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ABSTRACT
Smart meters communicate to the utility provider fine-grain infor-
mation about a user’s energy consumption, which could be used to
infer the user’s habits and pose thus a critical privacy risk. State-of-
the-art solutions try to obfuscate the readings of a meter either by
using a large re-chargeable battery to filter the trace or by adding
random noise to alter it. Both solutions, however, have significant
drawbacks: large batteries are prohibitively expensive, whereas dig-
itally added noise implies that the user entrusts the utility provider
to protect his/her privacy.
This work proposes a hybrid approach in which zero-average noise
is inserted in the power trace by means of a small energy storage
device (battery or supercapacitor); the distinguishing feature of our
approach is that this obfuscating device is indistinguishable from
any other load and therefore it complicates by construction the load
disaggregation task performed by the provider or by a malicious
third party. Simulation results show that our device can achieve
comparable or superior privacy enhancement as that of a solution
based on a large battery and therefore with smaller cost.

CCS CONCEPTS
• Hardware → Energy generation and storage; Energy me-
tering; • Security and privacy → Domain-specific security and
privacy architectures.

KEYWORDS
Smart Meter Privacy, Energy Storage, Load Disaggregation

1 INTRODUCTION
Smart meters are advanced devices measuring energy consumption
with muchmore detail than a conventional meter: they can transmit
to the utility information for monitoring or billing purposes and
even communicate with a number of smart appliances to apply
energy saving policies. The frequency of the readings of a smart
meter can be at the second scale, thus raising possible privacy issues
concerning user’s behavior [4, 7, 10, 17]. There is a rich literature of
algorithms extracting detailed information on domestic appliances
usage by analyzing and disaggregating household power traces; this
operation, usually termed Non-Intrusive Load Monitoring (NILM),
does not require the per-appliance installation of smart plugs, thus
being totally transparent to the user [8].
Methods to hijack NILM algorithms for enhancing user privacy
fall into two main categories. A first strategy uses an energy stor-
age device (ESD) to filter out variations in the power trace; at the
extreme, this allows to generate a completely flat profile equal to
the average power consumption of the household [6, 11]. However,

regardless of the strategy adopted, this solution needs at least a 1
kWh ESD and a small inverter, thus implying a cost easily exceed-
ing 1,000$ [11]. Consequently, it is practical only in case of smart
residential grids that already include an ESD.
A second solution is to inject an additive digital noise with zero
average into the power trace [3, 4, 23]. This solution has a much
lower cost than using an ESD. However, noise addition is performed
within themeter: the utility company de facto knows its distribution,
and could be able to filter it out. Thus, this method guarantees data
privacy against third parties monitoring the traffic from meter to
cloud, but not against the utility company itself.
In this work, we propose a hybrid approach in which a small ESD
(battery or supercapacitor) is used to insert noise in the power trace.
The ESD and its control circuitry (called noise generator, NG, here-
after) work as a special appliance that, at different times, either
contributes to the energy consumption or provides energy. The
proposed NG has several benefits with respect to existing strategies:

• We apply noise randomly, not necessarily in correspondence of
switching events. As an effect, our method requires a smaller ESD
with respect to filtering-based schemes, with benefits in total cost,
volume and safety. Moreover, it does not require complex control
policies to monitor the total power demand by other appliances.

• Our solution adds noise ‘‘as a load’’ to the actual power trace seen
by the meter, thus not exposing the original power profile to the
utility company, as done by techniques adding digital noise in the
meter. Moreover, this paradigm makes the solution independent
of the type of meter and of the NILM algorithm.

Experimental results show that our method obtains privacy lev-
els comparable with previous approaches but using an ESD with
smaller energy and current driving capability. This allows to use a
supercapacitor instead of a battery, with the benefit of practically
nullifying depreciation costs due to battery aging.

2 BACKGROUND AND MOTIVATION
2.1 Background on NILM Algorithms
NILM aims at estimating the power demand of individual appliances
from an aggregate power trace gathered by a single meter [8].
NILM algorithm are based on detecting the appliance operations
status (e.g., ON andOFF) from powermeasurements, and can be clas-
sified as event-based or state-based. Event-based approaches focus
on state transitions generated by appliances: they detect changes in
the aggregate load to identify the beginning/end of an event and the
corresponding state change [2]. State-based approaches represent
appliances as state machines, whose transitions are associated with
a probability distribution, based on their usage patterns [9].



