearly with N . Moreover, although
each LSTM block performs a highly-parallel matrix multipli-
cation kernel, parallelism among different unrolled replicas is
limited, as a given replica cannot start until the outputs from

1In this work we focus on LSTM networks, but our framework also applies
to other types RNNs (e.g. vanilla RNNs and GRUs). Therefore, we will use
the terms LSTM an RNN interchangeably.
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Fig. 2. Example of LSTM unrolling.

the previous step are ready [6], [7]. Thus, inference execution
time also grows linearly with respect to input length. Based on
this analysis, our runtime should have at hand, for a given input
length, an estimate for edge/cloud execution time, in order to
determine where to run the inference. Such estimate can only
be built empirically as it is device and NN-dependent. To this
end, the target LSTM is first characterized on both devices,
in order to extract two linear regression models (Edge and
Cloud Model in Figure 1). Figure 3 shows the results of this
characterization for two example devices. Each dot represents
the mean execution time over 100 inferences for a given input
length, for the 2-layer LSTM of [16].
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Fig. 3. Execution time versus input length for the CoVe network [16]. Points
and colored areas represent means and standard deviation intervals over 100
inferences. Lines are linear regression fits. Regression scores: edge MSE =
9.32 · 10−6, R2 = 0.999, cloud MSE = 7.69 · 10−8, R2 = 0.991.

As an edge device (red dots and curve) we consider an
ARM Cortex A-53 @ 1.2GHz, 1GB RAM, Linux OS. The
shaded area around the dots defines the standard deviation of
the execution time, showing the low variability of the results.
The solid red line represents the best linear fit of the data;
fitting scores are reported in the caption.

Estimating cloud execution time is less straightforward, as
besides computation, communication also has an impact. The
total time for cloud processing Tcloud can be modeled as:

Tcloud = Trt +
S(N,M)

B
+ Tserver(N) (1)

where Trt is the round-trip network latency, S(N,M) is
the size in bytes of the input (N elements) and output (M
elements) data, B is the network bandwidth and Tserver(N) is
the server inference time. Due to the typical small input/output
sizes of RNNs (in the order of 100s of Bytes [15]), Tcloud is
dominated by Trt. As an example, assuming S(N,M) = 100
Bytes are transmitted on a 3G link with B = 1 Mbps, the
second term in (1) becomes 0.8 ms. Assuming a typical
value of Trt of 150 ms, this is ≈ 200x larger than the
transmission time. Therefore, for most RNN applications, total
communication time will be bound by network latency, which
is virtually independent of the input size.



This is shown in the blue curve of Figure 3. As an example
of cloud device, we use a NVIDIA Titan XP GPU on a server-
class platform, i.e. 32-thread Intel Xeon E5-2630 CPU @
2.40GHz, 128GB RAM, Linux OS. When drawing the curve,
we assumed the network parameters described above, which
shift all execution times up on the y axis due to the effect of
latency. The slope of the curve (measuring inference time as
a function of input size) is much smaller than for the edge
device due to the higher performance of the cloud plaform,
but the dependence is still almost perfectly linear, as shown
by the scores in caption. For this device, the execution time
standard deviation interval is too small to be visible in the
figure.

Overall, Figure 3 shows the purpose of our runtime: for
short input sequences (N < 8 in this specific instance),
edge processing is faster, whereas cloud offloading becomes
preferable for longer ones.

B. Online Adaptation

The exact break-even point of the previous analysis depends
on the state of the system, and in particular on network
status, which varies over time. In order to adapt our runtime’s
decisions to variations in the network connection we use two
different mechanisms. First, the latency information is updated
every time the runtime decides to perform an inference in
the cloud, using timestamps added by the edge node and by
the cloud server upon sending/receiving the input sequence.
Second, whenever the latest cloud inference took place too
far in time (e.g. more than 1 minute ago), the edge node
pings the cloud server to update its latency estimate. This
second mechanism is needed in cases when a sporadically
large increase in latency shifts the blue curve of Figure 3 so
high that the break-even point moves towards input sizes that
never occur in practice, and therefore our runtime starts to
always select local processing. In that situation, the timestamp
mechanism would never take place, and the runtime would not
notice when the latency decreases again.

In this work, we assume edge and cloud inference times
to be constant. However, our framework can be extended to
also support load variations in the two devices, e.g. using
the methods proposed in [14], as another form of context
information. This extension will be object of our future work.

III. EXPERIMENTAL RESULTS

We tested the proposed methodology on the edge and cloud
platforms described in Section II, i.e. ARM Cortex A-53 CPU
and Intel Xeon + NVIDIA Titan XP respectively. We selected
the CoVe network as a baseline architecture [16]. This NN is
composed of a 2-layer LSTM and is used to process sequences
for a variety of NLP tasks, such as sentiment analysis, question
classification/answering, etc. For our experiments, we used
two of the datasets considered by the original authors of [16],
SNLI (entailment) and SQuAD (question answering). The
same CoVe architecture and weights have been loaded in the
edge and cloud devices using TensorFlow. As our method has
no direct competitor, we compared it against the two trivial

solutions, i.e. running inference fully in the edge or in the
cloud.

We used a Python-based simulator to evaluate the impact
of our runtime on the total execution time of the system. With
respect to testing with the real on-device runtime, the simulator
allows us to assess the impact of different predictable network
conditions on the effectiveness of our methodology.

