
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dynamic bit-width reconfiguration for energy-efficient deep learning hardware / Jahier Pagliari, D.; Macii, E.; Poncino, M..
- ELETTRONICO. - (2018), pp. 1-6. (Intervento presentato al convegno 23rd IEEE/ACM International Symposium on
Low Power Electronics and Design, ISLPED 2018 tenutosi a Hyatt Regency Bellevue, usa nel 2018)
[10.1145/3218603.3218611].

Original

Dynamic bit-width reconfiguration for energy-efficient deep learning hardware

Publisher:

Published
DOI:10.1145/3218603.3218611

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2785755 since: 2020-01-30T11:33:16Z

ACM

Dynamic Bit-width Reconfiguration for Energy-Efficient Deep
Learning Hardware

Daniele Jahier Pagliari
Politecnico di Torino

daniele.jahier@polito.it

Enrico Macii
Politecnico di Torino
enrico.macii@polito.it

Massimo Poncino
Politecnico di Torino

massimo.poncino@polito.it

ABSTRACT
Deep learning models have reached state of the art performance
in many machine learning tasks. Benefits in terms of energy, band-
width, latency, etc., can be obtained by evaluating these models
directly within Internet of Things end nodes, rather than in the
cloud. This calls for implementations of deep learning tasks that can
run in resource limited environments with low energy footprints.
Research and industry have recently investigated these aspects,
coming up with specialized hardware accelerators for low power
deep learning. One effective technique adopted in these devices
consists in reducing the bit-width of calculations, exploiting the
error resilience of deep learning. However, bit-widths are tipically
set statically for a given model, regardless of input data. Unless
models are retrained, this solution invariably sacrifices accuracy
for energy efficiency.

In this paper, we propose a new approach for implementing
input-dependant dynamic bit-width reconfiguration in deep learn-
ing accelerators. Our method is based on a fully automatic char-
acterization phase, and can be applied to popular models without
retraining. Using the energy data from a real deep learning acceler-
ator chip, we show that 50% energy reduction can be achieved with
respect to a static bit-width selection, with less than 1% accuracy
loss.

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Hardware
→ Application specific integrated circuits; Methodologies for
EDA;

KEYWORDS
Energy-efficiency, Deep learning, Energy-quality tradeoff

1 INTRODUCTION
Deep Neural Networks (DNNs) have recently gained popularity
thanks to their effectiveness in classification problems in a wide
set of domains, such as natural language processing, computer
vision, etc [8]. Besides the availability of large datasets, essential
for a meaningful learning phase of these networks, another key
element in the success of DNNs is the access to high-performance
computing resources such as GPUs or large servers [8]. These
hardware resources, however, have power requirements in the
range of the hundred of Watts, which are clearly only available via
direct connection to the power grid.

On the other hand, there is an increasing demand of low-power
deep learning hardware that can implement these algorithms in
“edge” nodes (mobile, IoT sensors, wearables etc), which besides

having limited computational power, are also typically battery-
powered [2]. This need applies in particular to the usage of DNNs
for inference, whereas training could still be done in the cloud [6].

One solution to achieve the required power efficiency is to design
specialized hardware accelerators for DNNs inference. Many of
these accelerators have been already proposed in literature, with
particular focus on the class of Convolutional Neural Networks
(CNNs) for vision tasks [3, 14–17, 19].

Perhaps the most popular low-power strategy implemented
in these designs consists in performing computations at reduced
bit-widths, thus trading off accuracy for smaller power consump-
tion [14, 16, 19]. This technique yields benefits both in the data
path and in the memory path, thanks to the reduction of the energy
cost for data transfers, which usually dominates the total energy
consumption for these systems [3].

Bit-width reduction works well due to the well-documented
intrinsic error resilience of machine learning tasks. Many works
have demonstrated that high-precision computations are often un-
necessary in presence of statistical algorithms; moreover, adding
noise during training has been shown to improve estimation accu-
racy [9, 10, 13, 18].