A key problem in NILM is the extraction of appliance signatures,
which allow to identify appliance operations from the aggregated
load. As an example, Figure 1 shows an aggregated load, where ap-
pliance signatures (colored lines) allowed to identify the activation
of three appliances (colored boxes). Signatures are derived from
load profiles and from appliance-specific information through a
learning phase. In the subsequent inference phase, appliance states
and power consumption are estimated from meter readings. Some
NILM techniques use traces relative to individual appliances during
training (supervised NILM), while others are agnostic of the appli-
ances present in the aggregated profile (unsupervised NILM). For
an exhaustive survey on NILM, the reader is referred to [5].
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Figure 1: Example of appliance signatures identification in
an aggregated load profile. Arrows represent state changes.

2.2 Related Work
Protection of smart meter data is typically achieved by either filter-
ing the power consumption trace through an ESD, or obfuscating
the trace by adding noise.

2.2.1 Filtering the Power Trace. Several works protect smart meter
data privacy using a re-chargeable battery to filter the load profile,
thus masking appliance features [11, 18, 23]. Ideally, a battery could
be used to make the load profile perfectly flat over a billing period,
with a value equivalent to the average power consumption [11].
However, this is generically not practical, and filtering policies
are made less aggressive by activating battery charges/discharges
only in correspondence of changes in the load profile, which are
typically associated to an appliance activation [18].
This solution has cost as its main drawback; in order to achieve a
good level of masking, and given typical household load fluctua-
tions, battery packs with a significant energy are required. Previous
works propose values ranging from 0.5kWh to 12kWh [11], cor-
responding to bulky battery packs and a significant cost for the
user, e.g., around 1,200$ for a typical 1.2kWh (12V, 100Ah) deep-
cycle Li-Ion battery [22]. Importantly, this cost does not include
the depreciation of the battery, which will become unusable and
should be replaced after a number of charge/discharge cycles [11].
The use of batteries to ‘‘filter’’ the load profile is therefore practical
only if (i) the house hosts a smart residential grid with an ESD and
renewable resources [6], or (ii) its size can be reduced significantly.

2.2.2 Obfuscating the Power Trace. Obfuscation techniques operate
blindly with respect to appliances and transition events, and try
to add spurious signals to the power trace. A simple yet effective
approach is presented in [3], where a zero-average random number
in an interval of [−X ,+X ] is added digitally to the meter reading,
with X tuned by the user. The zero average guarantees that the
utility provider can obtain a good approximation of the real total
consumption by summing all received data.

The drawback of this approach is that the noise addition is imple-
mented inside the meters; as such, the characteristics of the noise
signal are decided by the utility provider, which may be able to
remove the inserted noise upon receiving the data, for example
by modeling its distribution in the NILM algorithm, or even by
simply removing the exact value added by the meter, if noise is
generated based on a deterministic pseudo-random sequence. So,
even assuming that users are given the possibility of selecting some
parameters of the noise insertion (e.g.X ), this approach still implies
full trust of the user on the energy provider effectively adding the
noise as agreed, in a truly random way. In that, this approach is not
substantially different from the simple encryption of meter data,
paired with a data usage agreement between user and provider (e.g.,
the provider stating that user data will not be used for NILM appli-
cations). Conversely, our approach is based on directly generating
a ‘‘scrambled’’ power trace whose alteration is controlled only by
the user by randomly charging/discharging an ESD.

