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Abstract—A growing presence of mobile agents is envisaged in
the smart factories scenario of the next future. The safe motion
of traditional Automated Guided Vehicles in human-shared
workspaces can be achieved thanks to the support of a fleet of
Autonomous Mobile Robots, acting as a net of meta-sensors, able
to detect the human presence and share the information. This
paper proposes a preliminary working implementation of one
meta-sensor module, exploiting the synergistic use of different
sensors through an overall affordable and accessible sensor
data fusion algorithm. Experimental results in a laboratory
environment confirm the validity of the approach.

Index Terms—Mobile robots, human recognition, obstacle
avoidance, sensor data fusion.

I. INTRODUCTION AND STATE OF THE ART

In recent years, mobile robots have been widely employed
in many different fields, since they can be adapted to a
vast range of applications. In the industrial context, mo-
bile robots can be classified as Automated Guided Vehicles
(AGVs) and Autonomous Mobile Robots (AMRs). The AGVs
are mobile platforms that perform repetitive tasks, such as
material transportation, following a pre-defined path within
industrial environments [1]. Human-accessible workspaces are
traditionally separated from the AGV operational space due to
safety reasons, since AGVs do not have a decision mechanism
based on artificial intelligence, and most of them require
a particular infrastructure setup [2]. On the other hand, an
AMR is able to sense its surroundings in order to create
a model of the environment and locate itself in it, leading
to the capability of operating in an unknown or partially
known environment. Usually, an AMR is equipped with an
heterogeneous set of sensors whose output data streams are
processed by complex control systems [3]. It is well known
that merging the information coming from different sensors
improves the efficiency and robustness of the measurements,
but on the other hand it increases the complexity of the
hardware and software required for merging and processing
the information deriving from different sources [4].

Depending on the application, one may combine different
types of sensors in order to cover a wider range of measure-
ments or duplicate the data to avoid false positives. For ex-
ample, AMRs working in industrial applications, where a safe
behavior between machinery and human operators must be
ensured, are commonly equipped with a combination of vision
and distance sensors, e.g., cameras with Radio Detection And
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Ranging (RADAR) systems [5] or cameras with Laser Imaging
Detection and Ranging (LIDAR) sensors [6], [7].

The vision sensor is used for recognition of objects or
particular geometric patterns, but is influenced by environ-
mental conditions, e.g., the ambient lighting. The distance
sensor provides high accuracy on measurements, even though
its performance may be affected by (i) the reflection properties
of the object to be detected, in the case of LIDARs, and (ii)
by external radio wave frequencies, when using RADARs.
Despite the limitations of each sensor type, by combining
them it is possible to associate a detected object with its
corresponding distance in the robot coordinate system.

A possible method for performing sensor fusion is repre-
sented by the machine learning approach. A commonly used
Neural Network (NN) for object classification in an image or
video frame is the You Only Look Once (YOLO) [8] real-time
object detection system. YOLO applies a Convolutional Neural
Network (CNN) to the full image, dividing it into regions
and performing the bounding boxes prediction and relative
probabilities computation for each region. The bounding boxes
that have high confidence scores are kept as final predictions,
resulting in detections. In [9], the authors use the data set
coming from RGB-D cameras and compare the performance
of several CNNs in order to robustly detect and localize
a person. The work in [10] proposes a person detection
algorithm based on the linear Support Vector Machines (SVM)
learning process that extracts laser features and Histograms of
Oriented Gradients (HOG) features from image data. Other
approaches, e.g., in [11], combine a Kalman filter with the
Global Nearest-Neighbour method, in order to predict and
resolve the data association problem for people tracking. Fur-
thermore, a considerable body of literature treats the LIDAR
and vision data fusion as an extrinsic calibration problem: the
two sensors’ coordinate systems are put in relation through
a rigid body transformation, so to align the data derived
from both sensors [12]. For the purpose of computing this
transformation, usually an external object is required, such as
a checkerboard pattern [13], [14] or a trirectangular trihedron
[15], to match the correspondences between the two sensors
and obtain a mapping that transforms the points from the laser
to the camera coordinate system, and thereafter to the image
plane. Although most of the researchers use stereo cameras
and 3D LIDARs to model the environment (since they can give
a detailed representation of the surroundings), these devices
are expensive, and most of the time it is possible to overcome
this problem by using transformation matrices when using a
2D LIDAR and an entry-level camera [16].
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If we consider the problem from a higher level of analysis,
a mobile robot reaction to dynamically-changing surroundings
has been addressed in several ways. In [17], the mobile plat-
forms have the capability of overtaking unforeseen obstacles
appearing on (or near) the pre-computed path, exploiting local
deviations fostered by a centralized data fusion system, which
takes in on-board sensing along with infrastructure-based
environment perception system measurements. In [18], the
mobile robot navigation in unknown dynamic environments
implements a pedestrian-like behavior: thanks to the human
neural system, a pedestrian can estimate the time to collision
with obstacles and changes its direction accordingly, while
optimizing path length and safety distance. The navigation
approach is similarly based on motion model predictability
of obstacles.

