
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Software-Based Self-Test for Transition Faults: A Case Study / Grosso, M.; Rinaudo, S.; Casalino, A.; Reorda, M. S.. -
STAMPA. - 2019-:(2019), pp. 76-81. (Intervento presentato al convegno 27th IFIP/IEEE International Conference on
Very Large Scale Integration, VLSI-SoC 2019 tenutosi a Peru nel 2019) [10.1109/VLSI-SoC.2019.8920306].

Original

Software-Based Self-Test for Transition Faults: A Case Study

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/VLSI-SoC.2019.8920306

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2784862 since: 2020-01-24T13:23:08Z

IEEE Computer Society

Software-Based Self-Test for Transition Faults:
a Case Study

Michelangelo Grosso
AMS R&D

STMicroelectronics s.r.l.
Torino, Italy

michelangelo.grosso@st.com

Salvatore Rinaudo
AMS R&D

STMicroelectronics s.r.l.
Catania, Italy

salvatore.rinaudo@st.com

Andrea Casalino
Dip. di Automatica e Informatica

Politecnico di Torino
Torino, Italy

andrea.casalino@hknpolito.org

Matteo Sonza Reorda
Dip. di Automatica e Informatica

Politecnico di Torino
Torino, Italy

matteo.sonzareorda@polito.it

Abstract— Scan chain-based testing is a de facto standard
for guaranteeing quality of manufactured digital circuits.
However, functional approaches are often used to complement
test suites, especially when analog circuitry is integrated in the
chip. Software-Based Self-Test (SBST) can be used to increase
defect coverage also in digital parts, or to replace part of the
scan pattern set to reduce tester requirements, or to
complement the defect coverage achieved by structural
techniques when advanced semiconductor technologies
introduce new defect types. This paper deals with SBST
targeting transition delay faults, and describes a case of study
based on a peripheral module integrated in a System on Chip
(SoC). A method to develop an effective functional test is first
described. A comparative analysis of the delay faults detected
by scan and SBST is then presented, together with some
discussion about the obtained results.

Keywords—Software-based self-test, transition delay faults,
VLSI, microcontrollers, peripherals

I. INTRODUCTION

To guarantee the quality of integrated circuits, testing at
the end of manufacturing is mandatory even if its cost
constitutes a large part of the overall budget. Designers and
product engineers collaborate to find the best solutions in
terms of test coverage and application costs for the products.
The inclusion of additional Design-for-Testability (DfT)
dedicated structures within the chip is considered a valid
approach to simplify and accelerate test generation and
application: the most common approach, in digital logic, is
the use of scan chains, which provide direct controllability
and observability to most flip-flops in the circuit. Today’s
scan chain-based methodologies overcome many limitations
of the basic approach. Some examples include:

 Scan compression, to reduce the test pattern size and
alleviate the memory requirement on the tester;

 On-chip clock controllers, to use available on-chip
oscillator and phase-locked loop (PLL) for applying
patterns at-speed, i.e., at the nominal circuit frequency;

 Power-aware pattern generation, to avoid the excessive
energy dissipation during test due to switching activity
higher than normal.

Alternative and complementary approaches to scan
chain-based testing have been developed and used in the past
to provide a wider range of methods to designers and product
engineers. Among those, Software-Based Self-Testing
(SBST) methods [1] are based on the application of
functional stimuli to an on-chip microprocessor, by making it
run a specific piece of code. With such kind of stimulation, it
is possible to guarantee the detection of structural faults
within the logic, at the nominal circuit frequency (at speed)
and without extra power consumption; however, test
generation and coverage assessment processes are not as
standardized, automated and widespread. The adoption of

advanced semiconductor technologies even for safety-critical
applications, requiring a high-level of reliability, triggered
the usage of SBST for in-field test, in the form of Self-Test
Libraries (STL) developed by the semiconductor company
manufacturing the device and integrated by the system
company in the application code [2].

