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Abstract
Nanotechnology, as an interdisciplinary science, combines engineering, physics, material sciences, and chemistry with the biomedicine knowhow, trying the 
management of a wide range of diseases. Nanoparticle-based devices holding tumor imaging, targeting and therapy capabilities are formerly under study. Since 
conventional hematological therapies are sometimes defined by reduced selectivity, low therapeutic efficacy and many side effects, in this review we discuss the 
potential advantages of the NPs’ use in alternative/combined strategies. In the introduction the basic notion of nanomedicine and nanoparticles’ classification are 
described, while in the main text nanodiagnostics, nanotherapeutics and theranostics solutions coming out from the use of a wide-ranging NPs availability are listed 
and discussed. 
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Nanomedicine and Nanoparticles
The word “nanotechnology” generally states the production of new 

tools with nanometric dimensions [1]. Most of the nanotechnology 
success relies on the possibility to adapt the structures and the design 
of a wide range of materials at the nanoscale to add or tune specific 
properties, thus significantly magnifying the materials science toolkit. 

Nanotechnology is demonstrating its great potential in healthcare for 
theranostics, preventive applications and medical-designed novelties 
that are referred to as “nanomedicine” by the USA National Institutes of 
Health [2]. More in details, the nanomedicine research includes in vitro 
and in vivo medical diagnostics, nanopharmaceuticals and regenerative 
medicine applications [3-8].

Nanoparticles (NPs) represent one of the most successful solution 
that nanomedicine proposes to solve huge biomedical questions. 
With their size ranging from 1 to 100 nm, NPs are characterized by 
a considerable surface area-to-volume ratio. As described in [9] for 
diagnosis, therapy, and drug delivery applications, it is essential the 
obtainment of monodisperse NP preparations to avoid side effects 
coming out from aggregation phenomena. Starting from nanomaterials 
composition, tuning particles size, shape and functionalization states, 
it is possible enhance their in vitro and in vivo biodistribution, drug 
delivery and/or targeting capabilities.

Regarding their chemical composition, NPs can be distinguished 
into three main groups: carbon-based, organic and inorganic materials.

Carbon-Based Nanoparticles

The first group (Figures 1A and 1B) includes carbon nanotubes and 
fullerenes [10,11]. 

Fullerenes, water insoluble sphere containing 60 carbon atoms, 
represent the third allotophic form of carbon with respect to diamond 
and graphite. Fullerene derivatives have been successfully used for 
different diagnostics and therapeutics applications,  many groups 
reported the use of these carbon allotropes for medical imaging and 

drug delivery purposes together with photodynamic, hyperthermia and 
acoustic wave assisted therapies [12,13]. 

Carbon Nano Tubes (CNTs) were classified into single-walled 
carbon nanotube (SWCNT) and multi-walled carbon nanotube 
(MWCNT) since they can be constituted by rolling up respectively one 
or more graphitic sheets. CNTs are applied in a wide range of biomedical 
applications as tissue engineering scaffold, biosensors and as labelling, 
imaging, drug delivery and therapeutic agents [14,15].

Organic Nanoparticles

Concerning organic nanoparticles, we mainly refer to polymeric 
nanoparticles (PNPs), liposomes, and extracellular vesicles (EVs) 
(Figures 1C and 1D). 

PNPs can be made from natural or synthetic polymers and thanks 
to their biocompatibility and biodegradability represent one of the most 
considered organic approaches for solve some nanomedicine challenges 
[16]. They can be produced by nanoprecipitation, dialysis methods, 
supercritical fluid technology, and two-step emulsification methods 
(emulsification-solvent diffusion, emulsification-solvent evaporation 
and emulsification–reverse salting-out). Their size and solubility can be 
tuned during the manufacturing process [17].

Liposomes are sphere-shaped vesicles made up of a lipid bilayer. 
They can be prepared starting from cholesterols, phospholipids, 
surfactants and proteins [18]. Liposomes can be synthetized by using 
different methods such as sonication, extrusion and the Mozafari 
method [19]. They can be considered as delivery systems able to carry 

https://www.nanowerk.com/spotlight/spotid=47031.php
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/fullerene-derivative
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both hydrophilic and hydrophobic drugs and molecules in their core, 
but are largely used for include also specific target biomolecules and 
other nanomaterials [20-22]. 