Most of the above works share the characteristic that the bit-
width is set statically, either for the entire neural network or on a
layer-by-layer basis, and is not adapted to different inputs. Static
bit-width often causes losses in accuracy, whenever there exist
particularly “difficult” inputs that cannot be classified correctly
using low precision. While this effect is alleviated by retraining the
networks, this means that every time an existing hardware has to
be used with a new model: (i) an optimal precision for the model
has to be fixed and (ii) the model has to be retrained.

Very few works have addressed the issue of adaptively reconfig-
uring the precision of DNNs to the characteristics of the inputs. The
most effective and closer to the proposed solution, is the method
of [15], which applies a “big/little” paradigm to DNNs: “easy” inputs
are classified using a “little” DNN, whereas “difficult” ones use a
”large” DNN. The limitation of this approach is that it requires a
double algorithm design effort, as the “big” and “little” DNNs are
effectively two full, separate, hand-crafted networks.

In this work, we propose a newmethod that is somehow inspired
to [15] in its principle, but uses dynamic bit-width adaptation as a
mechanism to tune the accuracy and power of a CNN accelerator.
Our method does not need retraining and can be applied automati-
cally to an existing CNN model, via a preliminary characterization
phase. Moreover, it is hardware agnostic, and can be applied to any
CNN accelerator that supports multiple precisions. In this paper,
we show its application to the design of [14].

Experiments on two popular CNN models show that our method
can reduce inference energy consumption as much as 50% with

respect to a static bit-width solution, with a loss of accuracy of less
than 1% with respect to a reference floating point model.

2 BACKGROUND AND RELATEDWORK
2.1 Convolutional Neural Networks
Convolutional Neural Network (CNN) models are considered as
the state of the art for many vision-related classification tasks [8].
A high level view of a traditional CNN architecture is shown in
Figure 1. The network consists of a series of layers, performing feed-
forward computations on input feature maps to produce output
feature maps.

Input RGB
Image

Feature
Maps

…

Input Conv 1 Conv NPool 1 Pool N FC 1 Output

P(y0|x)

P(yN-1|x)
sum(

= f(𝛴 x
Output
“pixel”

Bias bij

+)

Weights WijInput
“window”

Figure 1: High-level diagram of a CNN.

The first layers are normally an alternation of convolutional
layers (Conv), which extract local features from the previous layer,
and pooling layers (Pool), that reduce the dimensionality of feature
maps, for model size containment and for improving translation
invariance. The last layers constitute the actual classifier and are
typically fully connected (FC), i.e. each feature is a function of all
features from the previous layer. Many variations on this basic
architecture have been devised; for a more extensive review of deep
learning and CNN models, readers are referred to [8].

From a computational standpoint, it has been shown that Conv
layers account for more than 90% of the total number of opera-
tions [10]; therefore, these are the key layers to be targeted for
reducing energy consumption. The basic function implemented
by a Conv layer is shown in the zoomed callout of Figure 1. The
j-th output feature map is computed by a filtering operation over a
sliding window of elements from all input maps. Elements in the
window are multiplied with a matrix of weights, and then summed
with each other and with a bias. A non-linear function (typically
a REcitified Linear Unit or ReLU) is applied to the outputs of this
summation to obtain one element of the output map. Therefore,
the basic operation performed in a Conv layer is a multiply and
accumulate (MAC). Values for weights and biases are learned dur-
ing the training phase. Subsequently, the network can be used to
classify images in the so called inference phase.

2.2 Low-Power CNN Hardware Accelerators
Several works have proposed implementations of low-power HW
accelerators for CNNs on FPGAs [20] and ASICs [4, 7, 14, 16, 21].
Many of them rely on some form of computational approxima-
tion [2], leveraging the fact that machine learning is a typical er-
ror tolerant application domain. We will specifically survey these
approaches as they are more closely related to our work. Some
strategies enable approximations in terms of allowing errors to
occur either by simplifying operations in “critical” neurons (e.g.,

[16, 21]), or by aggressive use of voltage (and/or frequency) scaling
on memories and datapath operators [14, 16]. A vast category of
solutions relies on reduced precision computations, often referred to
as network quantization. Reduced precision (i.e., bit-width) permits
energy savings both in the datapath hardware and in the mem-
ory hierarchy, which is often the energy bottleneck, given that
state-of-the-art models may have million of parameters [14, 16, 21].