3 POWER TRACE OBFUSCATION METHOD
Figure 2 describes the basic concept of the proposed method. A
custom device (noise generator, NG) is attached to the AC-bus down-
stream of the meter, as a regular load. The NG consists of an ESD
(battery or supercapacitor), a bi-directional DC/AC converter (to
allow flow of current in and out of the ESD), and a control circuitry,
which decides whether the NG behaves as a load (consuming power)
or as a generator (inserting power into the AC bus).
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Figure 2: Conceptual scheme of the proposed method.
In this system, the ‘‘noise’’ is a result of the randomized policy
implemented by the controller (CTRL): regardless of the events on the
AC bus, the NG adds or draws power according to some distribution
which guarantees that the sum of the added and drawn power
over a billing period is approximately zero. A perfect zero balance
obfuscation is not required, as the maximum allowed error for
active energy reading for residential consumers is ± 1-2% [3, 21].
Note that our NG is agnostic of the load profile. Unlike other fil-
tering approaches, we do not try to smooth the power trace in
correspondence of the activation of an appliance: the controller
operates autonomously by generating a random power demand or
injection at random times.

3.1 System Operations
TheNG operation is governed by the controller, whichmonitors and
affects the operation of the ESD and of the bidirectional converter
through status and control signals. At a given time point t , the
controller generates a pair of random values (Pt ,Tt ): Pt is the power
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value to be added or drawn, andTt is the time for which this power
value is applied. Therefore, the controller repeatedly generates a
request for an energy amount of Et = Pt ·Tt , as conceptually shown
in Figure 3. Pt is added to the total power demand requested by all
other appliances in the household Pload,t , so that the meter ‘‘sees’’
a total power Pmeter,t = Pload,t + Pt .
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Figure 3: Basic operations of the Noise Generator.

3.1.1 Generation of Pt . The controller first generates a Pt power
value according to a user-defined distribution. The extremes Pmin
and Pmax of this distribution i.e., the maximum provided or ab-
sorbed power, are determined based on the operating limits of the
ESD. The only requirement on the distribution is that Pmin < 0
and Pmax > 0 to guarantee that power can be both drawn and
generated. However, there is no need that the power distribution
has zero average or even that it is symmetric, since what should
be approximately zero sum in every billing window is the energy
balance, i.e. the sum of products between Pt and Tt .
Pmin and Pmax are derived as follows. First, the maximum charge/
discharge current of the ESD I ′max,c , I ′max,d are obtained from the
datasheet and are converted to power values P ′max,c , P ′max,d by
multiplying them by the nominal voltage. Even if this does not hold
in general, in this calculation we consider the nominal voltage to be
constant, since the output of the ESD will be stabilized by a DC/DC
converter before being connected to the AC bus.
These ESD power limits are then converted to output AC power
limits according to the combined efficiency η of the bi-directional
AC/DC converter and of the voltage regulators:

Pmin = −
P ′max,c

η
, Pmax = η · P ′max,d

In general, the efficiency of a converter is a function of its input and
output voltage and other operating conditions. By using a stabilized
voltage at the input of the DC/AC converter, however, we can safely
assume its efficiency as constant. For what concerns the regulator,
instead, more accurate models can be used, as the ESD voltage can
be variable (especially in case of a supercapacitor).

3.1.2 Generation of Tt . Once Pt is determined, the controller pro-
ceeds to the generation of a random time interval Tt . In general,
Tt can be generated according to a different random distribution
with respect to Pt , hence increasing the NG configurability and the
effectiveness of load obfuscation.
The extremes Tmin and Tmax of the distribution of Tt determine
a trade-off between the aging of the ESD and the effectiveness of
the obfuscation for high-frequency events. Their values are con-
strained by several factors. Firstly, as the generated T s determine
the length of each noise "pulse" inserted by the NG, their bounds

affect what kind of load variation ‘‘events’’ can be masked by our
proposed method, with shorter pulses being able to alter higher
frequency variations. Clearly, if the characteristics of the smart
meter are known, Tmin should not be set to a value smaller than
the sampling frequency of the meter. T s are also constrained by
the characteristics of the ESD: the selected pulse durations affect
the depth-of-discharge (DoD) of the ESD, which for some devices
like batteries can significantly impact their aging. Finally, the most
stringent constraint comes from the observation that T should not
be too large to prevent over-charging and over-discharging of the ESD.
To this end, the controller must keep track of the State-of-Charge
(SoC) of the ESD at all times (feedback from the ESD to CTRL in
Figure 2). The SoC is then combined with the current IESD,t ab-
sorbed/provided by the device in correspondence of a generated
power value Pt , to determine the time of full-charge/discharge. This
explains why Pt must be generated first: its value is necessary to
determine the range of feasible T s.
IESD,t is simply determined from Pt as: IESD,t = P ′t /VESD , where
P ′t is the power absorbed/provided by the ESD, and is related to
Pt through the converter and regulator efficiency, as explained
above. Then, the time of full-charge Tmax,c (when Pt < 0) and of
full-discharge Tmax,d (when Pt > 0) are:

Tmax,c =
E(1 − SoC)
|IESD,t |

, Tmax,d =
E · SoC
|IESD,t |

where E denotes the nominal energy (capacity) of the ESD (e.g., in
Ampere-hours for a battery and in Farad-Volt for a supercapacitor).
Notice that there can be conditions (e.g., ESD almost completely
charged or discharged) when Tmax,c or Tmax,d are smaller than
the user-imposed Tmin , i.e., full charge/discharge is reached with a
pulse length smaller than the minimum allowed. In these cases, the
controller simply discards the candidate Pt and generates a new
one, until a feasible value is obtained.

3.1.3 Enforcing Zero Energy Balance. One important requirement
of this solution is that the NG does not alter the total energy cost; the
controller must then guarantee a zero-mean energy balance in each
billing window, which typically lasts 4-12 hours for a residential
plan. The lengths of billing windows are known to the users, as
subscribers of a contract, and can thus can be configured in the
system before deploying it.
To enforce a balance between the total energy absorbed and pro-
duced by the NG, we use a ‘‘lazy’’ compensation at the end of each
window. The controller keeps track of:
• the energy balance from the start time t0 of the current billing
window Et =

∑t
τ=t0 PτTτ

• the maximum energy that can be provided by the ESD before the
end of the window, computed as the product of the minimum (if
Et < 0) or maximum (if Et > 0) power and the time remaining
before the end of the window tf , i.e.:

Eof f =

{
Pmax (tf − t), i f Et < 0
Pmin (tf − t), i f Et > 0

While tracking Et , when Et and Eof f become of the same magni-
tude, the controller overrides the random generation and absorbs/
provides Pmin /Pmax for the rest of the billing window.
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While this introduces some determinism in the operations, if the
Pt distribution has zero-mean as well, the condition Et ≈ Eof f will
occur only towards the end of period and the tf − t will thus be
short (a few seconds) compared to the length of a billing window.
Therefore, the obfuscation capabilities of the NG will not be de-
graded significantly. The study of more advanced balancing policies
will be subject of future work.
Notice that Eof f is guaranteed to be available in the ESD because,
as a result of the zero average charge/discharge pattern, the ESD
will tend to have a SoC equal to its initial value plus/minus the
energy imbalance accumulated during the last billing period.

3.2 Design Issues
3.2.1 Choice of ESD. The proposed method is not restricted to a
specific type of ESD (battery or supercapacitor). This is because, as
shown later, an effective Noise Generator can be designed including
an ESD with small energy capacity; previous methods that required
capacity > 1 kWh would require hundreds of large supercaps.
Table 4 summarizes the pros and cons of the two types of ESD.
In general, the cheapest solution depends on many parameters
(mainly onTt,min andTt,max ), and on the relative cost of supercap
and battery (replacing the batteries many times still costs less than
a single supercap). A more quantitative analysis is carried on in
Section 4.4.

Cost Energy Efficiency Aging

Supercap •Higher non-
recurrent cost 
(100Wh cost 
>500 $)

• Output voltage highly variable: need a 
DC/DC regulator at the ouput
• Efficiency of the regulator can be low 
especially when voltage is low

•Virtually unlimited, 
>106 full cycles 
•Can assume NO 
aging cost

Battery • Relatively
low-cost 
(100Wh cost 
<50$)

• Output voltage relatively stable: does not 
need a DC/DC regulator at the ouput
• Efficiency of the regulator can be kept high 
by appropriately choosing the voltage of the 
battery pack 

• Cycle life is limited 
(500-1000) equivalent 
full cycles
• A replacement cost 
should be included

Figure 4: Figures of merit for the two ESD options.