While most of the papers describing techniques to
generate SBST programs and assess their effectiveness
focused on stuck-at faults, some of them also dealt with
delay faults [3-8], whose importance is growing with
shrinking semiconductor technologies. Several researchers
(e.g., [9]) highlighted the fact that the percentage of
functionally untestable delay faults (i.e., delay faults that
cannot produce any failure when the circuit works in the
operational mode) significantly increases, thus reducing the
achieved fault coverage. Clearly, the ideal approach would
be to remove untestable faults from the fault list when
computing the achieved fault coverage [10]. Unfortunately,
given the complexity of modern processors, the task of
identifying functionally untestable faults with a scalable
effort still remains an open problem [9][11].

In this paper we propose for the first time a SBST
methodology for testing a digital communication peripheral
embedded in a mixed-signal ASIC device at the end of
manufacturing focusing on both stuck-at and transition delay
faults. The manually developed test stimuli include a specific
code to be run by the embedded microcontroller, in parallel
with the interaction from the outside handled by an
Automatic Test Equipment (ATE).

The goal of the paper is first to demonstrate that SBST
can be used to improve or replace part of traditional test
procedures for digital logic, thus improving test coverage
while containing test application cost. As a matter of fact,
functional/embedded software-driven testing parts are
commonly employed for analog components in mixed-signal
circuits, disregarding the coverage that they may inherently
obtain on the digital logic. Secondly, we compared the list of
faults detected by the proposed SBST technique with the
faults detected using scan. Results show that due to designer
choices, some faults can only be detected resorting to a
functional approach, while some of the faults which are only
detected by the scan test proved to be functionally untestable,
and hence their detection produces some overtesting. In
summary, the contribution of the paper lies from one side in
proposing a technique to guide the test engineer in the
generation of suitable SBST tests for a peripheral module, on
the other on reporting detailed experimental results related to
the stuck-at and transition delay fault coverage figures
achievable with SBST and scan on a real industrial case
study.

This paper is structured as follows: Section II provides an
essential background to appreciate details and motivations of
the work; Section III describes the flow used to develop the
test set and to evaluate its test coverage. Experimental results

on a case study are reported in Section IV, and conclusions
are drawn in Section V.

II. RELATED WORKS

This paper focuses on the end-of-manufacturing test of a
case study corresponding to a peripheral module managing
communications with the outside of a System on Chip (SoC).
Test of such modules is typically performed resorting to DfT
techniques, such as scan. While it guarantees an easy to
apply and effective solution for stuck-at faults, scan is known
to have some criticalities when delay faults are considered.
In such a case, Lunch on Capture (LoC) and Launch on Shift
(LoS) can be used [12], which are widely supported by
commercial tools. Both LoC and LoS are known to produce
some overtesting, since they perform the test with full
freedom in controlling and observing the flip-flop state. In
normal operational conditions this is clearly not the case.
When considering path delay faults, the overtesting issue can
be tamed by identifying functionally untestable paths and
removing them from the target fault list [13][14]. While
exact solutions are hardly scalable, approximate ones have
also been proposed [10]. The role of temperature when
facing delay faults has been explored in [15].

As an alternative to DfT solutions, functional ones
provide the advantage of not requiring any hardware
overhead nor producing any overtesting. On the other side,
test stimuli generation is not automated in this case, and its
cost is clearly much higher. This solution may be particularly
attractive for SoCs including at least one processor, where
functional test takes the form of a program suitably written to
excite the target faults and make their possible presence
visible on the circuit outputs (Software-based Self-Test, or
SBST) [1]. Previous papers explored techniques to guide the
test engineer in the development of suitable SBST programs
targeting stuck-at and delay faults [4-6][16]. Others focused
on a comparison between the Fault Coverage achievable with
scan with respect to the one of SBST, taking also into
account of the untestable delay faults [9]. Some works also
tried to provide techniques allowing to automate the
generation of such programs [3][7], possibly resorting to a
hybridization between DfT and SBST [17]. Finally, some
recent works focused on new techniques to speed up the
assessment of the quality of the developed test programs
[20]. Once again, the issue of preliminarily identifying
untestable delay faults to reduce the test generation effort and
more precisely assess the achieved test effectiveness plays a
key role [11]. Clearly, removing functionally untestable
faults from the considered fault list allows to increase the
achieved test coverage, as it is routinely done when adopting
standards (e.g., ISO 26262 in automotive) and performing
Failure Modes, Effects and Diagnostic Analysis (FMEDA).
On the other side, detecting them anyway may increase the
overall quality of the product. The experimental results we
report in this paper allows to quantitatively assess the impact
of functionally untestable faults and to better understand
their origin.