Regarding the extracellular vesicles (EVs) application in the 
biomedical contest, one of the most applied EVs categories is 
undoubtedly the nanosized exosomes (70–150 nm). They are released 
by all cell types, fine-tuning physiological and pathophysiological 
intercellular statements [23]. At present, exosome-like nanoparticles, 
naturally or synthetically obtained, represent some of the most capable, 
biocompatible, and therapeutic agents [9,22,24,25]. An European 
network of experts, the  European Network on Microvesicles and 
Exosomes in Health and Disease (ME-HAD), reveals the open-ended 
capability of nanosized EVs for nanotheranostic investigations and 
applications [26].

Inorganic Nanoparticles

The inorganic nanoparticles category includes Quantum Dots 
(QDs), Metallic (MNPs) and Metal Oxide (MONPs) Nanoparticles 
(Figures 1E and 1F).

QDs are semiconductor materials consisting of a core overcoated 
with a shell that is usually conjugated to peptides, proteins, 
polysaccharides and other biomolecules to prevent the leakage of the 
toxic-heavy metals and increase the overall NP stability in biological 
fluids. These kind of nanoparticles are the most used in bioimaging and 
biosensing strategies: gold quantum dots (GQDs), indium–phosphate 
(InP), cadmium–selenium (CdSe), indium–arsenate (InAs) cadmium–
tellurium (CdTe) can be differently applied for real time cell tagging 
and cellular apoptosis recognition [20]. 

MNPs comprise magnetic and precious metals: MNPs such as 
Palladium (PdNPs), silver (AgNPs), gold (AuNPs), and copper (CuNPs) 
unveiled wide applicability as theranostics  agents while magnetic 
ones exhibiting  high stability in hypoxic tumor conditions and are 
successfully applied as contrast imaging and bio-sensing agents [27].

Biocompatible MONPs such as ceria (CeO2), mesoporous silica 
nanoparticles (MSNs), iron oxide (Fe3O4), zirconia (ZrO2), zinc oxide 
(ZnO) and titania (TiO2) show high chemical stability, antioxidant 
and catalytic actions that make them right for medical implants, drug 
delivery and bioimaging applications [22,28-31].

Nanoparticles and Hematopathology
In order to assess data about the topic ‘blood nanoparticles’, in the 

April of 2019 we conducted a literature search, using the Thomson 
Reuters Web of Science research portal. Results showed 16,398 records 
that were visualized with the tree map style selecting 25 as number of 
results, sorting data by read count and setting the minimum record 
count to 285. 

The result (Figure 2) highlighted how wild and transversal 
is the literature that can relate to this type of research and it clearly 
shows how the scientific production is centred on nanotechological, 
pharmacological and chemical aspects. 

In this paper we review how nanotechnology and more in details 
how nanoparticles could support and improve existing methods for 
early stages hematological diseases’ diagnosis and treatment, reducing 
side effects, relapses and costs. 

Hematopathology studies the diseases related to blood, lymph 
nodes and bone marrow and, in this contest, nanoparticles-assisted 
nanomedicine can support researchers, physicians and clinicians 
providing complementary and/or alternative solutions to traditional 
diagnostic and therapeutic methods by providing effective and 
personalized solutions.

Considering that anemia, hemophilia, bleeding disorders and 
blood cancers as lymphoma, leukemia,   and myeloma are  just some 
of the many hematological pathologies, to emphasize the technological 
aspect of the discussion, in the next sections the three most broadly 
used NPs’ applications in nanomedicine will be presented: diagnostics, 
therapeutics and theranostics.

Nanoparticle-Based diagnosis

Nanoscale diagnostic tools for early stage detection of cancer cells 
received a considerable attention in the recent years, in order to develop 
efficient methods able to isolate Circulating Tumor Cells (CTCs) from 
complex biological fluids. 

In this contest, lymphoma cells present different non-glycosylated 
antigens on their surface. In particular, the CD20 antigen plays a critical 
role in the B lymphocytes activation and differentiation processes. 
The overexpression of this antigen on tumoral B cells made it a valid 

Figure 1. High resolution images of the main category of nanoparticles: carbon based (A,B), 
organic (C,D) and inorganic (E,F). (A) Scanning electron microscopy (SEM) of H5N2 AIV 
virions trapped inside the aligned nitrogen-containing multiwalled carbon nanotubes, scale 
bar 100 nm, adapted from [32]. (B) Field emission scanning electron microscopy images 
of carbon nanoparticles, scale bar 200 nm, adapted from [33]. (C) Transmission electron 
microscopy (TEM) image of PLGA nanoparticles, scale bar 100 nm, adapted from [34]. 
(D) Atomic force microscopy (AFM) image of a liposome, scale bar 50 nm, adapted from 
[35]. (E) TEM image of pristine ZnO nanoparticles, scale bar 20 nm, adapted from [31]. (F) 
TEM image of gold NPs synthesized by sodium citrate, scale bar 20 nm, adapted from [36]