3.2.2 Bidirectional AC/DC Converter. The design of bidirectional
AC/DC converters presents several challenges, e.g., the need of
power factor correction (PFC), low distortion currents, high-quality
DC output voltage [15, 16]. Most implementations in literature
target large DC voltages typical of a big battery pack (e.g., for
electric vehicles). In our case, the low currents and voltage levels
of the ESD actually simplify the design of the device. In this work,
as the design of such bidirectional AC/DC converter is out of the
scope of our research, we consider this device as an off-the-shelf
component. Notice that the design and cost issues relative to this
component are totally ignored in previous works [11, 18, 23]. As
we will show in Section 4, however, its cost can be non-negligible
in the overall assessment.

3.2.3 Controller. The task of the controller can be implemented
either using an embedded microcontroller [1] or entirely in HW
using an embedded FPGA [16]. Whatever the implementation, the
controller will consume some power, that should be taken into
account during the generation of Pt . In practice, however, modern
microcontrollers and FPGAs consume fractions of a Watt [19, 20].
Thus, the discussion relative to the generation of Pt is still valid,
given the different power magnitudes between the ESD and the
controller.

4 SIMULATION RESULTS
4.1 Models
For the privacy assessment of the proposed solution, modeling the
non-idealities of the ESD and of the converters (in particular their
inefficiency in transferring energy) has limited importance. As a
matter of fact, these inefficiencies will simply imply that a given
current drawn from (or inserted into) the AC bus will result into
(i) a larger current into/from the ESD and (ii) some losses in the
conversion process. For this reason, when evaluating the obfusca-
tion effectiveness of our method, we do not use specific models for
the ESD and the converters, and we use a single efficiency factor
η, which lumps all the inefficiencies into a single quantity, as dis-
cussed in Section 3. These inefficiencies have rather impact on the
aging of the ESD, as will be discussed in Section 4.4

4.2 Benchmarks and Metrics
4.2.1 Reference NILM and Adopted Dataset. Our reference NILM
algorithm is the NeuralNILM approach proposed in [13], which
is based on neural network architectures and proved to achieve
state-of-the-art accuracy scores. NeuralNILM proposed two main
architectures: the denoising autoencoders approach tries to recover a
‘‘clean’’ trace of power demand of an appliance from the aggregate
power demand, while the rectangles approach identifies start time,
end time and average power demand of each appliance activation.
To allow a fair comparison, we select the same dataset used by
NeuralNILM, i.e. UK-DALE [14], which is open-access and contains
power consumption traces from five houses, sampled every 6 sec-
onds. In our experiments, NeuralNILM models are trained in the
same way as [13]. Disaggregation metrics are evaluated on four
appliances (washing machine, microwave, dish washer and fridge)
and on the UK-DALE ‘‘house 2’’ power traces.

4.2.2 Evaluation Metrics. We use the following metrics to estimate
the privacy generated by our power trace obfuscation approach,
and its impact on NILM algorithms:

• Mean Absolute Error (MAE) between the estimated power con-
sumption and the actual power consumption;

• F1-Score: a common metric of classification accuracy, calculated
as the harmonic average between (i) the proportion of positive
results that are true positives (precision) and (ii) the proportion
of true positives that are correctly identified (recall) [5];

• Relative Error in Total Energy (RETE), i.e., between the total pre-
dicted energy and the total actual energy.

• Pearson’s correlation, used to express privacy as the correlation
between the obfuscated consumption profile and the real con-
sumption profile [3]. A correlation value close to 0 has a high
privacy level, while 1 has a low privacy level;

• Relative entropy, estimates how much information the adversary
acquires from the observed (obfuscated) consumption profile
[12]. This metric requires the estimation of the Probability Mass
Function (PMF) of power traces, discretized into a set of his-
togram bins. To compare our method with [12], we computed
PMFs using 200 bins.

The first three metrics assess the quality of a NILM algorithm,
whereas the last two are NILM-independent privacy measures.
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Figure 5: Impact of ESD parameters on different privacy and NILM ‘‘quality’’ metrics.