In this paper we do not focus on the usage of SBST for
testing the faults in the CPU, but rather consider the test of a
communication peripheral core, building over the techniques
overviewed in [18]. We extend them to an interface based on
the SPMISM standard, and analyze the results gathered on a
test case where both the scan and SBST solutions were
developed. For the first time, comparative results related to a
peripheral component are reported with respect to both

stuck-at and transition delay faults. An analysis of the results
obtained with the two techniques provides the reader with
some better understanding of their advantages and
limitations.

III. PROPOSED APPROACH

In order to test a peripheral module within a SoC with a
functional approach, such as in SBST, a specific code for the
embedded CPU needs to be written, accessing the peripheral
registers by means of the system bus. In addition, in case of
communication peripherals or modules interacting with the
outside of the chip, further stimuli need to come from the
external world, i.e., by the ATE. The operations of the
embedded microcontroller and the external tester have to be
synchronized by means of precise timing control or
handshake protocols.

For the validation of a SBST set and the assessment of
test coverage, an hdl testbench is used to activate the system
and emulate external devices in simulation and fault
simulation. The general flow is described in Fig. 1. After the
code is written and the testbench is prepared, a functional
simulation is performed to ascertain that the Unit Under Test
(UUT) performs as planned. Then, fault simulation is
required to assess the coverage on a list of faults on the
peripheral logic structure.

Test development (CPU
code+ATE stimuli)

Functional simulation

Expected
behavior?

Fault simulation End

NO NO

YESYES

Is coverage
sufficient?

Fig. 1. Test generation flow.

A. Generation of the test program and external stimuli

The development of a SBST set usually starts with a
series of small program sections able to access each of the
peripheral registers and activate all its functionalities (e.g.,
transmitting and receiving data in different configurations).
Any available design validation code can be fruitfully
employed in this step. Usually, each part is composed of a
preliminary “setup” or configuration phase, and an
operational step. It is possible to assume that the available
code is already “short enough”, i.e., avoids redundant parts,
so as not to increase simulation time and also to limit test
application duration/costs.

However, two important test-specific points have to be
considered. First, the targeted fault model has an impact on
the required stimuli: as an example, whereas a stuck-at test
only requires that each register is written and then read first
with ‘0’ and then with ‘1’ logic values, when dealing with
delay-dependent fault models, such as the transition delay
one, the sequence and the timing of operations is
fundamental as well. In this case, a sequence of ‘0’-to-‘1’

and ‘1’-to-‘0’ operations are needed for each node. In this
way, stuck-at faults are inherently covered.

Second, while validation usually requires the monitoring
of a limited amount of functional results of an operation, in
case of test, in order to guarantee high test coverage, the
observation of fault effects requires more pervasive data
sampling operations. The fault effects need to be propagated
either to the outside of the device (to be read by the ATE) or
to a bus or memory area readable by the embedded
microprocessor.

After a preliminary all-encompassing functional
stimulation, if additional coverage is required, it is possible
to address the composing elements of the peripheral one at a
time, with specific techniques for activating the logic of each
part. The most common elements within a digital peripheral
are controllers, combinational units such as comparators and
algebraic units, regular sequential devices such as counters,
and data buffers.

Controllers are the circuit sections used to handle the
control signals regulating the datapath, and are typically
implemented using Finite State Machines (FSMs), which are
mathematical models of computation. A FSM is composed
by a finite number of states; the current state evolves from
one to another depending on the external inputs. A test
procedure normally aims at activating all possible states and
transitions between them, and then making the performed
operations visible.

To maximize test coverage in combinational units,
available Automatic Test Pattern Generator (ATPG) tools
can be fruitfully used to generate a sequence of stimuli on
limited parts of the logic. Such sequences need then to be
brought to the unit interface by means of microprocessor
instructions or external interaction, and then test results have
to be propagated to observable points. It may not be always
possible to apply any pattern to inner circuitry: this will be
further discussed in subsection C.