https://www.hematology.org/Patients/Anemia/
https://www.hematology.org/Patients/Bleeding.aspx
https://www.hematology.org/Patients/Cancers/Lymphoma.aspx
https://www.hematology.org/Patients/Cancers/Leukemia.aspx
https://www.hematology.org/Patients/Cancers/Myeloma.aspx
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medium. Au-nanoprobes are efficiently applied to the direct detection 
of the molecular hallmark of chronic myeloid leukemia, BCR-ABL 
fusion transcripts, allowing the discrimination between the most 
frequent isoforms of this genetic abnormality, e13a2 and e14a2 [41]. 
Another sensor for the recognition of BCR-ABL is the BioCode Au-
nanobeacon which is constituted by AuNPs functionalized with 
hairpin shape strand DNAs with a fluorophore on the extremity. Due 
to their LSPR, AuNPs may act as dark quencher on the single strands’ 
fluorophores. In absence of target, the hairpin remains in the close 
conformation keeping the fluorophore near the AuNP, which quenches 
the fluorescence. If there is a bind between the hairpin and its target, 
instead, the hairpin opens and the distance from the AuNP allows the 
detection of the fluorescence [42]. Mazloum-Ardakani, et al. created 
a biosensor for acute lymphoblastic leukemia (ALL) early detection. 
By combining graphene sheets and an electrosynthesized conductive 
polymer, poly(cathecol), a high electrically conductive surface was 
realized and AuNPs were deposited on it in order to use their affinity 
with thiol-modified DNA to immobilize the target DNA [43].

AuNPs-based biosensors can be used also for the detection of 
specific factor of the coagulation cascade: thrombin-binding aptamer-
conjugated AuNPs can detect thrombin [44,45], while peptide-
functionalized AuNPs the factor XIII activity, exploiting the LSPR of 
NPs [46].

Graphene sheets, combined in different ways with aptamers, are 
also successfully used for the detection of blood cancer cells.  Aptamers 
are artificial single-stranded oligonucleotides, having great affinity 
and selectivity with their targets, i.e. cells, proteins, drugs or small 
molecules, lower immunogenicity and toxicity, higher chemical and 
thermal stability and smaller dimension compared with antibodies. 
They can be used conjugated to nanoparticles for the detection of 
specific cancer cells, for example linked to carbon QDs coated with 
zinc oxide nanospheres [47] or to quantum dots coated with chitosan 
[48]. Graphene sheets are directly functionalized with Sgc8c and ATP 
aptamers [49] or with AuNPs conjugated with Sgc8c aptamer [50] 
to establish a bond with protein tyrosine kinase 7, overexpressed in 
T-cell of ALL. Sgc8c aptamer can be also used in combination with 
fluorescent mesoporous silica nanoparticles to identify leukemia cells 
through fluorescence microscopy [51] or with silver-enhanced AuNPs 
which selectively isolate and immobilize leukemia cells on a quartz 

target to successfully isolate CTCs in blood and other human fluids. 
Many detection methods are based on active targeting moieties, such 
as ligands and monoclonal antibodies. In particular, anti-CD20, e.g. 
Rituximab, directed against CD20 antigen, associated with different 
types of nanoparticles, i.e. QDs or magnetic nanoparticles, aim to 
isolate lymphoma cells exploiting the high affinity between antigen and 
antibody.

Shariatifar, et al. proposed a new tool for the detection of non-
Hodgkin lymphoma: Rituximab conjugated QDs bind specifically 
to tumor cells, allowing their detection through flow cytometry. 
Results display a higher sensitivity and specificity compared with 
immunohistochemistry, which is the current gold standard test [37].

QDs can be also conjugated with Sgc8c aptamer for an effective 
diagnosis of leukemia at the early stage by imaging tumor cells in vitro 
or in vivo [38].

Magnetic NPs characterized by having a high biocompatibility, 
stability, surface-to-volume ratio, binding-capacity and specificity 
were also successfully conjugated with anti-CD20 antibody to isolate 
lymphoma cells from biological fluids with an efficiency above the 95% 
[39]. At the same time, once functionalized with hyaluronic acids, they 
bound specifically to CD44 receptors, overexpressed in many types of 
leukemia and seized cancer cells from plasma samples. The subsequent 
analysis of the changes in mass loading, performed with a quartz crystal 
microbalance, detected the presence of tumor cells with high sensitivity, 
giving a feedback on cells’ condition and on drugs’ response [40]. 

