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Abstract— Scan chain-based testing is a de facto standard 
for guaranteeing quality of manufactured digital circuits. 
However, functional approaches are often used to complement 
test suites, especially when analog circuitry is integrated in the 
chip. Software-Based Self-Test (SBST) can be used to increase 
defect coverage also in digital parts, or to replace part of the 
scan pattern set to reduce tester requirements, or to 
complement the defect coverage achieved by structural 
techniques when advanced semiconductor technologies 
introduce new defect types. This paper deals with SBST 
targeting transition delay faults, and describes a case of study 
based on a peripheral module integrated in a System on Chip 
(SoC). A method to develop an effective functional test is first 
described. A comparative analysis of the delay faults detected 
by scan and SBST is then presented, together with some 
discussion about the obtained results. 

Keywords—Software-based self-test, transition delay faults, 
VLSI, microcontrollers, peripherals 

I. INTRODUCTION 

To guarantee the quality of integrated circuits, testing at 
the end of manufacturing is mandatory even if its cost 
constitutes a large part of the overall budget. Designers and 
product engineers collaborate to find the best solutions in 
terms of test coverage and application costs for the products. 
The inclusion of additional Design-for-Testability (DfT) 
dedicated structures within the chip is considered a valid 
approach to simplify and accelerate test generation and 
application: the most common approach, in digital logic, is 
the use of scan chains, which provide direct controllability 
and observability to most flip-flops in the circuit. Today’s 
scan chain-based methodologies overcome many limitations 
of the basic approach. Some examples include: 

 Scan compression, to reduce the test pattern size and 
alleviate the memory requirement on the tester; 

 On-chip clock controllers, to use available on-chip 
oscillator and phase-locked loop (PLL) for applying 
patterns at-speed, i.e., at the nominal circuit frequency; 

 Power-aware pattern generation, to avoid the excessive 
energy dissipation during test due to switching activity 
higher than normal. 

Alternative and complementary approaches to scan 
chain-based testing have been developed and used in the past 
to provide a wider range of methods to designers and product 
engineers. Among those, Software-Based Self-Testing 
(SBST) methods [1] are based on the application of 
functional stimuli to an on-chip microprocessor, by making it 
run a specific piece of code. With such kind of stimulation, it 
is possible to guarantee the detection of structural faults 
within the logic, at the nominal circuit frequency (at speed) 
and without extra power consumption; however, test 
generation and coverage assessment processes are not as 
standardized, automated and widespread. The adoption of 

advanced semiconductor technologies even for safety-critical 
applications, requiring a high-level of reliability, triggered 
the usage of SBST for in-field test, in the form of Self-Test 
Libraries (STL) developed by the semiconductor company 
manufacturing the device and integrated by the system 
company in the application code [2].  

While most of the papers describing techniques to 
generate SBST programs and assess their effectiveness 
focused on stuck-at faults, some of them also dealt with 
delay faults [3-8], whose importance is growing with 
shrinking semiconductor technologies. Several researchers 
(e.g., [9]) highlighted the fact that the percentage of 
functionally untestable delay faults (i.e., delay faults that 
cannot produce any failure when the circuit works in the 
operational mode) significantly increases, thus reducing the 
achieved fault coverage. Clearly, the ideal approach would 
be to remove untestable faults from the fault list when 
computing the achieved fault coverage [10]. Unfortunately, 
given the complexity of modern processors, the task of 
identifying functionally untestable faults with a scalable 
effort still remains an open problem [9][11].  

In this paper we propose for the first time a SBST 
methodology for testing a digital communication peripheral 
embedded in a mixed-signal ASIC device at the end of 
manufacturing focusing on both stuck-at and transition delay 
faults. The manually developed test stimuli include a specific 
code to be run by the embedded microcontroller, in parallel 
with the interaction from the outside handled by an 
Automatic Test Equipment (ATE). 

