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Radiation and Scattering of
an Arbitrarily Flanged Dielectric-Loaded Waveguide

Vito Daniele, Guido Lombardi, Senior Member, IEEE, Rodolfo S. Zich, Honorary Member, IEEE

Abstract—In this paper, we present a new methodology in spec-
tral domain to study novel complex canonical electromagnetic
problems constituted of perfectly electrically conducting (PEC)
wedges immersed in complex environments. In particular we
present an arbitrarily flanged dielectric-loaded waveguide (Fig.
1) that may resemble practical structures in scattering analysis,
radar applications, antenna’s design and electromagnetic compat-
ibility. The proposed method is based on the recent developed
semi-analytical method known as Generalized Wiener-Hopf Tech-
nique (GWHT) that extends the applicability of classical Wiener-
Hopf method to a new variety of problems constituted of different
geometries and materials. In this paper the method is further
extended and it is now capable of handling piecewise constant
inhomogeneous dielectric layers by resorting to the application
of characteristic Green’s function procedure starting from the
wave equation. The method has the benefit to be a comprehensive
mathematical model and to be quasi-analytical thus it allows to
investigate the true physics of the problem in terms of field’s
components. The proposed solution is of interest in computational
electromagnetics also to benchmark numerical codes. Validation
through numerical results is reported in terms of engineering
quantities such as GTD/UTD diffraction coefficients, total far
fields and modal fields.

Index Terms—Wedges, Grounded Dielectric Slab, Flanged
Dielectric-Loaded Waveguide, Inhomogeneous Material, Wiener-
Hopf method, Green’s function, Integral equations, Near-field
interactions, Electromagnetic diffraction, Scattering, Radar, An-
tenna technologies, EMC, Network Modelling.

I. INTRODUCTION

THE accurate and efficient study of radiation and scatter-
ing from complex wedge structures is of great interest in

electromagnetic engineering communities in particular in the
field of antenna’s design, radar applications and electromag-
netic compatibility. In computational electromagnetics partic-
ular attention is dedicated to the correct modelling of near-
field interaction among thin structures, dielectric interfaces and
edges of wedges.

{\rm word}

In this paper we propose a novel complex canonical elec-
tromagnetic problem constituted of a perfectly electrically
conducting (PEC) wedge lying on an grounded half-dielectric
slab as reported in Figs. 1: an arbitrarily flanged dielectric-
loaded parallel PEC plate waveguide. Both cartesian and
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Fig. 1: The PEC wedge lying on a grounded half-dielectric slab
illuminated by a plane wave or fed by a modal field, i.e. an arbitrarily
flanged dielectric-loaded waveguide: case (a) with aperture angle
Φ > π/2 resembles scattering analysis for example in radar applica-
tions such as inlets in aerospace engineering, case (b) with aperture
angle Φ < π/2 resembles antenna problem as horn structures fed
by waveguide loaded by dielectric material. Cartesian coordinates
(x, y, z) and cylindrical coordinates (ρ, ϕ, z) centered in O are
reported in the figures to describe the problem.

cylindrical coordinates are used to describe the problem.
The origin O is located at the edge of the PEC wedge for
coordinates (x, y, z) and (ρ, ϕ, z). The PEC wedge is defined
by ρ > 0,Φ < ϕ < π and the grounded half-dielectric slab is
delimited by −d < y < 0. Both structures are with symmetry
axis along the z. In Figs. 1, the two sub-figures look different
in terms of applications. In particular, sub-figure (a) resembles
scattering analysis for example in radar applications such as
inlets in aerospace engineering, while sub-figure (b) can model
an antenna problem similar to a horn fed by a waveguide
loaded by a dielectric material.

Two regions are defined: region A and region B. Region
A is a homogenous angular region delimited by 0 < ϕ < Φ
and characterized by free space impedance Zo =

√
µo/εo and

propagation constant k = ω
√
µoεo . Region B is a grounded
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inhomogeneous dielectric slab region better described by two
subregions: subregion B2 is with rectangular shape delimited
by x < 0, −d < y < 0 and characterized by relative dielectric
permittivity εr, while subregion B1 is in free space with
rectangular shape delimited by x > 0, −d < y < 0 and
homogenous to region A. PEC interfaces and related boundary
conditions are located at 1) ρ > 0, ϕ = Φ, 2) x < 0, y = 0,
3) y = −d; while at x = 0, −d < y < 0 is located a free-
space/dielectric interface.

In the following time harmonic electromagnetic field is
assumed with a time dependence specified by e+jωt which is
suppressed. For the sake of simplicity, the structure is studied
considering Ez polarization, however generalization to Hz

polarization or skew incident case is possible and it doubles
the equations. The structure is analyzed considering two kind
of sources: illumination by plane waves from region A and
feeding the dielectric loaded parallel PEC plate waveguide B2
with modal fields.

In this paper we propose a new comprehensive mathematical
model in spectral domain that takes into account the entire
structure in one shot. The method is based on an extension
of the classical Wiener-Hopf method [1]-[10] that is a well
established technique to solve problems with discontinuities in
all branches of physics and applied mathematics and, recent
developments of this technique done by other authors are
reported in [11]-[23]. A brief historical perspective is available
in [24] and a nice reference list is reported in [25].

Recently, the authors of this paper have introduced the
Generalized Wiener-Hopf Technique (GWHT) that is a novel
effective technique to handle angular regions such as isolated
impenetrable and penetrable wedge problems [26]-[33]. Ac-
cording to the authors’ opinion, the GWHT together with the
Sommerfeld-Malyuzhinets (SM) technique (see [34]-[38] and
reference therein) and the methods based on the Kontorovich-
Lebedev (KL) transform (see [39]-[41] and reference therein)
completes the spectral techniques capable to deal with isolated
wedge problems. Now, the GWHT is further extended and
able to deal with new complex electromagnetic problems
constituted of sub-regions of different materials and shapes,
i.e. angular and rectangular/layer regions [42]-[47],[25].