The broad adoption of quantization in CNN accelerators is moti-
vated by the works of [9, 10], amongst others. They showed that
quantized networks with appropriate fixed point data formats can
obtain accuracies comparable to those of floating point models.
Although quantization could be applied to both training and infer-
ence, [6] has shown that on-line learning is not necessary for most
applications. Thus, inference is where low-power consumption is
most important, while training can be left to the cloud.

Brought to the extreme, the quantization idea lead to the devel-
opment of Binary CNN models (BNNs), i.e. 1-bit quantization [11].
Accelerators for BNNs with remarkable energy footprints are al-
ready starting to be designed [3]. However, BNNs are obtaining
state-of-the-art performance only on simple tasks (e.g. handwritten
digit recognition).

All previous solutions use quantization in an input-independent
way: the bit-width is set either uniformly for the entire network,
or differently for different sections of the model (single neurons or
layers), yet independently on the considered input data. None of
them considers the possibility of having a dynamic tuning of the
precision based on input characteristics.

The work in [15], although not resorting to quantization, is
one of the first to propose an input-dependent dynamic solution.
Borrowing the big/little paradigm in processors, they propose an
architecture consisting of two CNNs of different complexity (and
energy consumption). In normal conditions, the “little’ network is
used. However, when the latter is not sufficient to classify a par-
ticular input, the “big” network is executed. [17] further improves
this concept, by designing the “little” network to be a subset of the
“big”, hence reducing the overheads associated with two complete
models (e.g. memory occupation for weights).

3 MOTIVATION
As mentioned in Section 2, quantization techniques for CNNs are
mostly static. The adaptation of existing CNN models to a static
quantization method is not trivial, and requires an incremental
retraining step [10].

Retraining is costly for many reasons. Besides its sheer computa-
tional cost, it often also implies a non-trivial bidwidth “calibration”
step. The latter consists of a lengthy iterative analysis, in which,
for a given bit-width, the network is retrained, and its accuracy is
checked on the validation set. These steps are repeated until the ac-
curacy matches the original floating point model. This is equivalent
to considering quantization bit-widths as new hyper-parameters of
the network (in addition to the number of layers, number and size
of each feature map, etc.).

In contrast, it would be desirable being able to directly execute
models already trained in floating point on fixed-point accelerators,
by simply quantizing the learned weights and the feature maps,
without retraining. With static quantization, however, this may

2

either limit the achievable savings, or cause accuracy drops. This
occurs whenever there is a set of inputs that is more “difficult” to
classify than the average, at a given bit-width.

An example of this scenario is shown in Figure 2. The two his-
tograms refer to CaffeNet [1], one implementation of the popular
AlexNet CNN for image recognition [12], and represent the per-
centage of images from the ImageNet dataset that can be classified
correctly with a given number of bits.

Specifically, the plots are obtained as follows. We first classify
all images of the training and validation sets using the original
floating point network. Then, for each image classified correctly by
the original network 1, we quantize all weights and feature maps
using the method of [10], without re-training. We consider bit-
widths in steps of powers of two, starting from 32 bits down to 1 bit.
For each image, we record the minimum bit-width for which the
inference result is correct. The histogram reports the percentage of
images that have a given minimum bit-width.

1 2 4 8 16 32
Bit-width

0

20

40

60

80

100

%
 o
f I
m
ag

es

(a) Training set.

1 2 4 8 16 32
Bit-width

0

20

40

60

80

100

%
 o
f I
m
ag

es

(b) Validation set.

Figure 2: Minimum bit-width for correct classification ver-
sus percentage of images in CaffeNet [1].