Regular sequential units such as counters need to be
approached taking into account the fact that their test can be
quite time-consuming. For this reason, it can be useful to
concentrate on applying transitions on the output of each
sequential element and propagating them towards observable
points, exploiting programmable features. For instance, a 32-
bit programmable counter can be set to count in different
shorter ranges to activate transitions in all register bits
without waiting for 232 clock cycles. Similarly, when testing
a data buffer it is needed to know its characteristics
(byte/word accessibility, LIFO/FIFO architecture, etc.) and
its implementation in order to develop the most suitable
sequence of write and read operations.

B. Test coverage evaluation

The evaluation of test coverage requires the fault
simulation process, i.e., a gate-level simulation reproducing
the effect of faults and enabling to determine if the applied
stimuli produce a difference between the good and the faulty
circuitry. Fault simulation can be performed by suitably
instrumenting a model in a logic simulator, and commercial
tools are also available. Functional fault simulators aimed at
validating fault-tolerant designs and at evaluating the
effectiveness of test sets are becoming increasingly popular.
A fault simulator may require to provide the sequence of
input/output signals at the periphery of the module under test

(e.g., in the form of a value change dump – vcd – file), and
hence a previous functional simulation run is needed; others
may directly handle the complete simulation of the testbench
and any other circuit parts not currently addressed for the
computation of fault coverage. The latter case, represented
by, to name but a few, Cadence Incisive Safety Simulator,
Z01X by Synopsys and Silvaco HyperFault, is more
convenient for the problem described in this paper.

Due to the potentially large number of faults within the
logic under test and the non-direct logic monitoring of SBST
procedures, which may require many clock cycles to
propagate fault effects to observable points, the management
and the running time of fault simulation can get critical also
when using state-of-the-art tools.

The key factors are the number of observation points and
the timing when these are actually sampled. In fact, the
simulator will check the observation points only in certain
instants (decided by the designer). The more frequent is the
check, the larger is the time required by the simulation. On
the other hand, a more frequent check may detect a larger
number of faults, which may increase the overall speed of the
process. This is linked to the algorithm used by the fault
simulator: generally, once a fault is excited, the fault
simulator creates a new simulation instance to keep track of
all the evolutions of the faulty circuit. This simulation
instance will be closed once the fault is detected, freeing the
resource allocated for that instance (fault dropping). The
larger is the number of simulation instances, the higher is the
amount of resources required by the fault simulator and
consequently the slower is the fault simulation. A similar
discussion can be done regarding the number of observation
points. The larger is their number, the slower is the
simulation, but the higher is the chance to detect a fault. It is
important to recall that, in the end, the observation point
must be chosen in order to get a coverage indication as close
as possible to the real test application; different solutions
may be employed within the same flow in order to get a fast
albeit approximate information when designing the test and a
more precise one at the end.

C. Functional testability

To correctly assess test coverage on a circuit, an
important concept has to be introduced. A fault is physically
testable if there exists a test for the fault which can be
applied on the hypothesis of full accessibility to all circuit
nets. Even when using full-scan test approaches, not all input
sequences can be applied to the combinational parts of the
circuit: therefore, not all faults are testable even under full-
scan. For example, a delay fault may not be testable, because
no one of the vector pairs able to test it can be applied to the
inputs of the combinational block where it is located using
LoC and LoS techniques. A fault is functionally testable if
there exists a functional test for exciting that fault: when
delay testing a circuit using SBST (or during the normal
behavior of the system), the signals feeding the addressed
path are determined by the program running on the processor
and on the stimuli on the interfaces. These impose temporal
and spatial correlations among registers/flip-flops and thus
among inputs/outputs of the addressed logic. These
correlations result in a smaller set of testable faults (Fig. 2).

Fig. 2. Fault testability categorization.