The scenario envisaged for the smart factories of the next
future implies a significant presence of mobile agents, both
having some level of autonomy or not, in open spaces shared
with humans. This paper addresses, in particular, the system
described in [19], where AMRs act as meta-sensors, i.e.,
as mobile entities included in a wider concept of sensor
system, having the aim of supporting a net of traditional
AGVs in order to increase their consciousness about their
surroundings and to be compliant with collaborative operations
between humans and robots. The contribution of this paper
represents a preliminary working implementation of one meta-
sensor module: it exploits camera-laser data sensor fusion
techniques to ensure a safe behavior when specific objects are
detected, and shares relevant data with other robotic systems.
In particular, the attention is devoted to human detection,
which has to be guaranteed in a safe way through a proper
SW/HW architecture including both safe and not safe devices,
from the industrial point of view.

Unlike other commonly adopted methods, where the sensor
system is trained at the beginning to combine the data from
different sources, we take advantage of a pre-trained NN
for human identification. The outputs of the NN are the
elements of the image already classified and labeled, which
are subsequently used for the sensor fusion algorithm, avoiding
the creation of a further dataset.

The aim of the authors is then to provide an affordable solu-
tion, which takes advantage of sensor fusion to integrate state-
of-the-art object detection algorithms taking data from low-
cost vision sensors (that may not be intrinsically safe, when
used on their own) to complement standard safety compliant
sensors (e.g., safety-rated laser scanning systems). Moreover,
with respect to the most recent concept that positions AMRs
as an evolution of traditional AGVs, here the former support
the latter ones during their daily tasks, enabling the possibility
of bringing back to light pre-existing obsolete systems. Fur-
thermore, non-infrastructural sensors allow for a more flexible
set-up and scalability with respect to other solutions, which
associates centralized systems with infrastructural monitoring.

The paper is organized as follows: Section II presents the
proposed solution, providing a high level description within
the working scenario. Then in Section III, the adopted im-
plementation is briefly illustrated. Section IV presents the
obtained results when testing the sensor data fusion algorithm
to detect and safely avoid humans. Finally, Section V draws
some conclusions and open issues.

II. SENSOR DATA FUSION FOR A META-SENSOR AMR
This work describes a first implementation of the entity

called meta-sensor, which plays a fundamental role within the
system whose specifications are set in [19]. In order to give
a background and motivation to the features that have been
built up for this entity, a brief description of the working
scenario is provided hereafter. The system is thought for
ideally any flexible production line, composed of traditional
AGVs, workstations, cobots, in spaces shared with human
operators. Three macro-elements can be identified: (i) a meta-
sensor AMR fleet, (ii) the Sensors Synergy Center (SSC) and
(iii) the AGV Coordination Center Interface.

The work presented here covers points (i) and (ii): note
that the developed structure/model for the AMR meta-sensor
entity can be replicated for other elements of the fleet. When
going through the solution description, notice that our AMR
is a feature-enhancer entity more than a mere evolution of the
classical AGV; it is a part of the AGV net, the “brain” behind
the system synergy, leveraging sensor data fusion to improve
the AGV fleet awareness about the environment’s dynamical
changes. In particular, in our case we consider the human
operator as the target of interest to be detected and advertised
to all agents moving within the system.

A. Solution overview within the meta-sensor system
Having fixed the AMR role in the system, we can identify

the behaviour and capabilities we would like the AMR element
and SSC to have. In order to achieve smart navigation in a
human-shared workspace, we need to gather informative data
from the surroundings. With this aim, but with the purpose
of keeping cost low, too, we decided to equip a mobile robot
with a monocular camera and a 2D laser range finder in order
to perform data association. So to perform a correct mapping
of information, the transformation between the laser and the
camera must be computed (extrinsic calibration).

The artificial intelligence needed for spotting any human
obstacles is entrusted to the vision part of the sensor system
(human-obstacle detection).