The simulator receives as input the two regression models
(generated as discussed in Section II-A) and a network con-
nection profile, formatted as a time series of latency/bandwidth
pairs. It then analyzes a set of sequences as if they were fed to
the system one after another, and for each sequence it selects
the optimal inference target (edge vs. cloud) based on the
current network status and on the two regression models. The
impact of the selection is then evaluated by computing the total
processing time for each sentence (including communication
time), accounting for the difference between the regression
estimate (tpred) and the real inference time (treal). The former
is obtained from the models, whereas the latter is measured
on the real edge and cloud devices; thus, we account for both
inference time variability and regression errors.

We also simulate the fact that network information is only
updated when cloud inference is selected or every minute
through a ping. We conservatively assume that pings are
executed sequentially with respect to inferences on the edge
and we account for their contribution on total time. The input-
dependent impact of network bandwidth on communication
time, although negligible, is also taken into account. Finally,
the time overhead of the runtime itself is negligible, even
compared to the execution of 1-input sequences on the edge
node, as it only consists in a look-up of the two regression
models and a simple equation evaluation.

As a first experiment, Figures 4a and 4b show the results of
simulating the inference of 100k random sentences from the
SNLI and SQuAD datasets. Specifically, each graph reports
the reduction of the total inference time with respect to a
fully edge or cloud solution, for different values of network
latency (assumed fixed for the entire simulation). We consider
a reasonable latency range for connections such as 3G (10s-
100s of ms), which are the most commonly used in IoT. As
expected, for small latency values our runtime offloads all
inferences to the cloud and performs exactly as a cloud-only
solution, being thus much faster than a edge-only solution. As
latency increases, however, inferences corresponding to the
shortest input sequences start to be executed locally, saving
time with respect to a cloud-only approach. For instance,
for a 200ms latency our framework outperforms both edge-
and cloud-only solutions by ≈ 19% and 10%, respectively.
Clearly, when latency increases even more, our strategy tends
to coincide with the edge-only case.

Figure 4c shows the impact of the size of the LSTM model;
this graph has been obtained as for Figure 4a, but using a
version of CoVe that only contains 200 LSTM units in each
layer instead of the original 300. The smaller NN makes
inference faster on both platforms, but in particular on the
edge. Therefore, the execution time reduction curves tend to
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(a) SNLI Dataset
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(c) SNSLI Dataset (200 Units)

Fig. 4. Total execution time reduction versus “all edge” and “all cloud” solutions for the CoVe network [16]. Results for different (fixed) network latencies;
bandwidth fixed at 1Mbps (download) and 200kbps (upload).

shift to the left, as a consequence of the fact that edge-side
inference for short input sequences becomes convenient even
for smaller network latency values. As a result, the benefit
with respect to a full cloud solution increases for large latency
values (59% at 300ms versus 28% of Figure 4a). Although not
shown for sake of space, a similar effect would be obtained by
having a different ratio of computational power between edge
and cloud devices, e.g., by using using a faster edge node
with an embedded GPU. Thus, the range of network latency
for which our method yields benefits compared to both trivial
solutions will vary significantly depending on the size of the
LSTM and on the relative speeds of the edge/cloud devices.

Due to regression errors, execution time variability and
outdated network status information, our runtime may some-
time make wrong decisions on where to allocate inference,
especially for input sequence lengths around the break-even
point. To evaluate this error, we have measured, for each run,
the difference in inference time between the choice returned
by our runtime and an “oracle” policy that always takes the
correct decision. On average, this difference is 0.41%, 0.50%
and 0.32% for the three scenarios of Figure 4.

TABLE I
RESULTS FOR VARIABLE NETWORK LATENCY

Dataset N. Units Reduction wrt Cloud Reduction wrt Edge
SNLI 300 17.3 25.3
SNLI 200 43.7 7.2

SQUAD 300 26.0 15.2
SQUAD 200 52.8 2.4

The advantage of our framework is even more evident when
the connection status changes over time, as the runtime can
adapt and dynamically change the selected device for a given
input length. To show this, we have performed inference with
the same data used for Figure 4, but assuming a time-varying
network profile. Specifically, we kept the bandwidth fixed at
1Mbps (download) and 200kbps (upload) and let the latency
increase from 100ms to 200ms at about 1/3 of the simulation
and from 200ms to 300ms at 2/3. The reduction of execution
time in this scenario for the two datasets and two LSTM
sizes are reported in Table I. Our method achieves significant
speed-ups with respect to the two trivial solutions, as both are
strongly sub-optimal in different moments: initially, executing
on the edge is not convenient due to the small latency, whereas
at the end of the simulation the cloud solution suffers from

long delays. In contrast, our method adapts to the current
network status and selects the best approach at all times, i.e.
always cloud when latency is 100ms, always edge for 300ms,
and a “mix” depending on input length for 200ms.

IV. CONCLUSION

We proposed a novel runtime framework to perform collab-
orative LSTM inference between edge and cloud. Our method
selects the optimal device on which to perform inference based
on a characterization of the NN, on the length of the input to
be processed and on the current status of the communication
network. In the future, we plan to extend our runtime to also
consider energy minimization as an objective, and to react to
variations in the cloud server load, as in [14].
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