The figure shows that 8 bits are sufficient for correct inference
for most of the images; however, there is approximately a 7% of
“difficult” inputs, for which decreasing below 16-bit causes an error
in the classification. There are also a negligible number of images
that require more than 16-bit or less than 8-bit (bars are not visible).
Based on the histograms, if a uniform 8-bit quantization is used for
the network, the top-1 accuracy will have a non negligible drop.
On the other hand, if 16 bits are used for all images, about 93% of
the times we will perform too precise computations and consume
unnecessary power.

A CNN capable of dynamically adapting its precision based on
inputs is precisely the contribution of this work; our solution will
allow to obtain an accuracy that closely matches the floating point
reference, while significantly reducing the energy consumption
with respect to a “conservative” static quantization (e.g. 16-bit in
the above example).

In the following, we assume a uniform quantization, i.e., identical
in each layer of the CNN. Previous works have shown that a non-
uniform (e.g., per-layer) quantization is generally superior [14];
however, we limit our analysis to the former approachmainly due to
its low hardware implementation complexity. In any case, generality
is not impaired and our solution can be considered conservative: a

1We consider the top-1 accuracy metric, i.e. classifications are deemed correct when the
network output with the highest probability corresponds to the image label. However,
our approach can also be extended to e.g. top-5 accuracy.

non-uniform dynamic quantization could possibly further reduce
the bit-width in some layers (e.g. < 8-bit), and thus improve the
accuracy/power tradeoff.

4 PROPOSED METHODOLOGY
4.1 Bitwidth vs. Accuracy Characterization
The analysis of the previous section highlights the need for using
multiple quantization configurations for different “categories” of in-
puts. The optimal configurations to be used depend on the network
architecture, and can be obtained through a preliminary offline
characterization, whose flow chart is shown in Figure 3.

Floating Point
Inference

Training
Set

Validation
Set

Value Ranges

Training
Subset

Validation
Subset

Fixed Point
Inference

Fixed Point
Configs

Correct
Images

For all
Configs

Update Min.
Config.

Quantize CNN

Phase 1 Phase 2

Bit-width
histogram

Figure 3: Proposed CNN quantization characterization.

The characterization consists of two phases, shown in the left and
right halves of Figure 3 respectively, and its outcome is a histogram
similar to the one of Figure 2.

In Phase 1, all images of the training and validation sets are
classified using the original double-precision floating point network.
The inputs that are correctly classified according to the target metric
are stored for later use (Training/Validation Subsets in the figure).
Moreover, the ranges of values assumed by each learned weight
and feature are also recorded (Value Ranges in the figure). These
are important to determine the number of integer and fractional
bits during quantization.

In Phase 2, all available quantization configurations are con-
sidered in decreasing order of complexity (i.e. from the largest
bit-width to the smallest one). For each configuration, the actual
network quantization is performed; in this work, we quantize both
weights and feature maps using dynamic fixed-point format and
stochastic rounding, as described in [10]. Once the quantized net-
work is available, the previously stored input subsets are classified
with it. The output of the network for each image is checked against
the reference label, and correct images are recorded. Finally, a ta-
ble storing the least complex configuration that ensures correct
classification for every image is updated. This table is then used to
produce the final histogram.

Assuming that a pre-trained model of the original floating point
CNN is available, the flow of Figure 3 does not include any further
training, and only consists of repeated inferences. Even for a complex
CNN, the execution time on a workstation equipped with a Titan
XP GPU is in the order of 1-2 hours. Moreover, notice that this is a
one-time procedure, executed offline before deployment.

3

Given the results of the above characterization, the applicability
of our dynamic bit-width reconfiguration technique can be assessed.
In order for our method to be effective, the produced histogram
should have a shape similar to Figure 2. Specifically, it should con-
tain two or more “relevant” bars (otherwise a static quantization
would suffice), and the bar corresponding to the simplest quantiza-
tion should account for most of the images. The latter corresponds
to having a “common case” which can be executed at low precision,
and fewer “difficult” inputs that require higher precision.