CTC can also be detected with a customized device (biosensor), 
composed by a biological receptor and a physicochemical detector. 
They offer ease, quick and high sensitivity and specificity measurements 
of complex biological samples, in a very cost-effective process. 

AuNPs have attracted attention as probes in biological detection 
for their biocompatibility, surface-to-volume ratio, ease of synthesis, 
surface functionalization and unique properties, among which the 
most important is their localized surface plasmon resonance (LSPR). 
AuNPs functionalized with thiolate oligonucleotides (Au-nanoprobes) 
can be used for the detection of bioanalytes, such as ions, proteins or 
target DNA at a lower cost comparing to traditional methods. The 
detection is carried out exploiting the LSPR, according to which their 
intense color changes together with the modification of the dielectric 

Figure 2. Thomson Reuters Web of Science research about the topic ‘blood nanoparticles’, made in April of 2019
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crystal microbalance sensor surface to detect real-time changes in the 
resonant frequency [52]. 

A portable sensor for a rapid analysis and diagnosis of acute myeloid 
leukemia was developed by using Surface Enhanced Raman Scattering 
(SERS). Hollow core photonic crystal fibers are integrated with silver 
NPs in order to enhance the weak Raman signal of cancerous cells even 
at very low cells counts up to 300 cells/ml [53]. SERS AuNPs were also 
used to facilitate the detection of surface proteins such as CD45, CD19, 
CD20 of leukemia and lymphoma cells [54].

The diagnosis of multiple myeloma involves the detection of 
the Bence-Jones protein in serum. A complementary exam is the 
detection of the protein in urine, however the current analyses, e.g. 
immunoelectrophoresis, immunonephelometry and heat precipitation, 
are time consuming, have low sensitivity, and provide inaccurate results. 
Long, et al. proposed a new approach which is more rapid, sensitive 
and economical if compared to these current methods. They used 
macroporous ordered silica foams to enrich proteins in urine which are 
then analysed with matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry, to detect the presence of the Bence-Jones 
protein [55]. 

Nanoparticle-based therapy

Many papers reported how MNPs’ and MONPs’ chemical-physical 
properties affect cancer cells viability. More in details silver NPs [56-59] 
and selenium NPs [60] are able to induce cells apoptosis on lymphoma 
cells in a dose dependent manner. Copper and cobalt oxide NPs display 
a selective cytotoxicity against hematological cancers cells through ROS 
generation or influencing p53 tumor suppressor gene activity [61,62].

Shahriari, et al. reported that L-asparaginase functionalized AuNPs 
are better internalized into leukemia T-cells than bare ones resulting 
more susceptible to localized hypertermia treatment [63].

Iron oxide NPs can enter B-cell lymphoma and multiple myeloma 
cells through phagocytosis and electrostatic interaction inducing cells 
autophagy and death. This induction of cells autophagy can be further 
non-invasively tuned by an external magnetic field [64] or by the 
addition of a chemotherapeutic agent, like bortezomib with gambogic 
acid [65].

Photodynamic therapy (PDT) is a non-invasive cancer treatment 
that is still under study but has shown great results. After the 
accumulation of a phosensitizer agent in the tumor, the diseased region 
is illuminated, usually with a laser source, and the photosensitizer 
transfer energy to molecular oxygen in order to generate ROS. ZnO 
NPs can act as photosensitizer [66] and their effects can be enhanced 
by the addition of chemotherapeutic agents, such as daunorubicin [67] 
or with other elements, such as manganese [68] to produce singlet 
oxygen which acts specifically against leukemic cells, without damaging 
healthy cells. 

Metal NPs are promising nanocarriers for anticancer drugs, 
proteins or nucleic acids, thanks to their small size, biocompatibility 
and capacity to protect and deliver high payload of drugs selectively to 
the tumor by active or passive targeting methods. 

AuNPs can deliver molecules with limited clearance, such siRNA 
[69], oligonucleotides that silence the BCR-ABL1 gene [70] or CpG and 
ovalbumin antigens that activate dT-cells reducing the tumor growth 
[71]. They can also be functionalized with anticancer drugs, such as 
6-mercaptopurine [72], fludarabine phosphate [73], AS1411 [74] or 
dasatinib, a tyrosine kinase inhibitor, to reduce the effective dose [75].

Other chemotherapeutics can be loaded on different types of 
MNPs to improve their circulation time and the uptake by cancer cells, 
reducing side effects toxicity. For example, magnetic nanoparticles of 
magnetite can be coated with daunorubicin [76] or magnetite and silica 
with cytarabine [77], doxorubicin can be loaded on cadmium telluride 
QDs conjugated with PEG in order to also regulate the release in a pH-
depedent manner [78]. Iron oxide NPs combined with paclitaxel and 
anti-ABCG2 monoclonal antibodies improve the therapeutic effect of 
the drug and reduce multiple myeloma progression [79]. 