Functionally untestable (redundant) faults cannot be
activated and/or observed during normal operations of the
circuit, therefore they have no impact on circuit behavior and
performances. SBST focuses on functionally testable faults,
intrinsically avoiding over-testing the circuit’s redundant
logic [11]. Two definitions are hence used: fault coverage is
the ratio between tested faults and the total number of faults;
test coverage is computed using the number of testable faults
as denominator.

The identification of functionally untestable faults is still
an open problem; however, during the analysis of the
peripheral under test and during the generation of the SBST
set, the fault list can be pruned to exclude parts of the logic
that cannot be functionally operated, e.g., modules
deactivated due to hardwired configuration values, any DfT
structures that cannot be activated in functional mode, such
as scan chain-related signals, or error-handling logic (e.g.,
redundant paths).

IV. CASE STUDY

To demonstrate the feasibility of the approach, a
communication peripheral based on the System Power
Management Interface (SPMISM) specifications by the MIPI
Alliance is used as a case study. The peripheral can handle
two-wire serial communications up to 26MHz and includes
functions such as bus arbitration, data serialization, error
detection and an automated ack/nack protocol.

A. Case study description

The selected peripheral acts as request-capable slave, i.e.,
a slave which can initiate sequences on the two-wire SPMI
bus (SCLK and SDATA). Fig. 3 shows its basic architecture.
The processor system is connected by means of the AMBA
AHB bus, and the master/slave AHB interface (equipped
with a FIFO mailbox) handles communications. The Control
and Status Register (CSR) module includes byte-addressable
registers used to control and monitor the peripheral
functions. Two finite state machines (FSMs) manage the
arbitration (Request FSM) and the general peripheral
behavior.

The synthesized peripheral counts about 21,500
equivalent gates and is equipped with full-scan. We
underline that scan chains are not used when applying SBST.

ARM
core

SLCK

SDATA

MEM

A
H
B

FSM

Control
Status

Registers
(CSR)

Mailbox

AHB
interface

Request
FSM

Data Out

Fig. 3. Architecture of the case study.

B. SBST Test suite

The complete test set is composed of a series of small
program/external stimuli sequence pairs, each targeting some
specific functionalities or modules within the peripheral:

 Reset, write 0/1 and read 0/1 (Reset). This segment is
operated by the microcontroller, which requests a
peripheral reset and then reads the registers. After this, a
comprehensive sequence of 0-to-1 and 1-to-0 write
operations is done on the CSR, each followed by the
needed reads, as in the following pseudo-code

// The MCU resets the peripheral (all flip-flops=0)
mcu.SPMI_reset();
for each register in CSR {// write 1 in each register
bit
 mcu.ahb.write(reg_addr, 0xFF); // 0->1 transition
 // read register content and store the value in the
RAM
 mcu.ahb.read(reg_addr);
}
for each register in CSR { // 1->0 transition
 mcu.ahb.write(reg_addr, 0x00);
mcu.ahb.read(reg_addr);
}
for each register in CSR {
 mcu.ahb.write(reg_addr, 0xFF);
mcu.ahb.read(reg_addr);
}
mcu.SPMI_reset();
for each register in CSR { mcu.ahb.read(reg_addr); }

 Mailboxes test (WR-fifo and RD-fifo). For each FIFO

buffer (from AHB and from the outside), a sequence of
write and read operations is performed to stimulate 0-to-1
and 1-to-0 transitions in the registers, and the “flush”
operations are tested as well.

 Request commands (Request). In this segment, bus access
request commands are programmed to be executed by the
peripheral under test, while the external tester will
emulate other peripheral on the SPMI bus.

 All commands (Commands). In this case, the external
tester acts as a bus master and sends a sequence of all
possible commands to the peripheral. For read and write
commands, all possible payload sizes (1 to 16) are used,
and addresses are selected so as to stimulate each bit in
the address field with both 0 and 1 values. When writing
to the CSR module some care has to be taken to avoid
requesting unwanted peripheral operations, by carefully
selecting write register addresses and data words (e.g.,
when writing to Register 0). Tests for the authentication
mechanism and for activating all states of the state
machine are also applied.

 AHB access control test (AHB access). This part of the
test targets the AHB interface, whose accessible
addresses can be programmed. Read/write operations are
used aiming at stimulating the address comparators
within the module.