The goal of the paper is first to demonstrate that SBST 
can be used to improve or replace part of traditional test 
procedures for digital logic, thus improving test coverage 
while containing test application cost. As a matter of fact, 
functional/embedded software-driven testing parts are 
commonly employed for analog components in mixed-signal 
circuits, disregarding the coverage that they may inherently 
obtain on the digital logic. Secondly, we compared the list of 
faults detected by the proposed SBST technique with the 
faults detected using scan. Results show that due to designer 
choices, some faults can only be detected resorting to a 
functional approach, while some of the faults which are only 
detected by the scan test proved to be functionally untestable, 
and hence their detection produces some overtesting. In 
summary, the contribution of the paper lies from one side in 
proposing a technique to guide the test engineer in the 
generation of suitable SBST tests for a peripheral module, on 
the other on reporting detailed experimental results related to 
the stuck-at and transition delay fault coverage figures 
achievable with SBST and scan on a real industrial case 
study. 

This paper is structured as follows: Section II provides an 
essential background to appreciate details and motivations of 
the work; Section III describes the flow used to develop the 
test set and to evaluate its test coverage. Experimental results 



on a case study are reported in Section IV, and conclusions 
are drawn in Section V. 

II. RELATED WORKS 

This paper focuses on the end-of-manufacturing test of a 
case study corresponding to a peripheral module managing 
communications with the outside of a System on Chip (SoC). 
Test of such modules is typically performed resorting to DfT 
techniques, such as scan. While it guarantees an easy to 
apply and effective solution for stuck-at faults, scan is known 
to have some criticalities when delay faults are considered. 
In such a case, Lunch on Capture (LoC) and Launch on Shift 
(LoS) can be used [12], which are widely supported by 
commercial tools. Both LoC and LoS are known to produce 
some overtesting, since they perform the test with full 
freedom in controlling and observing the flip-flop state. In 
normal operational conditions this is clearly not the case. 
When considering path delay faults, the overtesting issue can 
be tamed by identifying functionally untestable paths and 
removing them from the target fault list [13][14]. While 
exact solutions are hardly scalable, approximate ones have 
also been proposed [10]. The role of temperature when 
facing delay faults has been explored in [15]. 

As an alternative to DfT solutions, functional ones 
provide the advantage of not requiring any hardware 
overhead nor producing any overtesting. On the other side, 
test stimuli generation is not automated in this case, and its 
cost is clearly much higher. This solution may be particularly 
attractive for SoCs including at least one processor, where 
functional test takes the form of a program suitably written to 
excite the target faults and make their possible presence 
visible on the circuit outputs (Software-based Self-Test, or 
SBST) [1]. Previous papers explored techniques to guide the 
test engineer in the development of suitable SBST programs 
targeting stuck-at and delay faults [4-6][16]. Others focused 
on a comparison between the Fault Coverage achievable with 
scan with respect to the one of SBST, taking also into 
account of the untestable delay faults [9]. Some works also 
tried to provide techniques allowing to automate the 
generation of such programs [3][7], possibly resorting to a 
hybridization between DfT and SBST [17]. Finally, some 
recent works focused on new techniques to speed up the 
assessment of the quality of the developed test programs 
[20]. Once again, the issue of preliminarily identifying 
untestable delay faults to reduce the test generation effort and 
more precisely assess the achieved test effectiveness plays a 
key role [11]. Clearly, removing functionally untestable 
faults from the considered fault list allows to increase the 
achieved test coverage, as it is routinely done when adopting 
standards (e.g., ISO 26262 in automotive) and performing 
Failure Modes, Effects and Diagnostic Analysis (FMEDA). 
On the other side, detecting them anyway may increase the 
overall quality of the product. The experimental results we 
report in this paper allows to quantitatively assess the impact 
of functionally untestable faults and to better understand 
their origin.  

In this paper we do not focus on the usage of SBST for 
testing the faults in the CPU, but rather consider the test of a 
communication peripheral core, building over the techniques 
overviewed in [18]. We extend them to an interface based on 
the SPMISM standard, and analyze the results gathered on a 
test case where both the scan and SBST solutions were 
developed. For the first time, comparative results related to a 
peripheral component are reported with respect to both 

stuck-at and transition delay faults. An analysis of the results 
obtained with the two techniques provides the reader with 
some better understanding of their advantages and 
limitations.  