To obtain the final set of quantization configurations, we post
process the output histogram, imposing a minimum height limit
of 1%. Bars that are lower than the limit are merged with those
relative to higher precisions. This avoids considering quantizations
that are very rarely needed, and whose usage would not be benefi-
cial for the method described in Section 4.2. Notice that, after this
post processing, for both CNNs considered in our experiments of
Section 5, the considered number of quantization configurations
is two. However, the generalization of our approach to more than
two quantizations is straightforward [17].

4.2 Dynamic Bit-Width Reconfiguration
When the processed histogram is multi-modal (as in the case of Caf-
feNet) dynamic bit-width reconfiguration can be implemented as
shown in Figure 4. With respect to a standard CNN inference using
a hardware accelerator, the only addition required is the Quanti-
zation Control box , which can be implemented easily in software.
Therefore, there are no hardware overheads in our method.

…

2D-SIMD
MAC array

Input Act.

W
ei

gh
ts

On-Chip
Memory

Control
and I/O

Output Act.C
N

N
 H

W
 A

cc
el

.

CNN SW Model

Q
ua

nt
iza

tio
n

Co
nt

ro
l

Bit-width knobFixed Point
Weights+Inputs

Fixed Point
Outputs

Figure 4: Proposed dynamic bit-width reconfiguration
method for CNNs.

The quantized CNN models determined during the character-
ization phase are stored in main memory. For each new image,
the least complex (i.e. smallest bit-width) configuration is initially
offloaded to the CNN accelerator memory, and a first classification
is performed. Based on the output of the network, the Quantization
Control block assesses the level of confidence of the classification. If
the confidence is high enough, the classification output is commit-
ted, and the system goes on to process the next image. Otherwise,
the network bit-width is increased, and the process is repeated,
until the confidence surpasses the desired threshold, or the most
complex configuration is executed.

To assess classification confidence, we use the metric proposed
in [15] and [17], i.e., the so-called score margin (SM):

SM = P(yi |x) − P(yj |x) (1)

where P(yk |x) is the k-th output of the CNN, representing the
probability that the input x belongs to class k , and i and j are the
indices of the first and second highest output values. We compare
the SM with a thresholdTh , and commit our classification whenever
SM ≥ Th . Intuitively, the SM measures the difference between
the two highest output scores produced by the network; when
large, input x has a very high probability of belonging to class i .
Conversely, when the difference is small, the input could belong
with similar probability to classes i and j.

The larger the decision threshold Th , the lower the “confidence”
of the quantization controller, since a larger SM will be required to
consider a classification as correct. Consequently, more classifica-
tions per image will be performed on average, with an associated
time and energy overhead. Vice versa, the lower Th , the smaller
the overhead, as more classifications will be “accepted”, but the
accuracy compared to the reference model may decrease if a wrong
classification is wrongly deemed correct. Therefore,Th can be used
as a knob to explore the accuracy versus energy tradeoff. We pro-
pose to first set the desired accuracy loss (with respect to the floating
point model) as an initial constraint, then set Th to the smallest
value that yields the desired accuracy, to minimize overheads.

Notice that, although the score margin method is analogous to
the one used in [15] and [17], our approach is significantly differ-
ent. Indeed, [15] requires two complete (separately trained) CNN
architectures to work. Both networks work on floating point data,
and differ in the number and parameter of layers. In [17], this large
overhead is partially reduced by constructing the little networks as
subsets of the big one. However, both papers do not consider the
energy benefits deriving from dynamic bit-width reconfiguration.

4.3 Hardware Support
The hardware block diagram in Figure 4 is purposely kept general,
to underline that our approach is, in principle, agnostic of the
selected CNN accelerator. Nonetheless, in order to benefit from
our technique, the hardware must satisfy some basic requirements.
Firstly, it must support dynamic reconfiguration of the datapath bit-
width from software (Bit-width knob in Figure 4). Secondly, reduced
bit-width operations must be implemented so that they can provide
significant energy reductions.