Typically the method starts from the deduction of Gen-
eralized Wiener-Hopf equations (GWHEs) for each of the
regions that constitute the complex problem. Each subregion
is canonical in geometry and homogenous in material, as
for example angular region A of Fig. 1 and layered regions.
The GWHEs of homogenous angular regions are derived
using radial Laplace transforms of field components and the
characteristic Green’s function procedure as described in [26]-
[27]. The equations are considered generalized versions for
Wiener-Hopf technique since the plus and minus unknows
are defined into different complex planes. According to the
classical spectral theory of homogeneous layered regions based
on transmission line modeling [48],[10], spectral equations
are obtained for the bilateral Laplace transforms of field
components that are rephrased into unilateral transforms to
be used in the GWHT. However, in the proposed problem,
region B is constituted of two materials and it will requires
special effort as described in details in this paper. Following

the procedure reported in this paper it is now possible to
study piecewise constant inhomogeneous dielectric layers by
resorting again to the application of characteristic Green’s
function procedure starting from the wave equation.

The system of spectral equations usually does not allow a
closed form solution following the classical scheme of Wiener-
Hopf technique based on 1) the multiplicative factorization
of the kernel, 2) the additive decomposition of functions
and 3) the application of Liouville’s Theorem. An effective
approximate semi-analytical technique to obtain the solution
of system of GWHEs is the Fredholm Factorization [49], [10]
that reduces the system of GWHEs to integral representations
by eliminating one kind of unknowns (plus or minus) via
contour integration. The application in the context of wedge
diffraction is reported in [27]-[33],[42]-[46]. The coupling of
integral representations yields a system of Fredholm integral
equations of second kind amenable of approximate solution
via simple discretization [50]. A complete solution of the
original system of GWHEs is obtained by reconstructing all
the unknowns through the integral representations and the
same GWHEs. Analytic continuation in complex plane of the
approximate solution is obtained by rephrasing the original
GWHEs to difference equations. The solution of the method
are spectral quantities (WH unknowns) that contain the global
information of fields in terms of spectra. The quasi-analytical
solution can be analyzed in terms of field components via
inverse spectral transformation and asymptotics (see for in-
stance [45]-[46]) and engineering parameters can be retrieved.
Taking inspiration from [48], [51], [10], [44], the integral
representations of each region can be interpreted as equivalent
network. This formalism and pictorial representation orders
and systematizes the procedure to obtain the spectral equations
and the integral representations for complex problems avoiding
redundancy, see for example [44],[45]-[46],[25].

The literature shows several works related to the structure
proposed in this paper with recent applications, see [5],[52]-
[62] and reference therein. However, we assert that our method
has the benefit to model the entire structure with a true
comprehensive mathematical model in spectral domain that
avoids multiple steps of interaction among separated objects
like in ray-tracing with multiple diffraction coefficients or like
in iterative physical optics. The main result is the true spectra
of field components along observation directions. Moreover
the method is independent from the thickness, the density of
the materials and the distance between the objects.

The paper is organized into 7 Sections and an Appendix.
In Section II we introduce the formulation of the prob-
lem and the mathematical background preparatory for the
GWHEs reported in Section III. Section IV presents how
to reduce the system of GWHEs to integral representations
via Fredholm factorization and illustrates how to couple the
integral representations to obtain a Fredholm integral equation
(FIE) of second kind for the solution of the problem. In
the same Section the network paradigm is introduced to
facilitate deduction of the equations in complex problems.
Analytic continuation of the approximate solution is presented
in Appendix A and it is propaedeutical to Section V where we
estimate physical/engineering quantities as GTD/UTD diffrac-
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tion coefficients, total far fields and modal field. Section VI
provides validation and convergence of the proposed method
and it compares our results with the ones obtained by a fully
numerical technique embedding singular modelling [63],[64]-
[66], thus demonstrating the superiority of the proposed semi-
analytical technique for canonical problems (with infinite ge-
ometry) with respect to the case of finite structure. Conclusions
are reported in the last Section.

II. FORMULATION OF THE PROBLEM,SPECTRAL
UNKNOWNS AND MATHEMATICAL BACKGROUND

With reference to Figs. 1, at Ez polarization, the non-null
field components Ez(x, y), Hx(x, y), Hy(x, y) are indepen-
dent from z and are governed by the wave equation (in the
following z dependence is omitted).

According to the coordinate systems and the notation de-
scribed in Section I, the boundary conditions of PEC interfaces
are: Ez(ρ, ϕ = Φ) = 0, Ez(ρ, ϕ = π) = 0 and Ez(x, y =
−d) = 0. The problem shows continuity of Ez, Hy at the
free space/dielectric interface x = 0, −d < y < 0 between
subregions B1 and B2, i.e. Ez(x = 0−, y) = Ez(x = 0+, y),
Hy(x = 0−, y) = Hy(x = 0+, y) with −d < y < 0.
Moreover according to definition reported in Section I the
problem shows continuity also at the interface located between
region A and B1, i.e. Ez(x, y = 0−) = Ez(x, y = 0+),
Hx(x, y = 0) = Hx(x, y = 0+) with x > 0. Near the
edge as ρ → 0, Ez(ρ, ϕ) remains finite (Meixner’s edge
condition [63]): Ez(ρ, ϕ) = M0 + O(ρm) with constant M0

and m > 0. In region A (and similarly in B1) the following
radiation condition holds:

∣∣Ez(ρ, ϕ)− EGOz (ρ, ϕ)
∣∣ ≤ e−aρ

with a > 0 and where EGOz is the total Geometrical Optics
components of Ez . In region B2 the following modal condition
holds:

∣∣Ez(x, y)− EINCz (x, y
∣∣ ≤ e−b2x with b2 > 0 and

where EINCz is the total modal progressive (toward positive x)
incident field component of Ez . According to the uniqueness
theorem, the solution fulfills the edge, the radiation and the
modal conditions.

The formulation of the problem in the spectral domain is
based on the definition of the radial Laplace transforms

V+(σ, ϕ) =
∞∫
0

Ez(ρ, ϕ)ejσ ρdρ

I+(σ, ϕ) =
∞∫
0

Hρ(ρ, ϕ)ejσ ρdρ
, (y ≥ 0) (1)

and on the definition of the bilateral Laplace transforms
v(η, y) =

∞∫
−∞

Ez(x, y)ejη xdx

i(η, y) =
∞∫
−∞

Hx(x, y)ejη xdx
, (−d ≤ y ≤ 0) (2)

The axial spectral unknowns (3) will be used as reference
unknowns to obtain the GWHEs of the problem:

V+(η) = V+(σ = η, ϕ = 0), I+(η) = I+(σ = η, ϕ = 0)

Vπ+(η) = V+(σ = η, ϕ = π), Iπ+(η) = I+(σ = η, ϕ = π)
(3)

with the definition of related minus functions V−(η) =
Vπ+(−η) and I−(η) = −Iπ+(−η). From (1)-(3) we note that

the Laplace transforms and the bilateral Laplace transforms at
the interface y = 0 are related together:{

v(η, y = 0) = V+(η) + Vπ+(−η)

i(η, y = 0) = I+(η)− Iπ+(−η)
(4)

with Vπ+(−η) = 0 due to the PEC boundary condition of the
problem under investigation.