III. PROPOSED APPROACH 

In order to test a peripheral module within a SoC with a 
functional approach, such as in SBST, a specific code for the 
embedded CPU needs to be written, accessing the peripheral 
registers by means of the system bus. In addition, in case of 
communication peripherals or modules interacting with the 
outside of the chip, further stimuli need to come from the 
external world, i.e., by the ATE. The operations of the 
embedded microcontroller and the external tester have to be 
synchronized by means of precise timing control or 
handshake protocols. 

For the validation of a SBST set and the assessment of 
test coverage, an hdl testbench is used to activate the system 
and emulate external devices in simulation and fault 
simulation. The general flow is described in Fig. 1. After the 
code is written and the testbench is prepared, a functional 
simulation is performed to ascertain that the Unit Under Test 
(UUT) performs as planned. Then, fault simulation is 
required to assess the coverage on a list of faults on the 
peripheral logic structure. 

Test development (CPU 
code+ATE stimuli)

Functional simulation

Expected 
behavior?

Fault simulation End

NO NO

YESYES

Is coverage
sufficient?

 
Fig. 1. Test generation flow. 

A. Generation of the test program and external stimuli 

The development of a SBST set usually starts with a 
series of small program sections able to access each of the 
peripheral registers and activate all its functionalities (e.g., 
transmitting and receiving data in different configurations). 
Any available design validation code can be fruitfully 
employed in this step. Usually, each part is composed of a 
preliminary “setup” or configuration phase, and an 
operational step. It is possible to assume that the available 
code is already “short enough”, i.e., avoids redundant parts, 
so as not to increase simulation time and also to limit test 
application duration/costs. 

However, two important test-specific points have to be 
considered. First, the targeted fault model has an impact on 
the required stimuli: as an example, whereas a stuck-at test 
only requires that each register is written and then read first 
with ‘0’ and then with ‘1’ logic values, when dealing with 
delay-dependent fault models, such as the transition delay 
one, the sequence and the timing of operations is 
fundamental as well. In this case, a sequence of ‘0’-to-‘1’ 



and ‘1’-to-‘0’ operations are needed for each node. In this 
way, stuck-at faults are inherently covered. 

Second, while validation usually requires the monitoring 
of a limited amount of functional results of an operation, in 
case of test, in order to guarantee high test coverage, the 
observation of fault effects requires more pervasive data 
sampling operations. The fault effects need to be propagated 
either to the outside of the device (to be read by the ATE) or 
to a bus or memory area readable by the embedded 
microprocessor. 

After a preliminary all-encompassing functional 
stimulation, if additional coverage is required, it is possible 
to address the composing elements of the peripheral one at a 
time, with specific techniques for activating the logic of each 
part. The most common elements within a digital peripheral 
are controllers, combinational units such as comparators and 
algebraic units, regular sequential devices such as counters, 
and data buffers. 

Controllers are the circuit sections used to handle the 
control signals regulating the datapath, and are typically 
implemented using Finite State Machines (FSMs), which are 
mathematical models of computation. A FSM is composed 
by a finite number of states; the current state evolves from 
one to another depending on the external inputs. A test 
procedure normally aims at activating all possible states and 
transitions between them, and then making the performed 
operations visible. 

To maximize test coverage in combinational units, 
available Automatic Test Pattern Generator (ATPG) tools 
can be fruitfully used to generate a sequence of stimuli on 
limited parts of the logic. Such sequences need then to be 
brought to the unit interface by means of microprocessor 
instructions or external interaction, and then test results have 
to be propagated to observable points. It may not be always 
possible to apply any pattern to inner circuitry: this will be 
further discussed in subsection C. 

Regular sequential units such as counters need to be 
approached taking into account the fact that their test can be 
quite time-consuming. For this reason, it can be useful to 
concentrate on applying transitions on the output of each 
sequential element and propagating them towards observable 
points, exploiting programmable features. For instance, a 32-
bit programmable counter can be set to count in different 
shorter ranges to activate transitions in all register bits 
without waiting for 232 clock cycles. Similarly, when testing 
a data buffer it is needed to know its characteristics 
(byte/word accessibility, LIFO/FIFO architecture, etc.) and 
its implementation in order to develop the most suitable 
sequence of write and read operations. 