Among the several accelerators that provide this kind of capa-
bility, in this work we focus on the Envision chip proposed in [13]
and [14]. The peculiarity of this chip is the usage of a technique
called Dynamic Voltage, Accuracy and Frequency Scaling (DVAFS).
DVAFS consists in combining classic DVFS with sub-word parallel
operation to concurrently increase throughput and reduce power.
The increased throughput then allows to decrease the operating
frequency, for further power benefits [13]. The Envision chip, man-
ufactured in 28nm FDSOI technology, includes a reconfigurable
2D Single Instruction Multiple Data (SIMD) array of Multiply and
Accumulate (MAC) operators to implement convolutional layers
(see Figure 1). This array can be configured to work at 4,8 and 16-bit
precision, and internally leverages DVAFS in order to maximize the
power reduction when working at smaller bit-widths. All the rest

4

Bit-width Power [mW]
4-bit 7.6
8-bit 56
16-bit 290

Table 1: Power consumption of Envision [14] for different
bit-widths, for a constant throughput of 76GOPS.

of the chip is designed to efficiently support multiple precision, e.g.
through multi-bank memory, reconfigurable registers, etc.

Although the hardware of Envision is reconfigurable, the original
authors use it only for static quantization [13, 14]. They use the
reconfigurability to change the bit-width on a layer-by-layer basis,
but still independently on input data. In [14], they propose to use
the chip for hierarchical classification (i.e. a sequence of increasingly
complex classification tasks). Notice that this is completely different
from the proposed method, in which the same classification task is
performed at different precisions depending on the input.

5 EXPERIMENTAL RESULTS
5.1 Setup
To show the results of our methodology, we consider two popular
CNN architectures: CaffeNet [1] and CNN-M from [5]. Both net-
works classify images from the ImageNet dataset, which contains
about 1.2M images belonging to 1,000 different classes. We perform
inference using the Caffe Deep Learning Framework [1], using pre-
trained models of the two networks, downloaded from the Caffe
Model Zoo.

The algorithm of Figure 3 is written in Python 2.7 and executed
on a desktop workstation (8-thread Intel Core i7 CPU @ 2.67GHz
with 8GB RAM, running CentOS 6), equipped with a NVIDIA Titan
XP GPU. For energy estimates, we use average power data of the
Envision chip (our target CNN accelerator), obtained from [14].
Values are reported in Table 1, and refer to a constant throughput
of 76GOPS. For reference, this throughput allows approximately 47
classifications per second on CaffeNet [13].

5.2 Characterization Results
The results of our characterization for the CaffeNet network have
been presented in Section 3 and Figure 2. Results for the CNN-M
architecture are reported in Figure 5.

1 2 4 8 16 32
Bit-width

0

20

40

60

80

100

%
 o
f I
m
ag

es

(a) Training set.

1 2 4 8 16 32
Bit-width

0

20

40

60

80

100

%
 o
f I
m
ag

es

(b) Validation set.

Figure 5: Minimum bit-width for correct classification ver-
sus percentage of images in CNN-M [5].

The input dependence of the optimal bit-width for CNN-M is less
skewed than in the case of CaffeNet: the two bars have comparable
heights. This is a less desirable condition for energy saving in
our approach, since a larger number of images will require two
inference “iterations” to be classified correctly (first at 8-bit and then
at 16-bit). However, it also means that the accuracy degradation for
choosing a fixed 8-bit quantization will be much more marked than
for CaffeNet. The two distributions of Figures 2 and 5 also suggest
that considering more than two quantizations might not be needed
for most CNN architectures.

Figure 6 shows the score margin (SM) distributions (means and
standard deviation intervals) obtained for all training images with
the two networks. Inputs are split into Easy, i.e. those that can
be correctly classified at 8-bit, and Difficult, i.e. those that cannot.
The clear difference of means and slight overlap of the intervals
confirm that the SM is a good discriminator between reliable and
unreliable classification outputs obtained at reduced bit-width. Of
course, there are (few) images which can be correctly classified at 8-
bit despite a small SM, and vice versa (corresponding to the overlap
of the distributions), but on average, the SM method performs well
despite its simplicity.