4.3 Parameter Space Exploration
In this first set of experiments, we explore the impact of two of the
main ESD parameters on the effectiveness of the power trace ob-
fuscation. Herein, we report generic results, valid for both batteries
and supercapacitors since the goal is only to obtain an estimate of
the ESD parameters required to obtain sufficient privacy.
We fix Tmin and Tmax of the noise generation algorithm to 5s and
100s respectively. These values are selected reasonably, but they
are not explored. In fact, we assume that the NILM algorithm used
to disaggregate power traces is unknown to the user. Thus, tuning
these parameters to ‘‘disturb’’ a specific NILM method would be
a form of over-fitting. In contrast, the minimum pulse width is
selected to be comparable with the sampling period of the meter,
whereas the maximum is chosen to be large enough to partially
mask some relevant appliance events (e.g., the activation of the
microwave, or of the centrifuge in a washing machine). We draw
both Pt and Tt values from uniform distributions.
We then simulate different noise insertions on the UK-DALE data,
exploring the impact of the minimum and maximum power values
(Pmin and Pmax ) added by the NG on the AC bus, and of the energy
E of the ESD. We assume Pmin = −Pmax , and we report the results
for three different values of energy (120Wh, 240Wh, 480Wh) and
maximum power (100W, 250W and 500W).

4.3.1 Comparison with state-of-the-art privacy mechanisms. The
leftmost two plots of Figure 5 report the results of this parameter
exploration on NILM-independent privacy metrics, i.e. correlation
and relative entropy. As expected, when the maximum power ab-
sorbed/provided by the ESD (i.e. the ‘‘height’’ of the power pulses)
increases, the correlation among noisy and noiseless power traces
decreases, being a measure of similarity. In contrast, the relative
entropy increases, being a measure of the difference between traces.
Interestingly, both metrics remain approximately constant for dif-
ferent ESD capacities at a given power level. This is explained by
the fact that our method only inserts short power pulses of small
absolute power. Indeed, even a pulse of maximum length (Tmax =

100s) and height (Pmax = 500W) discharges the smallest energy
ESD (120Wh) of about 12%. Thus, the benefit of having a larger
energy capacity is only being able to apply a longer sequence of
power pulses with the same sign (i.e., charging or discharging the
ESD multiple times), and has a limited effect on privacy.
These results can be used to compare our method with previous
privacy mechanisms for smart meters. In terms of correlation, our
method outperforms the one in [3], based on inserting noise digi-
tally in the meter readings. Indeed, they reported a correlation of

0.489, which is larger than the one obtained with our method, even
for the smallest power value of 100W. In terms of relative entropy,
when considering an ESD with maximum output power of 250W,
we obtain comparable results to those reported in [12], i.e., relative
entropy ≈ 0.5 for the same power level (configuration ‘‘B1’’ in their
paper). However, since the algorithm in [12] is based on filtering
peaks in the power load, they must inevitably use a battery with
large energy capacity (500Wh). In contrast, as shown by Figure 5,
our noise generation approach obtains the same level of privacy
with a 4x smaller energy (120Wh).

4.3.2 Effect on NILM disaggregation metrics. The rightmost three
plots in Figure 5 report the disaggregation quality metrics obtained
with NeuralNILM [13] for the considered power and energy combi-
nations. The plots report the percentage variation of different scores
with respect to the baseline obtained by NeuralNILM on the original
UK-DALE traces. The scores reported are the average over the two
considered NILM methods (autoencoders and rectangles) and over
all considered appliances.
As expected, all metrics worsen when the power injected/absorbed
by the ESD increases (the F1-score reduces, while errors increase).
Interestingly, with an ESD power of 100W, the F1-score improves
with respect to the baseline. While we do not have a certain expla-
nation for why this happens, the small MAE variations (2-5% larger
than the baseline) also show that this power level is not sufficient
to significantly affect an advanced NILM algorithm. Conversely,
when maximum power is increased to 250W, the average F1-score
worsens of 7-10%, while the MAE increases of 27-30%, and the RETE
explodes to +100-120%. Even larger variations are obtained with a
maximum power of 500W. As for NILM-independent metrics, also
in this case there is not a clear relation between ESD energy and
scores. In general, the NG appears to obtain similar obfuscation
results regardless of energy, except for the case of Pmax = 500W
for the MAE metric.
In general, the choice of the appropriate ESD parameters depends
on the desired level of privacy. However, given these results, a
peak power of 250W and an energy of 120Wh can be considered
sufficient, since they induce significant worsening in all considered
metrics, even for an advanced disaggregation approach such as
NeuralNILM. Unfortunately, a comparison with state-of-the-art
methods for smart meter privacy is not possible in this case, as
none of the previous works evaluated the effect of their methods
on the performance of a real NILM algorithm.
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4.4 Cost Analysis
In this section we analyze the overall operation cost for a specific
design point of our NG, considering two possible choices of the
ESD: a re-chargeable Li-Ion battery and a super-capacitor.
Based on the analysis of Section 4.3 we choose a maximum power
of 250W as it guarantees a good privacy level. Concerning energy
(capacity), the analysis of Section 4.3 would lead us choose the
smallest point (120Wh) as privacymetrics are basically independent
of the ESD energy. However, different energies translate into a
different impact of currents to/from the ESD, and this affects aging
in case of a battery; therefore, we analyze all three energy values
for the battery: B1 (120Wh), B2 (240Wh), and B3 (480Wh), while
for the supercapacitor (SC) we stick to the 120Wh case.
The total privacy protection cost Cpr iv over a time T is obtained
as CTpr iv = Chw + C