Iron or iron-based NPs are successfully used for the treatment of 
a non-cancerous blood disease like anemia. It is commonly treated by 
oral administration of ferrous sulfate supplements, but only a small 
part is absorbed in the upper intestinal tract and the remaining reaches 
the low tract where reacts with hydrogen peroxide and superoxide 
producing free radicals and unfavourable effects. The reduction of the 
size of iron to the nanometric scale, increases its bioavailability and 
gastrointestinal absorption [80]. Further coating such as lipids [81,82], 
folic acid and chitosan [83] resulted to improve iron-based NPs stability 
and NPs inclusion in a bacteria, i.e. Lactobacillus fermentum, increased 
their efficiency [84]. In haemophilia treatment, Iron oxide NPs can be 
also coupled with factor VIIa for optimize its delivery [85].

MNPs can be applied also to coagulation disorders treatments: 
iron-derived NPs, such as magnetite, can be used as haemostatic agents. 
Magnetite matrix NPs, entrapping thrombin, are applied for a non-
invasive treatment of internal bleeding: they are injected directly in 
the bloodstream, guided through an external magnetic field to the site 
of bleeding, where fibrinogen is injected to accelerate the coagulation 
process and the combination with thrombin-entrapped NPs stops the 
bleeding [86]. In contrast, some NPs can be used as anticoagulant 
agent: AuNPs coated with chitosan [87], the combination of AuNPs 
with thrombin binding aptamer produces nanoconstructs that interact 
with thrombin, inhibiting its activity, in a photo-controllable manner 
[88,89]. Zinc oxide NPs reduce the amount of thrombin and coagulation 
factors and prolong the time of thromboplastin and prothrombin [89]. 
Silver NPs, bare [90,91] or coated with chitosan [92], shown a high 
thrombolitic potential.

MSNs, entrapping the drug inside their pores efficiently deliver 
chemotherapeutics to cancer cells. Daunorubicin was encapsulated 
in mesoporous silica NPs functionalized with the B220 antibody 
to actively and selectively target acute leukemia cells [93]. Once 
encapsulated inside the pore, drugs have to be retained in the pore 
through stimuli-responsive coating that can act as a sealant and under 
specific condition slowly release the payloads. For example, a peptide 
responsive to the bind with a specific receptor overexpressed by tumors 
[94], pH-responsive PEG telomerase responsive oligonucleotide 
sequences [95], biotin-avidin and pepsin enzyme cap [96] or adenosine 
triphosphate and calcium carbonate [97] seal the pores and MSNs 
release their cargoes only in presence of specific condition typical of 
the different types of tumors, causing enhanced apoptosis and higher 
drug’s uptake. MSNs pores can be also sealed with lipid membranes 
creating a nanoconstruct called “protocell” [98] and the surface can 
be functionalized in different ways, for example by PEG binding, or 
targeting ligands [99].

MSNs can be employed as haemoglobin-based oxygen: exploiting 
the affinity between haemoglobin and MSNs, haemoglobin can 
be loaded inside the pores and replace the function of defective 
erythrocytes delivering oxygen to cells and tissues [100]. To control the 
release of haemoglobin MSNs can be coated with liposomes [101] while, 
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for the controlled release of anticoagulant drugs, MSNs can be loaded 
with heparin. Once loaded with thrombin-specific cleavage sites and 
capped with a thrombin-sensitive peptide [102], MSNs can release the 
drugs to slow the coagulation cascade or if conjugated with thrombin 
binding aptamer and coated with a streptavidin cap, can be used for 
a reversible inhibition of thrombin activity toward fibrinogen [103]. 
MSNs were also covalently coated with heparin showing prominent 
anti-thrombogenic effects in whole blood from patient donors [104]. 

Among the many application of polymeric NPs in therapeutics, 
Poly(lactic-co-glycolic) acid (PLGA), as biodegradable polymer 
approved by FDA, is recognised as a valid drug delivery vehicle. 

Curcumin, a natural hydrophobic yellow pigment with anticancer 
and anti-inflammatory properties, has low aqueous solubility and 
bioavailability so its drug delivery capability is enhanced by PLGA 
NPs incapsulation [105,106]. The same solution is used to deliver the 
antisense peptide nucleic acid that inhibits miR-155 expression to 
lymphoma cells: the withdrawal of this microRNA results in a rapid 
regression of the disease [107]. 