Furthermore, to obtain the GWHEs of the angular region A,
we need to define the radial Laplace transform of the magnetic
field along the PEC face of the wedge (face spectral unknown):

Ia+(−m)=

∞∫
0

Hρ(ρ, ϕ = Φ)e−jmρdρ=I+(σ =−m,ϕ = Φ)

(5)
No face spectrum is present for Ez component due to the PEC
boundary condition (Va+(−m) = 0).

To clarify the notation, with reference to the η complex
plane, the spectral unknowns are labeled with ± subscripts:
+ indicates plus functions in the η complex plane, i.e. an-
alytic functions in η that are regular in an upper half-plane
(Im[η] > Im[ηup]) and goes to zero at infinity; conversely
− indicates minus functions in the η complex plane, i.e.
analytic functions in η that are regular in a lower half-plane
(Im[η] < Im[ηlo]) and goes to zero at infinity. The + (−)
functions are considered non-conventional, i.e. non-standard,
if Im[ηup] > 0 (Im[ηlo] < 0). As commonly done in WH
technique, we assume small vanishing losses in the medium
to avoid singularities of the sources in the real axis of the
spectral plane: k = kr − jki where kr, ki > 0 and ki << kr.
In fact either plane waves or modal field excitations generate
poles in the spectra, as illustrated below.

In the following we use a generalization of the classical
Cauchy decomposition formula for WH unknowns [10] in
presence of non standard poles:

1
2πj

∫
γ1η

F+(η′)
η′−η dη′=F+(η) − Fns+ (η), 1

2πj

∫
γ2η

F+(η′)
η′−η dη′=−Fns+ (η)

1
2πj

∫
γ2η

F−(η′)
η′−η dη′=−F−(η) + Fns− (η), 1

2πj

∫
γ1η

F−(η′)
η′−η dη′=Fns− (η)

(6)

for η ∈ R and where Fns+ (η) and Fns− (η) are the non-standard
part of F+(η) and F−(η). In (6) γ1η and γ2η are respectively
the smile and the frown integration line in η-plane [49],[10],
i.e. the real axis of η′-plane indented at η′ = η with a small
semi-circumference respectively in the lower and in the upper
half plane.

In the present problem we notice that the non-standard parts
are related only to Geometrical Optics (GO) components or
modal fields with infinite geometrical support (property of
Laplace transform) that can be controlled a priori. In case
of plane wave illumination at Ez polarization, we denote
the azimuthal direction of GO waves with ϕgo where the
subscripts go are in lower case (upper case) if referred to a
ingoing (outgoing) wave towards (from) the edge of the wedge
(with ϕGO = ϕgo ± π):

Egoz (ρ, ϕ) = Egoe
jk ρ cos(ϕ−ϕgo) (7)

In case of modal excitation, we consider the representation of
the field in region B2 expanded into x-progressive TEn modes
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Ez
(n)(x, y) = Eon sin

(nπ
d
y
)
e−jχnx (8)

with longitudinal propagation constant of the parallel PEC
plate waveguide of size d filled by dielectric medium

χn =

√
k2
d −

(nπ
d

)2

(9)

where kd = k
√
εr. Note that the Laplace transforms of (7)

and (8) yields poles in spectral planes that can generate non-
standard components in the spectral unknowns in relation to
the kind of unknown (minus/plus), the complex plane to be
considered (for example σ, η,m) and the physical parameters
of the excitations. For example an incident plane wave with
incident angle ϕo generates a pole ηo = −k cos(ϕo) in the
axial spectrum V+(η) defined in the η plane whose location
depends on the incident angle ϕo (i.e. ηo is in the 2nd quadrant
if 0 < ϕo < π/2 or 4th quadrant if π/2 < ϕo < π along
the segment that connects k to −k). In the following we
will need to pay particular attention to the singularities of
the sources since the GWHEs, that will be introduced, are
defined in terms of multivariate functions that depends on the
spectral propagation constant τ1(η) =

√
k2 − η2. In this case

the definition of non-standard poles needs also to be related to
the proper sheet of the functions introduced in the problem: in
this case we consider as proper sheet the one with τ1(0) = k
and we assume standard vertical branch lines from η = ±k.

III. THE GWHES OF THE PROBLEM

Typically the method starts from the deduction of Gen-
eralized Wiener-Hopf equations (GWHEs) for each re-
gion/subregion that constitute the complex problem. Each
subregion needs to be canonical in geometry and homogenous
in material. Based on the definitions reported in Section II,
subsections A and B reports the GWHEs of the problem at
Ez polarization respectively for regions A and B.

A. Region A
The GWHE of region A is obtained following the theory for

angular regions reported in [26]-[27] and using the definitions
of the axial spectral unknowns (3) and the face spectral
unknown (5):

Yc(η)V+(η)− I+(η) = −Ia+(−m(η)) (10)

where Yc(η) = 1
Zc(η) = τ1(η)

kZo
is the free-space spectral

admittance defined in terms of the free space impedance
Zo = 1/Yo and the free-space spectral propagation constant
τ1(η) =

√
k2 − η2.

Eq. (10) is a generalized version of Wiener-Hopf equation
because the plus functions are defined in the η complex plane,
while Ia+(−m(η)) is a minus function in the m complex
plane. The two complex planes are related together by

m(η) = −η cos Φ + τ1(η) sin Φ (11)

The mapping (12) allows to reduce (10) to a classical WH
equation with the definition of the new α(η) complex plane
[26]-[27]:

α(η) = −k cos
( π

Φ
arccos

(
−η
k

))
(12)

We assume the proper sheet of the mapping the one with
α(0) = −k cos( π

2

2Φ ) and the branch lines to be considered are
such that the contour integrations reported in the procedure of
Section IV-A do not intersect them. An important property is
that plus functions in η plane and minus functions in m plane
preserve their regularity half plane in α plane but this property
does not hold for minus functions in η and plus functions in
m. Note that these last two functions are not present in (10).