B. Test coverage evaluation 

The evaluation of test coverage requires the fault 
simulation process, i.e., a gate-level simulation reproducing 
the effect of faults and enabling to determine if the applied 
stimuli produce a difference between the good and the faulty 
circuitry. Fault simulation can be performed by suitably 
instrumenting a model in a logic simulator, and commercial 
tools are also available. Functional fault simulators aimed at 
validating fault-tolerant designs and at evaluating the 
effectiveness of test sets are becoming increasingly popular. 
A fault simulator may require to provide the sequence of 
input/output signals at the periphery of the module under test 

(e.g., in the form of a value change dump – vcd – file), and 
hence a previous functional simulation run is needed; others 
may directly handle the complete simulation of the testbench 
and any other circuit parts not currently addressed for the 
computation of fault coverage. The latter case, represented 
by, to name but a few, Cadence Incisive Safety Simulator, 
Z01X by Synopsys and Silvaco HyperFault, is more 
convenient for the problem described in this paper. 

Due to the potentially large number of faults within the 
logic under test and the non-direct logic monitoring of SBST 
procedures, which may require many clock cycles to 
propagate fault effects to observable points, the management 
and the running time of fault simulation can get critical also 
when using state-of-the-art tools.  

The key factors are the number of observation points and 
the timing when these are actually sampled. In fact, the 
simulator will check the observation points only in certain 
instants (decided by the designer). The more frequent is the 
check, the larger is the time required by the simulation. On 
the other hand, a more frequent check may detect a larger 
number of faults, which may increase the overall speed of the 
process. This is linked to the algorithm used by the fault 
simulator: generally, once a fault is excited, the fault 
simulator creates a new simulation instance to keep track of 
all the evolutions of the faulty circuit. This simulation 
instance will be closed once the fault is detected, freeing the 
resource allocated for that instance (fault dropping). The 
larger is the number of simulation instances, the higher is the 
amount of resources required by the fault simulator and 
consequently the slower is the fault simulation. A similar 
discussion can be done regarding the number of observation 
points. The larger is their number, the slower is the 
simulation, but the higher is the chance to detect a fault. It is 
important to recall that, in the end, the observation point 
must be chosen in order to get a coverage indication as close 
as possible to the real test application; different solutions 
may be employed within the same flow in order to get a fast 
albeit approximate information when designing the test and a 
more precise one at the end. 

C. Functional testability 

To correctly assess test coverage on a circuit, an 
important concept has to be introduced. A fault is physically 
testable if there exists a test for the fault which can be 
applied on the hypothesis of full accessibility to all circuit 
nets. Even when using full-scan test approaches, not all input 
sequences can be applied to the combinational parts of the 
circuit: therefore, not all faults are testable even under full-
scan. For example, a delay fault may not be testable, because 
no one of the vector pairs able to test it can be applied to the 
inputs of the combinational block where it is located using 
LoC and LoS techniques. A fault is functionally testable if 
there exists a functional test for exciting that fault: when 
delay testing a circuit using SBST (or during the normal 
behavior of the system), the signals feeding the addressed 
path are determined by the program running on the processor 
and on the stimuli on the interfaces. These impose temporal 
and spatial correlations among registers/flip-flops and thus 
among inputs/outputs of the addressed logic. These 
correlations result in a smaller set of testable faults (Fig. 2). 



 
Fig. 2. Fault testability categorization. 

Functionally untestable (redundant) faults cannot be 
activated and/or observed during normal operations of the 
circuit, therefore they have no impact on circuit behavior and 
performances. SBST focuses on functionally testable faults, 
intrinsically avoiding over-testing the circuit’s redundant 
logic [11]. Two definitions are hence used: fault coverage is 
the ratio between tested faults and the total number of faults; 
test coverage is computed using the number of testable faults 
as denominator. 

The identification of functionally untestable faults is still 
an open problem; however, during the analysis of the 
peripheral under test and during the generation of the SBST 
set, the fault list can be pruned to exclude parts of the logic 
that cannot be functionally operated, e.g., modules 
deactivated due to hardwired configuration values, any DfT 
structures that cannot be activated in functional mode, such 
as scan chain-related signals, or error-handling logic (e.g., 
redundant paths). 