Barasertib or AZD2811 is a potent and selective Aurora B kinase 
inhibitor that has a pivotal role in inducing the chromosomes alignment 
during mitosis and controlling the cytokinesis, thus its inhibition 
induces polyploidization and cell death. The drug is encapsulated in 
polymeric nanoparticles called Accurine, composed of poly-D,L-lactide 
and poly(ethylen glycol). This drug delivery system allows a scheduling 
of weekly (or longer periods) administrations, thanks to the high dose 
delivered to the tumor that increases the durability of the response and 
decreases the toxic side effects [108,109].

To overcome some of the limitations of standard anticancer drugs, 
they can be encapsulated inside biodegradable polymeric NPs which 
guarantees the delivery of the drug to the target site and a continuous 
and controlled release. Chlorambucil and hydroxychloroquine [110-
112] or doxorubicin [113] are loaded inside biodegradable polymeric 
NPs and are functionalized with anti-CD20 or anti-CD19 antibodies 
to specifically target different neoplastic B-cells. Idarubicin, an 
anthracycline antibiotic approved by FDA analogue to daunorubicin, 
can be encapsulated in methoxy poly(ethylene glycol)-b-poly(l-lactide-
co-glycolide) nanoparticles [114].

A special reference needs to be made to nanogels that are 
colloidal hydrogel particles composed by three-dimensional cross-
linked hydrophilic polymers networks. They are used for the delivery 
of hydrophilic large molecules, with the aim to protect drugs from 
degradation, and their surface can be functionalized to improve the 
blood circulation and the cellular uptake. Their drug delivery properties 
are based on the hydrogels’ capacity of swelling in aqueous environment 
instead of dissolving. Nanogels of linear thiolated poly(glycidol), 
modified with peptides sensitive to redox environment, loaded with 
the tumor suppressor miR-34a and a trans activator for transcription 
provide an effective tool for the treatment of multiple myeloma [115]. 
Other kinds of nanogels insert methotrexate in chitosan nanoparticles for 
intranasal administration in a central nervous system lymphoma [116]. 

Biodegradable polymers such as PCL or PLGA can be loaded 
with heparin [117], while chitosan show an intrinsic anticoagulant 
activity and can be combined with other polysaccharides, fucoidan 
and chondroitin sulfate, to produce NPs for the control of the 
coagulation cascade [118]. Chitosan NPs can be also loaded with factor 
VIII-encoding DNA and orally administered as an unconventional 
hemophilia A handling [119,120]. 

Two outstanding applications of PLGA nanoparticles have been 
studied for immune thrombocytopenic purpura and thalassemia, 
respectively. In the first case, a NP core of PLGA was covered by a 
platelet membranes coating, which presents all the typical platelet 
proteins able to partially neutralized the effects of anti-platelet 
antibodies and minimize the disease burden [121]. Thalassemia can be 
early detected during pregnancy, thus it is possible to administer intra-
venous or intra-amniotic PLGA NPs encapsulating peptide nucleic acid 
and donor DNA to correct the mutation of β-globin gene of the foetus 
[122,123]. 

There are several chemotherapeutic or anti-inflammatory drugs 
encapsulated in lipids and this practice has been proven to be effective 
enhancing the local concentration in inflamed tissues, reducing the 
exposure of other organs and also protecting the drug from degradation.

For instance, short interfering RNAs (siRNA) [124,125] or antisense 
oligonucleotides against Bcl-2 [126] can silence proliferation or 
antiapoptotic genes overexpressed in many tumors and, in combination 
with a lower dose of chemotherapeutic, can induce the remission of 
cancer. To prolong their circulation time, they can be encapsulated in 
liposomes and, to improve their target ability, functionalized with anti-
CD20 antibodies.

Glucocorticoids are employed in clinic for the treatment of a 
variety of inflammatory driven malignancies, including multiple 
myeloma, eventually in combination with other chemotherapeutic 
drugs. However, they produce severe side effects like systemic 
immunosuppression, osteoporosis, hypertension and others, they have 
also a rapid clearance and a request of frequent administrations. 