B. Region B

The grounded half-dielectric slab is an inhomogeneous
region constituted of subregion B1 and B2. In this case, the
GWHE is obtained via the following steps: 1) split the region
B into the two homogenous subregions as in Figs. 1, 2) apply
the Laplace transforms to the basic wave equations, 3) use the
modal representation of fields in the subregions.

The wave equations of the two subregions are:(
∂2

∂x2
+

∂2

∂y2
+ k2

n

)
Ez(x, y) = 0, n = 1, 2 (13)

with k1 = k and k2 = kd. Applying the Laplace transform to
Ez

Ẽz(η, y) =
∫∞

0
Ez(x, y)ejηxdx, inB1

Ẽz(η, y) =
∫ 0

−∞Ez(x, y)ejηxdx, inB2
(14)

(13) become(
d2

dy2
+ τ2

n

)
Ẽz(η, y) = fn(η, y), n = 1, 2 (15)

where τn(η) =
√
k2
n − η2 and with

fn(η, y′) = ∓jηEz(0±, y)± ∂

∂x
Ez(0±, y) (16)

∂

∂x
Ez(0±, y) = +jωµoHy(0±, y) (17)

assuming the notation ∂
∂xEz(a, y) = ∂

∂xEz(x, y)
∣∣
x=a

, ± sign
is plus(minus) for n = 1(2) and the opposite assumption holds
for ∓ sign.

Eqs. (15) are particular versions of the Sturm-Liouville
problem with non-homogenous boundary conditions [67],[51].
By applying the characteristic Green’s function procedure to
(15) in subregion B1 (n = 1) we obtain the particular integral

Ẽ(part)
z (η, y) =

∫ 0

−d
gη(y, y′)f1(η, y′)dy′ (18)

with the Green’s function

gη(y, y′) =
~ϕη(y<)~ϕη(y>)

Wr

[
~ϕη(y), ~ϕη(y)

] (19)

where Wr

[
~ϕη(y), ~ϕη(y)

]
is the Wronskian of the two func-

tions ~ϕη(y) and ~ϕη(y) and y< and y> denote respectively the
lesser and the greater of quantities y and y′. Note that ~ϕη(y)
and ~ϕη(y) are solutions of (15) with n = 1 satisfying the
boundary conditions, in particular the PEC boundary condition
at y = −d. We select the following two functions to continue
the procedure

~ϕα(y) = sin [τ1(y + d)]

~ϕα(y) = cos (τ1y)
(20)
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and we note that the Wronskian is, in this case, the constant
−τ1 cos(τ1d); thus

gη(y, y′) = −cos (τ1y>) sin (τ1 (y< + d))

τ1 cos (τd)
(21)

By substituting (16) and (21) into (18) we obtain an explicit
expression of the particular integral. The solution of homoge-
nous version of (15) with PEC boundary condition at y = −d
is of the form

Ẽ(hom)
z (η, y) = A(η) sin(τ1(y + d)) (22)

The complete solution of (15) is given by superposition of
(18) and (22). By splitting the integration interval at y′ = y
we obtain (23) that verifies the PEC boundary condition at
y = −d by construction, i.e. Ẽz(η,−d) = 0.
We note that for y = 0 Ẽz(η, 0) = V+(η) and

V+(η) = −
∫ 0

−d sin (τ1 (y′ + d))f1(η, y′)dy′

τ1 cos (τ1d)
+A(η) sin (τ1d)

(24)
By applying the Laplace transform to Hx(x, y) component
and considering that H̃x+(η, y) = − 1

jωµo

∂Ẽz+(η,y)
∂y we get at

y = 0

H̃x+(η, 0) = I+(η) = − τ1
jkZo

A(η) cos (τ1d) (25)

thus
A(η) =

−jkZo
τ1 cos (τ1d)

I+(η) (26)

Substituting (26) into (25) we get the equation

−
∫ 0

−d sin (τ1 (y′ + d))f1(η, y′)dy

jkZo sin (τ1d)
− I+(η) = Yd(η)V+(η)

(27)
with

Yd(η) = −jYc(η) cot(τ1(η)d) (28)

Eq. (27) constitutes a non-closed mathematical problem due to
the presence of the integral term that depends on f1(η, y′) (16).
To render self-consistent (27) we need to explicitly represent
this term using the WH unknowns of the problem. Because
of the continuity of Ez and Hy at the free space-dielectric
interface x = 0,−d < y < 0, we have:

f1(η, y) = −jηEz(0−, y) + jωµoHy(0−, y) (29)

where the field inside subregion B2 can be represented with
modal expansions

Ez(x, y) = Eo1 sin
(π
d
y
)
e−jχ1x +

∞∑
n=1

Cn sin
(nπ
d
y
)
ejχnx

(30)
since Hy(x, y) = 1

jωµo

∂Ez(x,y)
∂x and Hx(x, y) =

− 1
jωµo

∂Ez(x,y)
∂y . In (30) we have assumed a modal excitation

of the fundamental mode according to (8), generalization is
straightforward. With this representations, (29) is

f1(η, y)=−j(η+χ1)Eo1 sin
(πy
d

)
−j

∞∑
n=1

(η − χn)Cn sin
(nπy

d

)
(31)

and the explicit expression of (27) becomes

−π(η + χ1)

kdZo(η2 − α2
1)
Eo1 −

∞∑
n=1

nπ(η − χn)

kdZo(η2 − α2
n)
Cn − I+(η) = Yd(η)V+(η)

(32)
with

αn =

√
k2 − (

nπ

d
)2 (33)

that are the x-longitudinal propagation constants of the virtual
parallel PEC plate waveguide of size d filled by free-space.
Since both αn and χn are located in the lower half η complex
plane, the plus WH unknowns I+(η) and V+(η) are regular in
−αn and −χn. Computing the residues of (32) in η = −αn
using the Cauchy Theorem and a closure of the contour in
upper half η plane, it yields

C1 =
Eo1π(χ1−α1)+2j(k2−α2

1)V+(−α1)
π(χ1+α1)

Cn =
+2j(k2−α2

n)V+(−αn)
nπ(χn+αn) , n > 1

(34)