IV. CASE STUDY 

To demonstrate the feasibility of the approach, a 
communication peripheral based on the System Power 
Management Interface (SPMISM) specifications by the MIPI 
Alliance is used as a case study. The peripheral can handle 
two-wire serial communications up to 26MHz and includes 
functions such as bus arbitration, data serialization, error 
detection and an automated ack/nack protocol. 

A. Case study description 

The selected peripheral acts as request-capable slave, i.e., 
a slave which can initiate sequences on the two-wire SPMI 
bus (SCLK and SDATA). Fig. 3 shows its basic architecture. 
The processor system is connected by means of the AMBA 
AHB bus, and the master/slave AHB interface (equipped 
with a FIFO mailbox) handles communications. The Control 
and Status Register (CSR) module includes byte-addressable 
registers used to control and monitor the peripheral 
functions. Two finite state machines (FSMs) manage the 
arbitration (Request FSM) and the general peripheral 
behavior. 

The synthesized peripheral counts about 21,500 
equivalent gates and is equipped with full-scan. We 
underline that scan chains are not used when applying SBST. 
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Fig. 3.  Architecture of the case study. 

B. SBST Test suite 

The complete test set is composed of a series of small 
program/external stimuli sequence pairs, each targeting some 
specific functionalities or modules within the peripheral: 

 Reset, write 0/1 and read 0/1 (Reset). This segment is 
operated by the microcontroller, which requests a 
peripheral reset and then reads the registers. After this, a 
comprehensive sequence of 0-to-1 and 1-to-0 write 
operations is done on the CSR, each followed by the 
needed reads, as in the following pseudo-code 

// The MCU resets the peripheral (all flip-flops=0) 
mcu.SPMI_reset();  
for each register in CSR {// write 1 in each register 
bit 
  mcu.ahb.write(reg_addr, 0xFF); // 0->1 transition 
  // read register content and store the value in the 
RAM 
  mcu.ahb.read(reg_addr); 
} 
for each register in CSR { // 1->0 transition 
  mcu.ahb.write(reg_addr, 0x00); 
mcu.ahb.read(reg_addr); 
} 
for each register in CSR { 
  mcu.ahb.write(reg_addr, 0xFF); 
mcu.ahb.read(reg_addr); 
} 
mcu.SPMI_reset(); 
for each register in CSR {  mcu.ahb.read(reg_addr); } 
 
 Mailboxes test (WR-fifo and RD-fifo). For each FIFO 

buffer (from AHB and from the outside), a sequence of 
write and read operations is performed to stimulate 0-to-1 
and 1-to-0 transitions in the registers, and the “flush” 
operations are tested as well. 

 Request commands (Request). In this segment, bus access 
request commands are programmed to be executed by the 
peripheral under test, while the external tester will 
emulate other peripheral on the SPMI bus. 

 All commands (Commands). In this case, the external 
tester acts as a bus master and sends a sequence of all 
possible commands to the peripheral. For read and write 
commands, all possible payload sizes (1 to 16) are used, 
and addresses are selected so as to stimulate each bit in 
the address field with both 0 and 1 values. When writing 
to the CSR module some care has to be taken to avoid 
requesting unwanted peripheral operations, by carefully 
selecting write register addresses and data words (e.g., 
when writing to Register 0). Tests for the authentication 
mechanism and for activating all states of the state 
machine are also applied. 

 AHB access control test (AHB access). This part of the 
test targets the AHB interface, whose accessible 
addresses can be programmed. Read/write operations are 
used aiming at stimulating the address comparators 
within the module. 

 Counters. The last part of the test aims at activating the 
embedded timers for protocol management and timeout 
condition evaluation. 

The results of each segment are read by the CPU and 
compressed using a software Multiple-Input Signature 
Register (MISR) sequence and stored in the system memory; 



then, they are read from the tester with a Read transaction on 
the SCLK/SDATA pins. 

C. Fault simulation 

For the case study, Z01X by Synopsys was employed as 
fault simulator. In general, the tool can be used for two 
purposes: functional safety assurance, i.e., to check the 
efficacy of robust design strategies, and for manufacturing 
assurance, i.e., to evaluate the effectiveness of a test set. The 
synthesized or post-layout circuit netlist in Verilog can be 
directly simulated using testbenches (also in RTL), libraries 
and macro models in Verilog and SystemVerilog, thus 
resorting on the same simulation environment used for 
design validation. 