T
loss + C

T
depr , where Chw is the cost of the

NG hardware components (ESD + converters + controller), CTloss
is the energy cost due to battery and converter inefficiencies, and
CTdepr is the depreciation cost of the ESD in an interval [0,T ]. For a
battery, the latter depends on the number of full charge/discharge
cycles completed from 0 to T and can be computed as the effective
number of cycles NT

cyc,ef f =
∫ T
0 |I (t)|dt/2Qnom , where Qnom is

the nominal charge in Ah of the ESD. The depreciation cost will
therefore beCTdepr = CESD ·NT

cyc,ef f /Ncyc,max , where Ncyc,max

is the maximum expected number of cycles (typically given in
datasheets). Table 1 report the cost comparison among the battery
and supercapacitor ESD configurations. We assume a cost of the
electronics of 20$, identical in all cases. Considering an overall
average efficiency of the power conversion chain of 95%, we obtain
55kWh/year of power losses, which assuming 0.05$/kWh yield a
CTloss of about 3$/year.

Table 1: Cost comparison (Ncyc,max = 500).

ESD N 1yr
cyc,ef f CESD C1yr

depr C3yr s
depr C1yr

pr iv C3yr s
pr iv

B1 4960 25$ 248$ 744$ 296$ 795$
B2 2483 50$ 248$ 744$ 321$ 824$
B3 1241 100$ 248$ 744$ 371$ 873$
SC - 400$ 0$ 0$ 423$ 429$

For the ESD cost, we assume battery packs built using 5Ah 18650
Li-Ion batteries (≈ 4$ each) and arranged in series (s)/parallel (p)
to reach a nominal voltage of 24V. This is obtained with 7s for B1
(≈ 25 $), 7s2p for B2 (≈ 50 $), 7s3p for B3 (≈ 75 $). For the supercap,
we consider 3000F, 2.7V components (≈ 20 − 30 $ each), arranged
in a 9s2p pack, for a total of ≈ 400$).
We can notice how, as a result of the frequent charges/discharges
on the battery, the number of effective cycles is quite large (≈ 5, 000
in one year operation for the 120Wh case). Assuming a typical
value of Ncyc,max = 500 cycles (the one used in the table), this
implies replacing the whole pack 10 times a year. With these values,
the large initial investment of for the SC becomes convenient after
about 18 months of operations.

5 CONCLUSIONS
We have proposed a novel method to protect users privacy against
load disaggregation from smart meter data. Thanks to an in-house
noise-generating device, we solve themain privacy issue of previous

methods based on noise generation, while requiring an ESD with
smaller energy compared to standard load-filtering approaches.
This renders a supercapacitor-based implementation affordable,
thus practically eliminating recurring costs. In future work, we
plan to evaluate the costs of our approach using more advanced
ESD models, including secondary effects of batteries (e.g. rated
capacity) variable regulator/converter efficiencies, etc.
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