By substituting (34) into (32) and by decomposing the expres-
sions we get

ψ−(η) + ψi+(η) + ψ+(η)− I+(η) = Yd(η)V+(η) (35)

where

ψi+(η) = − 2πχ1Eo1
dkZo(η − α1)(α1 + χ1)

(36)

ψ+(η) = −j
∞∑
n=1

(k2 − α2
n)(αn − χn)

dαnkZo(η − αn)(αn + χn)
V+(−αn)(37)

ψ−(η) = −j
∞∑
n=1

(k2 − α2
n)

dαnkZo(η + αn)
V+(−αn) (38)

Eq. (36) is a known source term associated to the excitation
(the fundamental mode of the parallel PEC plate waveguide
filled by dielectric medium), while (37) and (38) are re-
spectively plus and minus functions that depend on the WH
unknown spectrum V+(−αn) and whose singularities are the
simple poles ±αn of the virtual parallel PEC plate waveguide
filled by free space. Since asymptotically αn, χn = O(n),
(αn − χn) = O(1/n) and V+(−αn), Cn = O(1/nc) with
c > 1, the convergence of the series (37) and (38) is
guaranteed.

Note that (32) is an incomplete WH equation that models
region B because of the unknown Cn dependence. On the
contrary, (35) is a complete WH equation because the com-
pleteness has been guaranteed by (34) that relates the unknown
Cn to the spectral WH unknown V+(η).

IV. SOLUTION OF THE GWHES THROUGH FREDHOLM
FACTORIZATION

The system of the GWHEs of the problem is constituted
of two equations (10) and (35). The first is a GWHE were
the unknowns are defined into different complex planes, while
the second is a complete WH equation whose source terms
depends on the knowledge of V+(−αn).

The application of Fredholm factorization [49],[10] to (10)
and (35) allows to eliminate the minus unknowns Ia+(−m)
and ψ−(η) by contour integration. The method is based on
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Ẽz(η, y) = −

∫ y
−d cos (τ1y) sin (τ1 (y′ + d)) f1(η, y′)dy′ +

∫ 0
y cos (τ1y′) sin (τ1 (y + d))f1(η, y′)dy′

τ1 cos (τ1d)
+A(η) sin(τ1(y + d)) (23)

the use of Cauchy decomposition formula reported at (6).
The result is to obtain integral representations that relate the
plus unknowns. Their combination allows to obtain Fredholm
integral equation of second kind capable to approximate the
plus unknowns.

A. The Fredholm Integral Equation of the Problem

The application of Fredholm factorization to (10) with the
help of (6) and (12) as reported in [25],[44],[45] yields the
following integral representation that relates the plus axial
spectral unknowns V+(η) and I+(η):

I+(η) = Yc(η)V+(η) + Y[V+(η′)]− Isca(η) (39)

for real η and η′ with

Y[...] =
1

2πj

∫ ∞
−∞

y(η, η′)[...]dη (40)

y(η, η′) =
Yc(η

′)

α(η′)− α(η)

dα

dη′
− Yc(η)

η′ − η
+

+∞∑
n=1

qΦ
n (η)u(π2 − nΦ)

η′ − pΦ
n (η)

(41)

pΦ
n (η) = η cos 2nΦ−

√
k2 − η2 sin 2nΦ (42)

qΦ
n (η) =

1

kZo
(η sin 2nΦ +

√
k2 − η2 cos 2nΦ) (43)

Isca(η) = Ic(η)−
+∞∑
n=1

qΦ
n (η)V ns+ (p

Φ
n (η))u(

π

2
− nΦ) (44)

where pΦ
n (η) and qΦ

n (η) are related to the singularities if the
kernel and Ic(η) is the the combination of the GO source
contributions due to the captured poles in Fredholm factoriza-
tion procedure, see (45). In (45) we have wgo = −2nΦ +ϕo,
n ∈ N with corresponding GO poles ηgo = −k cos(wgo) (for
instance the incident wave ηo = −k cos(−ϕo), n = 0). Riaαo,
Rgoyvα, Rgov are respectively the residues of Ia+(−α) in α(ηo),
of Yc(α)V+(α) in α(ηgo) and of V+(η) in ηgo. Note that each
wgo corresponds to incoming GO waves and according to the
unitstep function u() in (45) the number of GO waves to be
considered becomes numerous when Φ is particularly small
and less than π/2 (multiple reflections). In (45), the wave
reflection from the subregion B1 is taken into account with
the reflection coefficient Γgo (for instance the wave reflected
due to the incident wave has Γo = Yc(ηo)−Yd(ηo)

Yc(ηo)+Yd(ηo) ). See test
case 3 of Section VI for a practical example.

Eq. (39) holds also for integration line different from the
real axis but with observation points lying on the integration
line [44]. We note that for Φ > π/2 all contribution related
to pΦ

n (η) and qΦ
n (η) disappears. These contribution are due

to the fact that, while Φ < π/2, (39) is a sectional analytic
representation [68],[25], [44] due to the presence of singularity
lines originated by the portion of the kernel which depends on
α(η).

The application of Fredholm factorization to (35) allows to
eliminate the minus unknown ψ−(η) by contour integration.

The method is based on the use of Cauchy decomposition
formula reported at (6). We first apply contour integration of

(35) along the smile contour γ1 and we close the contour in
the regularity half plane of the different integrands. We obtain
that the contribution of the standard function ψ−(η) is null
while the contributions of the standard functions ψi+(η) and
ψ+(η) are identical to themselves.

While closing the integral in I+(η) we may capture non
standard GO poles therefore:

1

2πj

∫
γ1

I+(η′)

η′ − η
dα′=I+(η)−

∑
go

Rgoi
η − ηgo

u(wgo +
π

2
) (46)

where Rgoi are the residues of I+(η) in ηgo.
Looking at the right end side of (35) and considering that

1

2πj

∫
γ2

Yd(η)V+(η′)

η′ − η
dη′ = −

Yd(η)
∑
goR

go
v

η − ηgo
u(wgo +

π

2
)

(47)
1

2πj

∫
γ1

Yd(η′)V+(η′)
η′−η dη′ − 1

2πj

∫
γ2

Yd(η)V+(η′)
η′−η dη′ =

= 1
2πj

∫∞
−∞

[Yd(η′)−Yd(η)]V+(η′)

η′−η dη′ + Yd(η)V+(η)
(48)

we obtain from (35) the integral representation

ψi+(η)+ψ+(η)−I+(η)+Iscd(η) = Yd(η)V+(η)+Yd[V+(η′)]
(49)

where Iscd(η) collects the GO source contributions due to the
captured poles in Fredholm factorization procedure reported
in (46) and (47) and where

Yd[...] =
1

2πj

∫ ∞
−∞

yd(η, η
′)[...]dη (50)

with
yd(η, η

′) =
Yd(η

′) − Yd(η)

η′ − η
(51)

Taking inspiration from [48] and [44], the two integral
representations (39) and (49), that model respectively regions
A and B, can be interpreted as network relations where the cur-
rent I+(η) is related to the voltage V+(η) through algebraic-
integral operator admittances and short-circuit currents. These
one port network models of Norton type are reported in Fig.
2 connected together in unique entire mathematical model
of the problem. We note that the use of network paradigm
orders and systematizes the procedure to obtain the integral
representations once and for all for each kind of region as
function of geometrical/material parameters.