Once a human obstacle is detected and its absolute position
identified, we want the AMR to share this information with
other agents and define a reaction rule in the presence of this
particular kind of obstacle (human-obstacle avoidance).

1) Extrinsic calibration: In order to merge the information
coming from a monocular camera and a laser range finder,
an extrinsic calibration method is required to transform the
laser points in the camera reference frame and project them
onto the image plane. For that, first we determined the internal
and external parameters of the camera, and then computed the
rigid body transformation between the laser and the camera
coordinate systems.

• Camera Calibration. The camera calibration consists in
estimating a relationship between the information of the
camera coordinate system and the image frame, along
with the relative pose of the camera with respect to the
world reference frame [20]. Assuming the pinhole model
of the camera, the transformation of the 3D points Cp =
[X,Y, Z, 1]T to the 2D points cp = [u, v, 1]T is defined
as:

cp ∼ K · [R t] ·Cp (1)



where K ∈ R3×3 is the so-called camera intrinsic matrix,
R ∈ R3×3 and t ∈ R3×1 are the extrinsic parameters of
the camera, which relate the world 3D information to the
camera coordinate system.
The intrinsic matrix K is a projective transformation of
the 3D points from the camera coordinates into the 2D
image coordinates and is defined as:

K =

α1 s cx
0 α2 cy
0 0 1

 (2)

where α1 and α2 are the focal lengths in pixel units, cx
and cy the coordinates of the principal point of the image
in pixel units, and s the skew coefficient between the axis
of the image.
Since the ideal pinhole camera model does not have
a lens and the image from a real camera may present
some deformation, we have performed the correction
by estimating the radial and tangential distortion coef-
ficients [21].

• Camera-Laser calibration. Once the camera is calibrated,
we applied a laser to camera extrinsic calibration algo-
rithm based on [14], taking into account the physical
characteristics of the sensors, so to estimate the relative
pose of the camera with respect to the laser range
finder. Let’s consider a point Cp ∈ R4×1 in the camera
coordinate system, located in Lp ∈ R4×1 in the laser
reference frame. The rigid transformation between the
two coordinate systems can be expressed as:

Lp =

[
Φ ∆

0 0 0 1

]
·Cp (3)

where Φ ∈ R3×3 is the rotation matrix of the camera
with respect to the laser range finder and ∆ ∈ R3×1 the
relative translation vector.

Hereafter, we enter the core description of the centralized
SSC features integrating the meta-sensors net.

2) Human-obstacle detection: In general, the aim of object
identification is to determine the presence, in some given
image or frame, of any instance of objects categorized into
classes. The recognized objects spatial locations within the
image reference frame are returned, e.g., via bounding boxes.
Object detection performances have been boosted up with
the introduction of deep learning techniques, which let a
machine automatically learn feature representations from data.
With deep learning, in general, patterns are classified using
statistical techniques based on sample data and processing it
with multi-layered neural networks [22], [23]. The CNNs are
among the most popular architectures for deep-learning: they
are designed to receive multiple arrays data as input, e.g.,
a three-channel (RGB) image array structure. Many methods
handle detection as a classification problem, i.e., object pro-
posals are produced and fed to a classifier. However, some
other methods formulate detection as a regression problem,
having spatially separated bounding boxes and associated class
probabilities as output [24]. Most of the recent methods are
region-based, i.e., they perform a selective research to obtain

region proposals, despite this kind of approach often represents
a speed bottleneck.

Hence, regression-based methods getting rid of the region
proposal step have represented a suitable choice for our
purposes, since we need to identify a specific object class with
some index of confidence (i.e., the output class probabilities
for the detected objects), and locate these objects in a suitable
spatial representation in a reasonable time. Figure 1 represents
the adopted human detection process at high level.

Fig. 1. Human obstacle detection process.

3) Human-obstacle avoidance: For what concerns a mobile
platform reaction to a human-obstacle (advertised by other
agents on the shared map or directly sensed by the considered
robot), the authors have decided to apply a more conservative
approach in terms of safety distance separating the moving
agent and the detected obstacle. By extracting the human
location expressed in the shared map reference frame, we get
target positions that can be enclosed in virtual cages, i.e., areas
considered not accessible by the network of mobile robots,
characterized by a greater safety radius value with respect
to other obstacles. Note that, since relevant information is
shared between the Sensors Synergy Center and the AGV
Coordination Center, the presence of humans is made available
to both mobile robot fleets (AMRs and AGVs). Thus, the rules
for obstacle avoidance applied in this case are not different
from the ones adopted when encountering generic obstacles.