EasyDifficult

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o

re
 M

a
rg

in

(a) CaffeNet.

EasyDifficult

0.2

0.4

0.6

0.8

1.0

S
c
o

re
 M

a
rg

in
(b) CNN-M.

Figure 6: Score margin for Easy and Difficult images.

5.3 Accuracy Versus Energy

1% drop

50.8

(a) CaffeNet.

10% drop

84.6

(b) CNN-M.

Figure 7: Normalized accuracy and energy as a function of
the score margin threshold for the two benchmark CNNs.

Figure 7 shows the results of applying our method to the two con-
sidered CNNs. Specifically, the plots show the top-1 accuracy and
energy consumption of the reconfigurable networks for different
values of the Score Margin thresholdTh . Energy points are obtained
using the values of Table 1, and are normalized with respect to the

5

Method Energy
Saving

Top-1
Drop

Multi
CNN

Multi
Train

[15] 53.7% 0.9% Yes Yes
[17] 32.61% 0.29% No Yes
Ours 49.2% 0.89% No No

Table 2: Comparison of the proposed method with state-of-
the-art techniques for CaffeNet.

energy of a static 16-bit quantization. Accuracy is normalized to the
results of the baseline floating point networks, which are almost
identical to those of a static 16-bit quantization. Both plots refer to
the ImageNet validation set.

As expected, results for CaffeNet are characterized by a smaller
accuracy variation, due to the skew of the distribution in favor
of “easy” inputs. This implies that even for low values of Th , i.e.
when 16-bit inference is performed rarely (hence limiting the power
overhead), accuracy quickly approaches the value obtained with
static 16-bit. Notice that a pure 8-bit inference without retraining,
corresponding to the case of Th = 0 (i.e. all classifications accepted
regardless of the SM), would result in a ≈ 4% accuracy drop on the
validation set, and a power reduction of 78%.

With our approach, it is possible to tune the accuracy versus
energy tradeoff. For instance, if only a 1% drop is acceptable (Th ≈
0.33), it is possible to still obtain 49.2% energy reduction compared
to the static 16-bit solution.

For CNN-M, due to the greater balance between easy and difficult
inputs, the accuracy penalty for choosing a fixed 8-bit quantization
is greater (almost half of the baseline). However, it is still possible to
reduce the drop to 10% (Th ≈ 0.89), and obtain an energy reduction
of about 16.4% compared to static 16-bit classification.

5.4 Comparison with the State-of-the-art
Table 2 shows a comparison of our method with the only other
two works that propose input-dependent adaptation of CNN infer-
ence [15, 17]. Results refer to CaffeNet, which has been evaluated in
all three papers. Notice that the energy saving results for [15] and
[17] have been obtained on different HW accelerators than what
we considered here; we could not compare on the same platform
because those accelerators do not support reconfigurable precision
operation. Moreover, their power consumption data are not publicly
available. Therefore, these numbers should only serve as a rough
comparison.

The Top-1 Drop refers to the accuracy drop as discussed in the
previous section. The table shows that our method obtains results
comparable to state-of-the-art approaches in terms of energy saving
versus accuracy trade-off. However, it has the important advantage
of not requiring multiple network designs, nor multiple training
runs. Moreover, notice that dynamic bit-width adaptation is or-
thogonal to those solutions, i.e. it is possible to combine bit-width
adaptation with reduction/increase of the number of layers and
feature maps, as done in [15, 17], for even greater power savings.
The combination of these methods will be the subject of future
work.

6 CONCLUSIONS
In this work we addressed the problem of designing energy-efficient
deep learning hardware accelerators based on input-dependent,
dynamically adaptive re-configuration of their bit-width. The dis-
tinctive features of our approach are that (i) it can be applied to
popular models without retraining, (ii) the reconfiguration is done
on the fly based on the input data and with negligible overhead.
Our results show that, when correct classification results can be
obtained with at least two different bit-widths, sizable energy re-
ductions are possible. The latter are obviously dependent on the
actual shape of the distribution.