The Fredholm integral equation (FIE) of the problem ca-
pable of approximate the spectral unknowns is obtained by
eliminating I+(η) substituting (49) into (39) or viceversa.

The result is a FIE in terms of the unique unknown V+(η):

V+(η)+
1

2πj

∞∫
−∞

M(η, η′)V+(η′)dη′ =No(η)+

∞∑
m=1

hm(η)V+(−αm)

(52)
where M(η, η′) = Ze(η)(Y + Yd)[...], Ze(η) = 1

Yc(η)+Yd(η) ,

No(η) = Ze(η)(ψi+(η) + Iscd(η) + Isca(η)) (53)

hn(η) = −jZe(η)
(k2 − α2

n)(αn − χn)

dαnkZo(η − αn)(αn + χn)
(54)
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Ic(η) = −
Riaαo

α(η) − α(ηo)
−
∑
go

(1 + Γgo)

(
Rgoyvα

α(η) − α(ηgo)
− Yc(η)

Rgov

η − ηgo

)
u(wgo + π/2) (45)

Fig. 2: Equivalent network representation of (49) into (39).

Note that (52) is a complete FIE since the source term
depends on V+(−αm). In particular, we resort to the pro-
cedure reported in the Appendix of [44] inspired by [34] to
demonstrate that (52) is an integral equation of Fredholm type
where the kernel is compact considering a suitable generalized
Hilbert space.

B. Solution of the Complete Fredholm Integral Equation

Simple numerical quadratures, such as sample and hold,
allow to obtain approximate version of (52) from which we
get approximate solution [50]. We note that in presence of
singularities near the integration line (for instance the branch
points ±k of τ1(η)), we need to warp the integration line on a
path v(u) that keeps the singularities at a suitable distance. We
observe that in our problem the singularities of the kernel and
of the source term are located in the 2nd and 4th quadrant
(see also Figs. 13-14 of [28]), therefore we warp the real
axis into the line Bθ : v(u) = uejθ, u ∈ R, 0 < θ < π/2 [49].
Both observation point η and integration point η′ lie on Bθ
to preserve the properties of the equation and avoid further
contributions due to the presence of kernel singularity lines
[44].

Since (52) is a FIE, to get a solution, we resort to the
linearity of the equation and we apply the superposition
theorem. In particular we start with the solution of:

V o+(η) +
1

2πj

∫ ∞
−∞

M(η, η′) · V o+(η′)dη′ =No(η) (55)

that constitutes the equivalent physical problem where the
dielectric material becomes free space, thus regions A and B
are homogenous.

The sharp convergence of the kernel along Bθ allow to
estimate the discretized (55) with sample and hold technique in
a limited interval where A and h are respectively the truncation
and the step parameters such that A/h ∈ N:

V o+(v(hj))+h

A/h∑
i=−A/h

M(v(hj),v(h i))V+(v(h i))v′(h i)=No(v(hj))

(56)
with j = −A/h..A/h. We obtain a linear system with
unknowns V o+(v(h i)), whose solution allows to reconstruct an

approximate version of V o+(η) through the samples V o+(v(hi))

V o+(η) = −h
A/h∑

i=−A/h

M(η, v(h i)) · V o+(v(h i))v′(h i) +No(η)

(57)
As second step, we repeat the solution of (55) by changing

the source term No(η) with hn(η) n ∈ N. The discretized
solution labeled V n+ (v(hi)) allows to reconstruct V n+ (η) as
done for V o+(η).

By means of superposition, an implicit solution of the
original problem (52) is

V+(η) = V o+(η) +

∞∑
m=1

V m+ (η)V+(−αm) (58)

in terms of the unknown coefficients V+(−αm).
By enforcing

V+(−αn) = V o+(−αn) +

∞∑
m=1

V m+ (−αn)V+(−αm) (59)

we obtain an approximation of coefficients V+(−αm). Since
the system (59) is of infinite dimensions we limit the n = m
terms to a maximum value M by considering the cut-off of
the virtual parallel PEC plate waveguide of size d (subregion
B1). Once the first M coefficients are known, (58) becomes an
approximate explicit representation of V+(η). Convergence of
(59) is guaranteed by the properties reported in Section III-B.
Practical details on the selection of M are reported in Section
VI.

V. EVALUATION OF ELECTROMAGNETIC FIELD

For the presence of multi-variate functions depending on
τ1(η) (with proper and improper sheets) and of sectional
analytic functions (when Φ < π/2), the approximate axial
spectrum of V+(η) directly obtained from the discretization
of (52) via (58) is valid only in a limited portion of η
complex plane that is not sufficient to compute the fields
via inverse Laplace transform and asymptotics. In particular
to get an extended validity in the proper sheet of η plane
when Φ < π/2 we need to consider extra singularity lines
while the observation point η is out of the integration line
used to solve the FIE, see [44] for details. Once obtained
the approximated spectrum of I+(η) via discretized versions
of (10) and (35) in terms of V+(η) in the proper sheet of
the η complex plane, we perform analytic continuation of
the approximated spectrum (see Appendix) by resorting to
recursive equations in w directly obtained from the system of
GWHEs (10) and (35) after some mathematical manipulations
(see Appendix A). The w complex plane is defined by the map-
ping η = −k cosw that is reported for example in [28] with its
properties and its connection to η complex plane. In particular
in this plane we define the quantities V̂+(w) = V+(−k cosw)
and Î+(w) = I+(−k cosw) (the axial spectra in w), i.e. the
Laplace transforms in the w plane of the electromagnetic field
at ϕ = 0.