III. SOLUTION IMPLEMENTATION

A. Hardware setup

In order to test the sensor data fusion algorithm for human
detection and avoidance, we have employed a Pioneer 3DX
mobile robot [25] equipped with a SICK LMS200 laser range
finder [26] with 10-meter range and scanning angle of 180◦, an
entry level IP camera (ONVIF [27] standalone unit, accessible
via its IP address). As a processing unit for receiving data and
controlling the robot, we used a Raspberry Pi [28] 3 Model
B mounting an ARM Cortex-A53 (x4 core) CPU (1.2 GHz)
and 1-GB RAM; the code that required a higher computational
effort has been run on a desktop PC with a Intel Core i7-7700
CPU and a dedicated GTX1060/6GB GPU. The monocamera
has been placed above the laser range finder and its orientation



set such that the image plane intersects the laser plane as
shown in Figure 2.

Fig. 2. Representation of the sensors reference frames.

B. Software implementation
The steps taken for the solution implementation are de-

scribed below.
1) Laser-Camera transformation computation:
• Intrinsic Calibration with MATLAB: The intrinsic

calibration of the camera was performed using the MAT-
LAB Computer Vision Toolbox, which requires a set
of 20 images taken when a checkerboard is placed at
different orientations, assuming that all inclination angles
are kept below 45◦ with respect to the camera plane [29].
The camera provides an image resolution of 1280 x 720
pixels, and so the following intrinsic matrix is obtained:

K =

1.3046 · 103 0 727.7219
0 1.3064 · 103 241.5278
0 0 1


• Extrinsic calibration and laser point projection: The

extrinsic calibration was computed by collecting simul-
taneously data from both the vision and range finder
sensors, i.e., 20 images of the checkerboard in several
orientations and their corresponding laser readings. Tak-
ing into account the characteristics of the sensors, we
applied a modified version of the extrinsic calibration
algorithm proposed by Zhang and Pless in [14], obtaining
the following transformation matrices:

Φ =

1 0 0
0 0.9848 0.1736
0 −0.1736 0.9848

 , ∆ =

−0.0215−0.2065
0.0304


With the rotation matrix Φ and translation vector ∆, it
is possible to compute the laser points in the camera
reference frame, and project them in the image plane.
Indeed, by defining the matrix H ∈ R3×4 as:

H(i, j) = Φ−1(i, j), for i = 1, ..., 3 and j = 1, ..., 3
H(i, 4) = −∆(i), for i = 1, ..., 3

and combining (2) and (3) the vector cp is obtained as:

cp = K ·H · Lp (4)

Note that the world 3D reference frame is coincident
with the camera coordinates one, and so R is the identity
matrix and t is a null vector. In order to have a correct
representation of the points in the image, the vector cp
must be normalized with respect to the third component,
leading to a vector in the form ĉp = [u, v]T .

As a result, we obtained a projection of the laser points
in the image plane, as shown in Figure 3, which is quite

reasonable, since the mapped points are coherent with the hit
surfaces.

Fig. 3. Laser points projected in the image plane.

2) Relevant bounding box information extraction: Since the
image processing requires a set of different tools, we have
decided to group all the related software within a Docker [30]
container, which leverages the GPU computational capabilities
and removes the burden of installing ad-hoc tools, fostering
portability and scalability.

As a human detection system we have chosen YOLO (which
satisfies our requirements, as specified in Section II-A2), that
processes the IP camera stream, previously interpreted as a
generic webcam output using the gstreamer [31] tool.
The YOLO code that generates the bounding boxes on screen
has been modified, so to save their coordinates information
in a text file. This file is used as a source for a ROS [32]
node that reads it and wraps into ROS topic messages only
the information we are interested in (i.e., the lines identified by
a “person” label). All communications between the container
and the other ROS distributed nodes happen through the host
network. Notice that simply reading the stream output by
a low-cost IP plug & play camera lightens up the already
computationally heavy image processing step.

3) Mapping laser data to the image plane: The information
published by the laser range finder is processed within a spe-
cific ROS node and projected on the image plane, exploiting
the estimated calibration parameters. This same node is also
in charge of comparing such information with the messages
published on the topic related to the human-obstacles bounding
boxes coordinates: data are synchronously gathered from top-
ics, by exploiting the ApproximateTimeSynchronizer class that
is included in the message_filters ROS package. If a
correspondence among pixel coordinates is found, the relative
points of interest are translated to be expressed in the global
map reference frame, using the computed rigid transformation
between the sensors and the robot model reference frames (all
made available through the tf ROS publishing system).