Three different fault monitoring (strobe) methodologies 
were compared for coverage and speed: 

 All flip-flops. Coverage values are computed while 
monitoring all flip-flops at each clock cycle. These data 
are overestimated since they do not take into account the 
whole process of fault effect propagation to an 
observable output, but help evaluating the effectiveness 
of the test in terms of fault controllability. 

 RAM bus. Coverage is computed while monitoring 
transactions on the system RAM, where results are stored 
after each test operation. The obtained coverage is a good 
approximation of the one obtainable on the ATE, and the 
running time is reduced. 

 SDATA. Coverage is computed monitoring what is 
sampled by the ATE (i.e., external bus transactions); 
some coverage is lost with respect to the previous 
approaches due to the reduced fault observability of the 
method. This is, however, the slowest and the most 
memory-intensive methodology. 

D. Experimental results 

Table I presents the application time required for each of 
the previously described SBST test segments. The most 
time-consuming ones are the AHB access test, requiring the 
application of a large number of patterns for thoroughly 
testing the combinational logic, and the counter test. 

TABLE I.  DURATION OF EACH SBST TEST SEGMENT 

Test segment Duration [ms] 

Reset 0.926 

WR-fifo 0.760 

RF-fifo 1.154 

Request 1.284 

Commands 1.513 

AHB access 11.630 

Counters 128.390 

Total 145.658 

Table II reports fault simulation results on the stuck-at 
fault set, which includes 80,640 faults. Among these, at least 
11,963 are deemed as functionally untestable, belonging to 
IP circuitry that cannot be functionally activated in this SoC 
context, and thus removed from test coverage computation. 
The test segments are applied sequentially on the fault list, 
with fault dropping. The CPU time reports the duration of 
fault simulation, performed on an Intel Xeon CPU clocked at 
3.00GHz (a single core is used), while the Detected column 
shows the number of faults covered by the test set. When a 

test is applied to a sequential circuit, certain faults produce 
an unknown state at the output when a deterministic result is 
expected in the fault-free circuit. This condition is known as 
potential detection (numbers in parentheses) and is here 
assumed equivalent as detection for coverage computation.  

It is noteworthy to observe that a significant number of 
faults produce internal effects on the flip-flops, but cannot be 
observed on the external circuit outputs, and thus remain 
undetected. Moreover, the selection of different strobe 
methodologies may significantly affect the required fault 
simulation computational effort.  

Table III reports the same data for transition delay faults. 
In this case, 80,632 faults are considered, out of which 
15,452 are functionally untestable. Interestingly, a number of 
untestable transition delay faults belong to finite state 
machines, and specifically to transitions from functional to 
“safe” states corresponding to the default branch of case 
statements of hdl languages, which can be taken only in 
presence of errors in the circuit behavior. 

In order to provide a comparison about the coverage 
achievable by scan and SBST, another experiment was 
performed. A scan pattern set was generated with TetraMAX 
by Synopsys for transition delay and stuck-at faults. The scan 
test application takes about 120ms with 10MHz shift 
frequency and at-speed launch/capture, considering a single 
scan chain entirely committed to the peripheral under test. 
Fault coverage is provided for the scan pattern set in the Scan 
chains row of Table IV. In the following rows we report fault 
coverage for SBST and for the application of both test 
methodologies in sequence. The total number of stuck-at 
faults is 80,640, while transition delay faults are 70,207: 
faults on clock or scan-enable logic are not considered in the 
latter case, since it is not meaningful to test faults in such 
logic at functional speeds with scan-based patterns. 

Fault simulation shows that the SBST test set uniquely 
covers 1,335 (1.66%) stuck-at faults and 4,631 (6.60%) 
transition delay faults in addition to the ones detected by the 
scan tests. Regarding transition delay faults, the scan test has 
a higher overall coverage, detecting 9,337 more faults than 
SBST, but only 6,538 out of these have been classified as 
functionally testable. Conversely, of the 59,032 detected 
faults, 5,972 belong to the functionally untestable category. 