8

In the following we consider two kind of sources: i) a
Ez plane wave incident from the angular region A and/or
ii) the TEn x-progressive mode from the parallel PEC plate
waveguide filled by dielectric of subregion B2.

In region A we are interested on the computation of far-field
components (GO/UTD), while in subregion B1 the interest
is focused on TEn x-regressive modal field excited by the
sources. We recall that all the physical singularities of fields
are explicitly contained in the semi-analytical expression of
the approximated spectrum.

For what concerns region A, given the axial spectra, the
theory of rotating waves [69] allows to obtain the spectra
V+(σ, ϕ), I+(σ, ϕ) for any azimuthal direction ϕ in w plane.
In particular we obtain for V̂d(w,ϕ) = sin(w)V̂+(w,ϕ) and
Î+(w,ϕ):{

V̂d(w,ϕ) = Z0(Î+(w−ϕ)−Î+(w+ϕ))+V̂d(w−ϕ)+V̂d(w+ϕ)
2

Î+(w,ϕ) = Z0(Î+(w−ϕ)+Î+(w+ϕ))+V̂d(w−ϕ)−V̂d(w+ϕ)
2Z0

(60)
in terms of V̂d(w = sin(w)V̂+(w) and Î+(w) for 0 ≤ ϕ ≤ Φ.

By applying the inverse Laplace transform in w plane to
V̂+(w,ϕ) we obtain

Ez(ρ, ϕ) =
k

2π

∫
λ(Br)

V̂+(w,ϕ)ejkρ cosw sinwdw (61)

where λ(Br) is the Bromwich contour Br of η plane mapped
into w plane, see for details [69]. Similar considerations holds
for Hρ(ρ, ϕ) field component that is obtained from Î+(w,ϕ).

The application of the residue theorem and of the steepest
descent path (SDP) method provide the evaluation of far-field
GO/UTD components (see an application in [43]):

Ez(ρ, ϕ) = Egz (ρ, ϕ) + Edz (ρ, ϕ) (62)

where the contributions of poles captured by contour defor-
mation/closure give GO components Egz (ρ, ϕ) and the integral
along the SDP is the diffracted component Edz (ρ, ϕ):

Egz (ρ, ϕ) = −jk
∑
i

Res[V̂d(w, ϕ)]wi(ϕ) e+jkρ cos wi(ϕ) (63)

Edz (ρ, ϕ) = −ke
−jkρ

2π

∫
SDP

V̂d(w,ϕ)ekρh(w)dw (64)

with h(w) = kρ(cosw+1), wi(ϕ) = woi±ϕ and woi are the
GO poles of the axial spectrum V̂d(w).

Approximating Edz (ρ, ϕ) with the saddle point at far dis-
tance kρ >> 1 , we obtain the GTD component of the field:

Egtdz (ρ, ϕ) = Eo
e−j(kρ+

π
4 )

√
2πkρ

D(ϕ) (65)

D(ϕ) =
−kV̂d(−π, ϕ)

jEo
(66)

This expression clarifies the importance of the recursive equa-
tions of the Appendix A. In fact, to estimate V̂d(−π, ϕ) in
0 < ϕ < Φ, we need the axial spectra defined in the range
−π − Φ < w < −π + Φ and usually the initial approximated
spectra is a portion of proper sheet of η plane i.e. a portion
of w plane that does not contain −π < w < 0, see Appendix
I of [28].

With plane wave source, we have shadow boundaries of
GO components (related to the poles wi(ϕ) = woi ± ϕ that
crosses the SDP). In this case, to compensate the caustics of
GTD component we apply the Uniform Theory of Diffraction
(UTD) [70] to get uniform fields:

Eutdz (ρ, ϕ) = Eo
e
−j(kρ+π

4 )
√

2πkρ
C(ϕ,ϕo) (67)

C(ϕ,ϕo) = D(ϕ) +
∑
q

Γq
1− F

(
2kρ cos2 ϕ−ϕq−π

2

)
cos

ϕ−ϕq−π
2

(68)

where Γq are the coefficients of the GO components with out-
ward direction ϕq and the function F (z) is the Kouyoumjian-
Pathak transition function defined in [70] and its application
in the framework of WH technique is reported in (63) of [28].

In case of source constituted of modal field, the diffracted
component does not need uniformization because of the ab-
sence of shadow boundaries/caustics.

Finally, the estimation of the intensity of the TEn x-
regressive modal field in region B1 excited by the sources
is obtained straightforward from (30) computing Cn (34).

VI. VALIDATION AND NUMERICAL RESULTS

With reference to the problem described in Fig. 1 at Ez
polarization, we provide validations and numerical results of
the proposed method in relation to the geometrical and phys-
ical parameter of the problem (d, Φ, εr) and the sources: 1)
incident plane wave source characterized by (7) with intensity
Ego = Eo = 1V/m and incoming direction ϕgo = ϕo, 2)
modal excitation via TEn x-progressive modal field (8).

The solution of (52) via (58) reported in the following
subsections are obtained via semi-analytical procedure with
discretization parameters A, h (see Section IV-B).

In the following test cases we make self-convergence tests
and validation thorough an independent fully numerical solu-
tion obtained by a in-house code based on the Finite Element
Method (FEM) embedding singular modelling [64]-[66] with
the following setup: region truncated at a distance of ρ = 10λ
from the origin O with perfectly matched layer of cylindrical
shape of depth λ/2 and quadratic triangular elements with max
side length of λ/10.

In the following, we consider all the angles in radians by
omitting rad. For computational purpose, we have selected
k = kr − jki with kr = 1. The analysis of problem
for practical values of geometrical/electromagnetic parameters
is obtainable by scaling the quantities according to [42]: a
different value of kr, e.g. kr = p, changes the resulting axial
spectra {V+(η), I+(η)} to

{
1
kV+(ηk ), 1

k I+(ηk )
}

.

A. Test Case 1

In the first test case we analyze the convergence, the self-
convergence and the validation of the proposed method for the
analysis of the structure presented in Fig. 1 with an Ez plane
wave illumination. The solution and its convergence is studied
in terms of spectral quantities, diffraction coefficients, total far
fields in region A and modal fields excited in subregion B2.
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In this test case we consider the following physical param-
eters: Eo = 1V/m and k = kr − jki with ki = 0.0001kr
(kr = 1), ϕo = 0.3π, d = 0.55λ, Φa = 0.8π, εr = 2.