 Counters. The last part of the test aims at activating the
embedded timers for protocol management and timeout
condition evaluation.

The results of each segment are read by the CPU and
compressed using a software Multiple-Input Signature
Register (MISR) sequence and stored in the system memory;

then, they are read from the tester with a Read transaction on
the SCLK/SDATA pins.

C. Fault simulation

For the case study, Z01X by Synopsys was employed as
fault simulator. In general, the tool can be used for two
purposes: functional safety assurance, i.e., to check the
efficacy of robust design strategies, and for manufacturing
assurance, i.e., to evaluate the effectiveness of a test set. The
synthesized or post-layout circuit netlist in Verilog can be
directly simulated using testbenches (also in RTL), libraries
and macro models in Verilog and SystemVerilog, thus
resorting on the same simulation environment used for
design validation.

Three different fault monitoring (strobe) methodologies
were compared for coverage and speed:

 All flip-flops. Coverage values are computed while
monitoring all flip-flops at each clock cycle. These data
are overestimated since they do not take into account the
whole process of fault effect propagation to an
observable output, but help evaluating the effectiveness
of the test in terms of fault controllability.

 RAM bus. Coverage is computed while monitoring
transactions on the system RAM, where results are stored
after each test operation. The obtained coverage is a good
approximation of the one obtainable on the ATE, and the
running time is reduced.

 SDATA. Coverage is computed monitoring what is
sampled by the ATE (i.e., external bus transactions);
some coverage is lost with respect to the previous
approaches due to the reduced fault observability of the
method. This is, however, the slowest and the most
memory-intensive methodology.

D. Experimental results

Table I presents the application time required for each of
the previously described SBST test segments. The most
time-consuming ones are the AHB access test, requiring the
application of a large number of patterns for thoroughly
testing the combinational logic, and the counter test.

TABLE I. DURATION OF EACH SBST TEST SEGMENT

Test segment Duration [ms]

Reset 0.926

WR-fifo 0.760

RF-fifo 1.154

Request 1.284

Commands 1.513

AHB access 11.630

Counters 128.390

Total 145.658

Table II reports fault simulation results on the stuck-at
fault set, which includes 80,640 faults. Among these, at least
11,963 are deemed as functionally untestable, belonging to
IP circuitry that cannot be functionally activated in this SoC
context, and thus removed from test coverage computation.
The test segments are applied sequentially on the fault list,
with fault dropping. The CPU time reports the duration of
fault simulation, performed on an Intel Xeon CPU clocked at
3.00GHz (a single core is used), while the Detected column
shows the number of faults covered by the test set. When a

test is applied to a sequential circuit, certain faults produce
an unknown state at the output when a deterministic result is
expected in the fault-free circuit. This condition is known as
potential detection (numbers in parentheses) and is here
assumed equivalent as detection for coverage computation.

It is noteworthy to observe that a significant number of
faults produce internal effects on the flip-flops, but cannot be
observed on the external circuit outputs, and thus remain
undetected. Moreover, the selection of different strobe
methodologies may significantly affect the required fault
simulation computational effort.

Table III reports the same data for transition delay faults.
In this case, 80,632 faults are considered, out of which
15,452 are functionally untestable. Interestingly, a number of
untestable transition delay faults belong to finite state
machines, and specifically to transitions from functional to
“safe” states corresponding to the default branch of case
statements of hdl languages, which can be taken only in
presence of errors in the circuit behavior.

In order to provide a comparison about the coverage
achievable by scan and SBST, another experiment was
performed. A scan pattern set was generated with TetraMAX
by Synopsys for transition delay and stuck-at faults. The scan
test application takes about 120ms with 10MHz shift
frequency and at-speed launch/capture, considering a single
scan chain entirely committed to the peripheral under test.
Fault coverage is provided for the scan pattern set in the Scan
chains row of Table IV. In the following rows we report fault
coverage for SBST and for the application of both test
methodologies in sequence. The total number of stuck-at
faults is 80,640, while transition delay faults are 70,207:
faults on clock or scan-enable logic are not considered in the
latter case, since it is not meaningful to test faults in such
logic at functional speeds with scan-based patterns.