4) Detected humans as virtual obstacles: In order to im-
plement the desired safe reaction to human obstacles, we have
taken advantage of the Time Elastic Bands (TEB) local planner
[33] which creates three elastic bands based on different
criteria and chooses the shortest one, taking into account
dynamic obstacles and vehicle constraints [34]; it also allows
to define custom virtual obstacles by specifying their location
and shape. This local planner can be integrated with the global
planner provided by the ROS navigation package. In this way,
all points falling into each person bounding box are published
in the map as circular obstacles with a user-defined radius: the
detected human horizontal extension influences the obstacle
shape. Thus, a human presence adds a constraint for the re-



planning process of the robot, ensuring safety between humans
and robots.

Figure 4 summarizes the whole process: the YOLO C++
software has been edited in order to select all the “person”
labeled objects and append them to a .txt file, whose content
is fed to a ROS node for its translation into ROS messages.
Another node is in charge of filtering synchronized data to
identify laser points falling into the pixel ranges corresponding
to humans. Finally, virtual obstacles are published in corre-
spondence of the human coordinates, with a radius that is
added to the rviz inflation one.

Fig. 4. Sketch of the process workflow.

IV. EXPERIMENTAL RESULTS

In this section we present the results obtained by employing
the proposed sensor data fusion algorithm to enable a safe
mobile robot reaction in the presence of humans.

Furthermore, with the aim of demonstrating the achieved
results, a sample working scenario is considered in the video
available in [35].

The main features of our algorithm are highlighted in some
salient points of the video that can be summarized as follows:

• In Figure 5, we can see that a human is detected and its
location (perceived by the laser and inflated by ROS) is
reinforced by the publication of a set of virtual obstacles
(red squared markers). The path computed by the local
planner conservatively stays out of the inflation radius
imposed by ROS, since the obstacle position is computed
not only as detected by the laser range finder, but as the
result of the latter and the YOLO processed information.

• Figure 6 illustrates how the virtual obstacle publication
depends on the size of the bounding box detected during
the image processing stage.

• Our algorithm is able to identify, and consequently pub-
lish, two human obstacles simultaneously: this influences
the re-planning process for the mobile robot, as can be
seen in Figure 7.

Note that, since the overall execution time depends on (i) the
chosen planner, (ii) the adopted algorithms, and (iii) on the
computational capability of the computer executing the sensor
data fusion code, the reaction of the robot might fall within
the standard definition of soft real-time processes or not.

Fig. 5. Human detection and relative virtual obstacle publication at 02:37.

Fig. 6. The local planned path depends on the virtual obstacle, which covers
the whole detected person bounding box.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we presented an overall affordable and ac-
cessible sensor data fusion algorithm for mobile robots to
ensure safety in an industrial environment shared with human
operators. The main contribution of the paper is to show how
a safe human detection can be achieved by the synergistic use
of different sensors (even low cost ones) within an overall

Fig. 7. Several human obstacles can be simultaneously detected fostering
scalability (04:32).



HW/SW architecture allowing to share the information within
a fleet of AMRs, acting as meta-sensors to support the working
of standard AGVs. For the moment, the application is feasible
when the relative motion between the robot and the human is
slow, so that the robot has enough time to react and re-plan
the trajectory, avoiding thus the human operator.

Since the adopted calibration method needs a sufficient
amount of data, it has been performed offline: this can be
considered a relatively easier approach since the process has
to be executed once, but it obviously relies on the assumption
that the involved sensors are well and definitely fixed in place.
Enhanced solutions would be given by the implementation of
an online calibration procedure, or the application of deep-
learning algorithms for data association.

As future work, one of our objectives will be also to
consider the proposed algorithm for the overall sensing system
composed by multiple mobile robots as specified in the orig-
inal scenario, where all mobile platforms (AGVs and AMRs)
share the relevant information about their surroundings. More-
over, even though our solution allows to spread the information
to other mobile robots so to influence their local behaviour,
an ideal implementation would publish the detected humans
as cost-map obstacles allowing for a more aware and efficient
global plan computation. This feature, which we intend to
consider in future developments, is shown in Figure 8.

Fig. 8. Global and local human avoidance rule schematic representation.

Another possible improvement of the sensor fusion algo-
rithm itself would require the training of the neural network
involved at the object recognition step, so to adapt the reaction
behaviour depending on the detected object.
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