The therapeutic efficacy of dexamethasone is improved by 
liposomal encapsulation [127]. Some chemotherapeutic drugs, such 
as curcumin and doxorubicin [128], tamibarotene [129], carfilzomib 
and doxorubicin [130], gemcitabine [131],  paclitaxel, docetaxel, SN38, 
etoposide, hydroxytamoxifen, miltefosine, or a ferrocenyl complex 
and  decitabine [132], methotrexate [133], arsenic troxide [134],  lead 
to a high complete remission of blood malignancies, but they cause 
also cardiac and other organs dysfunctions, protein inhibition and 
interaction with many biological reactions, so their use is limited for 
human treatment because of their toxic comorbidities. To specifically 
deliver these drugs to cancer cells, avoiding side effects, they can be 
encapsulated in liposomes. A special case of chemotherapeutic into 
liposomes is the ex-vivo modification of T-cells to carry SN-38-loaded 
lipid nanocapsule to lymphoma cells, taking the advantage of the tissue-
homing ability of lymphocytes [135].

Liposomes can encapsulate drugs for different medical purposes: 
thrombin inhibitors, able to exert an anticoagulant activity in case of 
arterial acute thrombosis [136], mRNA to encode erythropoietin, 
factor IX protein [137] and anti-factor VIII antibodies [138,139] for 
haemophilia treatment and Tmprss6 siRNA for thalassemia cure [140].

Solid lipid NPs (SLNPs) are nanocarriers used as an alternative 
to polymeric NPs since they present a lipid core, which encapsulates 
lipophilic drugs controlling their release by increasing their solubility, 
bioavailability and pharmacokinetic profile in case of natural-
derived anticancer drugs, such as AP9-cd [141] and curcumin [142]. 
SLNPs can reduce the toxicity of many  chemotherapeutic drugs: 
hydroxychloroquine can be encapsulated in anti-CD20 functionalized 
PEG-PLGA NPs [143], daunorubicin and tetrandrine in PEG-PLL-
PLGA NPs [144], parthenolide in PEG-PLA and silicon, bendamustine 
in PEG-PLGA [145], doxorubicin in PEG-PCL/Pluronic 105 micelles 



Limongi T (2019) Nanoparticles for hematologic diseases detection and treatment

 Volume 4: 6-12Hematol Med Oncol, 2019         doi: 10.15761/HMO.1000183

[146], paclitaxel  in transferrin decorated SLNPs [147] and vincristine both 
in polyphenolic bioflavonoids [148] or folic acid decorated SLNPs [149].

Nanoparticle-based theranostics

Various NPs act as multifunctional nanotools and can be used both 
for the detection and the treatment of such haematological cancers. 
Referring to AuNPs, their diagnostic capability is carried out exploiting 
their high absorption and scattering of light, while the high surface-to-
volume ratio, afford their use as nanocarriers for drugs. AuNPs, with 
or without further funzionalization [150], sustain cancer diagnosis 
and the delivery of drugs such as the Fms-like tyrosin kinase inhibitors 
(midostaurin, sorafenib, lestaurtinib and quizartinib) [151-153]. 

Transferrin (Tf)- luminescent blue copper nanoclusters are 
coupled with doxorubicin for theranostics applications. When NPs are 
internalized in TfR overexpressed cells, it is possible to simultaneously 
detect the blue emission of transferrin into the cytoplasm and, 
the gradual release of doxorubicin in the nucleus through Förster 
Resonance Energy Transfer (FRET) [154].

Lanthanide-doped nanoparticles can be employed as bioimaging 
tool for their photoluminescent properties [155] and loaded with 
therapeutic cargoes and targeting molecules for a therapeutic use 
against acute myeloid leukemia cells [156]. 

Also liposomes can be engineered for theranostics application: they 
can be loaded with superparamagnetic iron oxide NPs (SPIONs) and 
detected by magnetic resonance or positron emission tomography for 
tracking and treatment monitoring. SPIONs are covered with liposomes 
and then functionalized with Rituximab for increase their targeting 

ability and, coated with tween80 to increase their circulation time and 
their penetration across the blood brain barrier (BBB) to reach also 
central nervous system lymphoma [157]. 

Core-shell  chitosan-hyaluronic acid-NPs decorated with peptide 
pA20-36 were used to specifically target B-cell lymphoma and induce 
cells death in a caspase-dependent manner while fluorescent tracer and 
a paramagnetic agent allowed NPs internalization imaging [158].

Also Calcium phosphosilicate NPs can be engineered, once loaded 
with indocyanine green and functionalized with CD96 and CD117 
antibodies, they can be endocytosed by leukemic cells, allowing the 
detection of the disease and the application of the photodynamic 
therapy [159].

Conclusion
To conclude here we have reviewed the broad panorama of 

nanoparticles, which represent one of the most useful alternative 
solution to manage blood diseases providing innovative non-invasive 
approaches for diagnosis and treatment.