Fault simulation shows that the SBST test set uniquely
covers 1,335 (1.66%) stuck-at faults and 4,631 (6.60%)
transition delay faults in addition to the ones detected by the
scan tests. Regarding transition delay faults, the scan test has
a higher overall coverage, detecting 9,337 more faults than
SBST, but only 6,538 out of these have been classified as
functionally testable. Conversely, of the 59,032 detected
faults, 5,972 belong to the functionally untestable category.

Results show that, even covering a lower number of
faults, the SBST set obtains a better test coverage on
transition delay faults in a comparable time. The reader must
also note that most of the SBST application time is taken by
the Counters segment, which contributes with 2,824 faults to
the SBST set coverage, or 361 faults if run after the scan test.
In other words, the SBST set is applied after the scan test
excluding the Counters segment, it is possible to increase
fault coverage by more than 6% (or test coverage by 7%) in
17.27 ms.

 SBST test is especially effective, obtaining higher fault
coverage than the scan test, on the AHB interface, on the
FSMs, on the logic that connects the peripheral to the
external world and on the logic used by the Request
commands.

By further inspection it is possible to see that most of the
logic covered only by the functional test procedure is directly
linked to clock gating logic or to other functions that are not
available while the circuit is in scan-test mode. As a matter

of fact, due to the unpredictable functional behavior during
shift and capture operations, the circuit is usually brought by
hardware to a “safe” state for the application of the scan test,
isolating the digital logic from the external world and analog
circuitry in mixed-signal devices, and avoiding possible
critical configurations of system registers (whose output may
be set to fixed values during test). SBST can be fruitfully
employed to extend the coverage range of scan test in such
cases, even after the circuit is manufactured.

TABLE II. SBST STUCK-AT COVERAGE RESULTS WITH DIFFERENT
STROBE METHODOLOGIES

Strobe
methodology

CPU time
[s]

Detected
(potentially)

Fault
coverage

Test
coverage

All flip-flops 72,151
65,720
(1,928)

82.69% 97.10%

RAM bus 32,915
59,796
(1,345)

74.99% 88.05%

SDATA 1,429,180
59,494
(1,346)

74.61% 87.61%

TABLE III. SBST DELAY FAULT COVERAGE RESULTS WITH DIFFERENT
STROBE METHODOLOGIES

Strobe
methodology

CPU time
[s]

Detected
(potentially)

Fault
coverage

Test
coverage

All flip-flops 88,933
63,142

(73)
78.35% 96.93%

RAM bus 35,968
57,099
(302)

71.00% 87.83%

SDATA 1,761,990
56,748
(310)

70.57% 87.30%

TABLE IV. FAULT COVERAGE OF SCAN, SBST AND BOTH TESTS
(STROBE ON SDATA)

Test
Stuck-at faults Transition delay faults

Detected
(pot.)

Fault
coverage

Detected
(pot.)

Fault
coverage

Test
coverage

Scan
chains

78,562
(0)

97.42%
59,032

(0)
84.08% 81.40%

SBST
59,494
(1,346)

74.61%
56,748
(310)

70.57% 87.30%

Both
79,897

(67)
99.12%

63,663
(42)

90.71% 88.57%

V. CONCLUSIONS

This paper describes a case study corresponding to a
peripheral module within a SoC, for which a test for both
stuck-at and transition delay faults has been developed
resorting to the scan approach and to a functional one, based
on SBST. We outlined a specific approach to develop the
latter test targeting both stuck-at and transition delay faults.
Extensive results have been presented, showing that the two
methods have different and complementary characteristics.
While scan test generation is fully automated, the functional
test must be manually built. The fault coverage achieved by
scan is higher, but some faults (especially numerous when
considering delay faults) are only detected resorting to the
functional approach. Moreover, we showed that some of the
faults which are only detected by scan are functionally
untestable. Hence, scan is likely to produce a higher degree
of overtesting. Results we reported may allow test engineers
to better understand the impact of functionally untestable
faults on the achieved yield, reliability and quality of the
product. We discussed the above points, providing examples
for each category.