Results show that, even covering a lower number of 
faults, the SBST set obtains a better test coverage on 
transition delay faults in a comparable time. The reader must 
also note that most of the SBST application time is taken by 
the Counters segment, which contributes with 2,824 faults to 
the SBST set coverage, or 361 faults if run after the scan test. 
In other words, the SBST set is applied after the scan test 
excluding the Counters segment, it is possible to increase 
fault coverage by more than 6% (or test coverage by 7%) in 
17.27 ms. 

 SBST test is especially effective, obtaining higher fault 
coverage than the scan test, on the AHB interface, on the 
FSMs, on the logic that connects the peripheral to the 
external world and on the logic used by the Request 
commands. 

By further inspection it is possible to see that most of the 
logic covered only by the functional test procedure is directly 
linked to clock gating logic or to other functions that are not 
available while the circuit is in scan-test mode. As a matter 



of fact, due to the unpredictable functional behavior during 
shift and capture operations, the circuit is usually brought by 
hardware to a “safe” state for the application of the scan test, 
isolating the digital logic from the external world and analog 
circuitry in mixed-signal devices, and avoiding possible 
critical configurations of system registers (whose output may 
be set to fixed values during test). SBST can be fruitfully 
employed to extend the coverage range of scan test in such 
cases, even after the circuit is manufactured. 

TABLE II.  SBST STUCK-AT COVERAGE RESULTS WITH DIFFERENT 
STROBE METHODOLOGIES 

Strobe 
methodology 

CPU time 
[s] 

Detected 
(potentially) 

Fault 
coverage 

Test 
coverage 

All flip-flops 72,151 
65,720 
(1,928) 

82.69% 97.10% 

RAM bus 32,915 
59,796 
(1,345) 

74.99% 88.05% 

SDATA 1,429,180 
59,494 
(1,346) 

74.61% 87.61% 

TABLE III.  SBST DELAY FAULT COVERAGE RESULTS WITH DIFFERENT 
STROBE METHODOLOGIES 

Strobe 
methodology 

CPU time 
[s] 

Detected 
(potentially) 

Fault 
coverage 

Test 
coverage 

All flip-flops 88,933 
63,142 

(73) 
78.35% 96.93% 

RAM bus 35,968 
57,099 
(302) 

71.00% 87.83% 

SDATA 1,761,990 
56,748 
(310) 

70.57% 87.30% 

TABLE IV.  FAULT COVERAGE OF SCAN, SBST AND BOTH TESTS 
(STROBE ON SDATA) 

Test 
Stuck-at faults Transition delay faults 

Detected 
(pot.) 

Fault 
coverage 

Detected 
(pot.) 

Fault 
coverage 

Test 
coverage 

Scan 
chains 

78,562 
(0) 

97.42% 
59,032 

(0) 
84.08% 81.40% 

SBST 
59,494 
(1,346) 

74.61% 
56,748 
(310) 

70.57% 87.30% 

Both 
79,897 

(67) 
99.12% 

63,663 
(42) 

90.71% 88.57% 

V. CONCLUSIONS 

This paper describes a case study corresponding to a 
peripheral module within a SoC, for which a test for both 
stuck-at and transition delay faults has been developed 
resorting to the scan approach and to a functional one, based 
on SBST. We outlined a specific approach to develop the 
latter test targeting both stuck-at and transition delay faults. 
Extensive results have been presented, showing that the two 
methods have different and complementary characteristics. 
While scan test generation is fully automated, the functional 
test must be manually built. The fault coverage achieved by 
scan is higher, but some faults (especially numerous when 
considering delay faults) are only detected resorting to the 
functional approach. Moreover, we showed that some of the 
faults which are only detected by scan are functionally 
untestable. Hence, scan is likely to produce a higher degree 
of overtesting. Results we reported may allow test engineers 
to better understand the impact of functionally untestable 
faults on the achieved yield, reliability and quality of the 
product. We discussed the above points, providing examples 
for each category.  

As a general conclusion, the paper shows how important 
it is to combine the two approaches when considering an 
effective end-of-manufacturing test plan. 

Work is currently being done to enhance our ability to 
automatically identify functionally untestable faults, 
extending to peripheral modules some of the ideas proposed 
in [19], and to improve the fault coverage achieved by the 
functional test. 
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