Our work described only a first possible embodiment of a general
idea, which leaves space to many potential architectural variants
that will be the subject of future work, such as a fine-grain quanti-
zation for different sections (e.g., layers) of a DNN, or combination
with big/little approaches.

REFERENCES
[1] BVLC Caffe: https://github.com/BVLC/caffe.
[2] M. Alioto. Energy-quality scalable adaptive VLSI circuits and systems beyond

approximate computing. DATE 2017, pp. 127–132.
[3] R. Andri et al. YodaNN: An ultra-low power convolutional neural network

accelerator based on binary weights. IEEE ISVLSI 2016, pp. 236–241.
[4] K. Bong et al. Low-Power Convolutional Neural Network Processor for a Face-

Recognition System. IEEE Micro 2017, 37(6):30–38.
[5] K. Chatfield et al. Return of the Devil in the Details: Delving Deep into Convolu-

tional Nets. arXiv:1405.3531, 2014.
[6] Y. Chen et al. DaDianNao: A Machine-Learning Supercomputer. IEEE Microi

2015, pp. 609–622.
[7] Y. H. Chen et al. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for

Deep Convolutional Neural Networks. IEEE JSSC, 52(1):127–138, 2017.
[8] I. Goodfellow et al. Deep Learning. MIT Press, 2016.
[9] S. Gupta et al. Deep Learning with Limited Numerical Precision. ICML 2015, pp.

1737-1746.
[10] P. Gysel. Hardware-Oriented Approximation of Convolutional Neural Networks.

arXiv:1604.03168, 2016.
[11] I. Hubara et al. Binarized Neural Networks. Advances in Neural Information

Processing Systems 29, pp. 4107–4115, 2016.
[12] A. Krizhevsky et al. Imagenet classification with deep convolutional neural

networks. Advances in Neural Information Processing Systems 25, pp. 1097–1105,
2012.

[13] B. Moons et al. DVAFS: Trading computational accuracy for energy through
dynamic-voltage-accuracy-frequency-scaling. DATE 2017, pp. 488–493.

[14] B. Moons et al. Envision: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-
accuracy-frequency-scalable Convolutional Neural Network processor in 28nm
FDSOI. IEEE ISSCC 2017, pp. 246–247.

[15] E. Park et al. Big/little deep neural network for ultra low power inference.
CODES+ISSS 2015, pp. 124–132.

[16] B. Reagen et al. Minerva: Enabling Low-Power, Highly-Accurate Deep Neural
Network Accelerators. ACM/IEEE ISCA 2016, pp. 267–278.

[17] H. Tann et al. Runtime configurable deep neural networks for energy-accuracy
trade-off. IEEE/ACM/IFIP CODES 2016, pp. 1–10.

[18] S. Venkataramani et al. Scalable-effort classifiers for energy-efficient machine
learning. DAC 2015, pp. 1–6.

[19] S. Venkataramani et al. AxNN: Energy-efficient Neuromorphic Systems Using
Approximate Computing. ISLPED 2014, pp. 27–32.

[20] C. Zhang et al. Optimizing FPGA-based Accelerator Design for Deep Convolu-
tional Neural Networks. In ACM/SIGDA FPGA 2015, pp. 161–170.

[21] Q. Zhang et al. ApproxANN: An approximate computing framework for artificial
neural network. DATE 2015, pp. 701–706, 2015.

6

https://github.com/BVLC/caffe

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Convolutional Neural Networks
	2.2 Low-Power CNN Hardware Accelerators

	3 Motivation
	4 Proposed Methodology
	4.1 Bitwidth vs. Accuracy Characterization
	4.2 Dynamic Bit-Width Reconfiguration
	4.3 Hardware Support

	5 Experimental Results
	5.1 Setup
	5.2 Characterization Results
	5.3 Accuracy Versus Energy
	5.4 Comparison with the State-of-the-art

	6 Conclusions
	References