Although a large number of NPs-containing drugs have already 
received FDA approval (Table 1) or are at present involved in studies 
or clinical trials (Tables 2 and 3), NPs healthcare use requires improved 
chemical-physical characterization, better definition of their potential 
toxicity concerns and more detailed regulatory guidelines.

However, there is no doubt that the rapid progress of the 
engineering of new materials and the implementation of new 
methods in the nanotechnology field will lead to the design and 

Name

Composition

Disease Year of approval References
NPs Active substances

CosmoFer/ INFeD/ 
Ferrisat Iron dextrane colloid Iron deficient anemia 1992, FDA [160]

Doxil/ Caelyx Liposomes Doxorubicin Multiple myeloma 1995, FDA [161,162]
DexFerrum/ DexIron Iron dextrane colloid Iron deficient anemia 1996, FDA [163]
Depocyt Liposomes Cytarabine Lymphomatous meningitis 1999, FDA [164,165]

FerrIecit Iron gluconate colloid Anemia treatment in patients with 
chronic kidney disease 1999, FDA [166]

Venofer Iron sucrose colloid Anemia treatment in patients with 
chronic kidney disease 2000, FDA [167]

Oncaspar Liposomes Asparaginase Acute lymphoblastic leukemia 2006, FDA [168]

Feraheme Iron polyglucose sorbitol 
carboxymethylether colloid

Anemia treatment in patients with 
chronic kidney disease 2009, FDA [169]

Monofer Iron isomaltoside colloid
Iron deficient anemia when oral 
method do not work or iron delivery 
is required immediately

2009, some of Europe [170]

Marqibo Liposomes Vincristine Acute lymphoblastic leukemia 2012, FDA [171,172]
Diafer Iron isomaltoside colloid Iron deficient anemia 2012, some of Europe [173]
Injectafer/ Ferinject Iron carboxymaltose colloid Iron deficient anemia 2013, FDA [174]
Vyxeos Liposomes Daunorubicin and cytarabine Acute myeloid leukemia 2017, FDA [175-177]

Table 1. Drugs already approved by FDA for hematological disease treatment

Name
Composition

Disease Year-Target FDA approval References
NPs Active substances

DaunoXome Liposomes Daunorubicin Acute Myeloid/ Lymphoblastic 
Leukemia 1996-HIV Kaposi’s sarcoma [178-180]

Myocet Liposomes Doxorubicin Lymphoma 2000-metastatic breast cancer [181,182]
Abraxane Albumin Paclitaxel Lymphoma 2005-breast, lung and pancreatic cancer [183]

Table 2. Drugs already approved by FDA for other application that are now studied or under clinical trials to for hematological malignancies applications
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Name
Composition

Disease Clinical trial.gov identifier (Phase) References
NPs Active substances

ABI-011 Albumin Thiocolchicine analog Lymphoma NCT02582827 (I)
NCT01163071 (I) [184]

AZD2811 Polymers Aurora B kinase inhibitor Acute myeloid 
leukemia NCT03217838 (I, II) [109,185]

BP1001 Liposomes
Growth factor receptor 
bound protein-2 antisense 
oligonucleotide

Leukemia
NCT02923986 (I, II)
NCT02781883 (II)
NCT01159028 (I)

[186-188]

DCR-MYC Liposomes DsiRNA for MYC oncogene 
silencing

Multiple myeloma and 
lymphoma NCT02110563 (I) [189,190]

JVRS-100 Liposomes Plasmid DNA complex Leukemia NCT00860522 (I) [191]

Mitoxantrone 
hydrochloride liposome Liposomes Mitoxantrone Leukemias and 

lymphoma

NCT02043756 (I)
NCT02131688 (I)
NCT02856685 (I, II)
NCT03776279 (II)
NCT02595242 (I)
NCT02597387 (II)
NCT02597153 (II)
NCT02879643 (I)
NCT02518750 (II)
NCT02733380 (II)
NCT02724163 (III)
NCT03591510 (II)

[192-194]

NC-4016 DACH-Platin 
micelle

Polyamino acid and 
PEG Oxaliplatin Lymphoma NCT03168035 (I) [195]

PNT2258 Liposomes Single-stranded DNAi Lymphoma

NCT02378038 (II)
NCT02226965 (II)
NCT01733238 (II)
NCT01191775  (I)

[196-198]

Table 3. Drugs currently under clinical trials

standardization of alternatives therapies specific to each patient and 
disease. Nanomedicine, using original and multi-faceted instruments 
as the NPs are, can offer the precise targeting and therapeutics tools that 
researchers and physicians need, to make the diagnosis and treatment 
techniques that they already have at their disposal even more effective 
and competitive.
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