As a general conclusion, the paper shows how important
it is to combine the two approaches when considering an
effective end-of-manufacturing test plan.

Work is currently being done to enhance our ability to
automatically identify functionally untestable faults,
extending to peripheral modules some of the ideas proposed
in [19], and to improve the fault coverage achieved by the
functional test.

REFERENCES
[1] M. Psarakis et al., “Microprocessor Software-Based Self-Testing”,

IEEE Design & Test of Computers, 2010, Vol. 27, Issue: 3, pp. 4-19

[2] P. Bernardi et al., “Development Flow for On-Line Core Self-Test of
Automotive Microcontrollers”, IEEE Transactions on Computers,
2016, Volume: 65, Issue: 3, pp. 744-754

[3] Ateeq-Ur-Rehman Shaheen et al., “Automatic generation of test
instructions for path delay faults based-on stuck-at fault in processor
cores using assignment decision diagram”, 5th International
Conference on Intelligent and Advanced Systems (ICIAS), 2014

[4] Virendra Singh; M. Inoue; K.K. Saluja; H. Fujiwara, “Instruction-
based delay fault self-testing of processor cores”, 17th International
Conference on VLSI Design, 2004

[5] Nihar Hage; Rohini Gulve; Masahiro Fujita; Virendra Singh, “On
Testing of Superscalar Processors in Functional Mode for Delay
Faults”, 30th International Conference on VLSI Design and 16th
International Conference on Embedded Systems (VLSID), 2017

[6] D. Gizopoulos et al., “Systematic Software-Based Self-Test for
Pipelined Processors”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2008, Vol. 16, Issue: 11, pp. 1441-1453

[7] K. Christou et al., “A Novel SBST Generation Technique for Path-
Delay Faults in Microprocessors Exploiting Gate- and RT-Level
Descriptions”, 26th IEEE VLSI Test Symposium, 2008

[8] C.H.-P. Wen et al., “On a software-based self-test methodology and
its application”, 23rd IEEE VLSI Test Symposium, 2005

[9] Wei-Cheng Lai; A. Krstic; Kwang-Ting Cheng, “Functionally
testable path delay faults on a microprocessor”, IEEE Design & Test
of Computers, 2000, Volume: 17, Issue: 4, pp. 6-14

[10] Fukunaga; Kajihara; Takeoka, “On estimation of fault efficiency for
path delay faults”, IEEE Asian Test Symposium, 2003

[11] P. Bernardi et al., “A Deterministic Methodology for Identifying
Functionally Untestable Path-Delay Faults in Microprocessor Cores”,
9th IEEE International Workshop on Microprocessor Test and
Verification, 2008

[12] M. Bushnell, V. Agrawal, “Essentials of Electronic Testing for
Digital, Memory, and Mixed-Signal VLSI Circuits”, Kluwer
Academic Publisher, 2000

[13] K.-T. Cheng; H.-C. Chen, “Classification and identification of
nonrobust untestable path delay faults”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 1996,
Volume: 15, Issue: 8, pp. 845-853

[14] X. Liu; M.S. Hsiao, “On identifying functionally untestable transition
faults”, 9th IEEE International High-Level Design Validation and Test
Workshop, 2004

[15] Y. Zhang et al., “Temperature-aware software-based self-testing for
delay faults”, Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2015

[16] A. Touati at al., “Improving the Functional Test Delay Fault
Coverage: A Microprocessor Case Study”, IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2016

[17] A. Touati et al., “Microprocessor Testing: Functional Meets
Structural Test”, Journal of Circuits, Systems, and Computers, 2017,
Volume: 26, Issue: 8, pp. 1-18.

[18] A. Apostolakis et al., “Test Program Generation for Communication
Peripherals in Processor-Based SoC Devices”, IEEE Design & Test of
Computers, 2009, Volume: 26, Issue: 2, pp. 52-63

[19] R. Cantoro et al., “An analysis of test solutions for COTS-based
systems in space applications”, IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC), 2018

[20] A. Floridia et al., “Fault Grading Techniques of Software Test
Libraries for Safety-Critical Applications”, IEEE Access, 2019, vol. 7