According to GO, the Ez-polarized incident plane wave
impinges on the structure and generates an outgoing reflected
wave from the PEC face ϕ = Φ (ϕRA = −π + 2Φa −
ϕo = 0.3π) and an outgoing reflected wave from the layer
x > 0, y = 0 subregion B1 (ϕRD = π − ϕo = 0.7π).
We note that the directions of the waves identify also the
shadow boundaries. Moreover, the source excites modal fields
in subregion B2, where only the first TEn (n = 1) mode is
above cut-off, since kr

√
εrd/π ' 1.56, see (9).

−π −7π/4 −3π/2 −5π/4 −π −3π/4 −π/2 −π/4 0
0

5

10

15

20

w

|V̂d(w)|

 

 
spectrum
starting spectrum

Fig. 3: Test case 1: absolute value of the approximated spectrum
V̂d(w) obtained for A = 50, h = 0.05,M = 3 (reference solution)
before and after the application of recursive equations respectively
labeled starting spectrum and spectrum.

−π −7π/4 −3π/2 −5π/4 −π −3π/4 −π/2 −π/4 0
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−2
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[A,h]=[10,0.2]
[A,h]=[20,0.2]
[A,h]=[30,0.2]
[A,h]=[40,0.2]

−π −7π/4 −3π/2 −5π/4 −π −3π/4 −π/2 −π/4 0
−6

−4

−2

0

w

relerr

 

 
[A,h]=[40,0.4]
[A,h]=[40,0.3]
[A,h]=[40,0.2]
[A,h]=[40,0.1]

Fig. 4: Test case 1: self-convergence test of V̂d(w) for various values
of integration parameters A (top) and h (bottom). The relative error
with respect to the reference solution is computed in log10 scale.

The full convergence of the solution of the problem is ob-
tained applying the discretization method reported in Section
IV-B to (52) via (58).

With the physical parameters reported in this test case, we
note that the source (53) in the FIE (52) is only constituted of
some of the terms: we neglect ψi due to the absence of modal
excitation and we need to consider contributions only of the
first reflections from the PEC face ϕ = Φ and the subregion
B1. Due to the geometrical parameters of the problem, no
singularity lines is present [44] since Φ > π/2. In practice, in
Ic(η) of Iscd(η) (45) and, in (46) and (47) of Iscd(η) we con-
sider only the terms due to the incident plus the B1 reflected
waves with wo ≡ wRD = −ϕo = −0.3π = −π + ϕRD and

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

η

 

 
|V o

+(η)|
|V+(−α1)V

1
+(η)|

|V+(−α2)V
2
+(η)|

|V+(−α3)V
3
+(η)|

−π −3π/4 −π/2 −π/4 0
−6

−4

−2

0

2

4

w

 

 
|V̂ o

d (w)|
|V+(−α1)V̂

1
d (w)|

|V+(−α2)V̂
2
d (w)|

|V+(−α3)V̂
3
d (w)|

Fig. 5: Test case 1: on top |V o+(η)| and |V+(−αm)V m+ (η)| in log10

scale for −5 < η < 5, on bottom |V̂ od (w)| and |V+(−αm)V̂ md (w)| in
log10 scale for −π < w < 0, where V̂ od (w) = sinwV o+(−k cosw)
and V̂ md (w) = sinwV m+ (−k cosw). V+(−αm) = [4.099 +
1.471j, 0.363− 0.030j, 0.165− 0.0227j]. Results for A = 50, h =
0.05,M = 3 (reference solution).

we neglect the term related to the face ϕ = Φ reflected wave
with wRA = −2Φa + ϕo = −1.3π = −π − ϕRA.

First we discuss the solution, step by step. We consider as
reference solution the one obtained from the discretization of
(52) with integration parameters A = 50, h = 0.05 in terms of
V+(η). To get an explicit solution we consider the procedure
proposed in subsection IV-B by considering the first three hm
terms that correspond to the first three TEn modes of the
dielectric-loaded parallel PEC plate waveguide with size d (see
M = 3 in Section IV-B). We note that since kr

√
(εr)d/π '

1.56 see (9) and krd/π = 1.1 see (33), only the first mode
is above cut-off, thus two extra evanescent modes are used to
correctly match the field at the free-space/dielectric interface
x = 0, −d < y < 0.

In Fig.3 we show the spectrum in w plane of V+(η) before
and after the application of the recursive equations reported in
the Appendix. As expected the singularities of GO field are
correctly determined in the extended spectrum in w plane at
wo and wRA, and their residues are used to compute the GO
component in (63).

Fig.4 demonstrates the self-convergence of the absolute
value of V̂d(w) for A & 40 and h . 0.2, by obtaining spectral
approximation of V̂d(w) with relative error less than 10−3.

Fig.5 highlights the contribution of hm terms in the total
spectrum of V̂d(w) in terms of V o+(η) and V+(−αm)V m+ (η)
according to (58). As shown the relevant contributions are
given by the first term as m = 1 is dominant with respect to
the successive terms m = 2, 3.

In Tables I, II, III we focus the attention on the convergence
of modal fields excited inside the dielectric-loaded parallel
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PEC plate waveguide (subregion B2) that influences the quality
of the global solution of the problem, see (52). Table I reports
the exact TEn modal propagation constant χn normalized by
k and the computed coefficients Cn (34) of the x-regressive
TEn modes for the reference solution. Although Cn (34) are
in general very sensitive to errors or lack in precision, Tables
II and III demonstrate the convergence of the computed Cn
for A & 40 and h . 0.2 (M = 3). Moreover, we note that
between the first and the fifth mode we have a scale factor of
v 75 in terms of absolute values:

|C1/Cn| = [1., 10.6, 28.5, 50.0, 74.6] (69)

TABLE I: Modal expansion for A = 50, h = 0.05,M = 3

TEn χn/k Cn

1 1.0833 + 0.0001j 0.5053 - 1.4490j
2 0.0003 + 1.1427j 0.1440 - 0.0096j
3 0.0003 + 2.3320j 0.0536 - 0.0060j
4 0.0004 + 3.3501j 0.0304 - 0.0045j
5 0.0005 + 4.3199j 0.0202 - 0.0036j

TABLE II: Relative error of Cn for h = 0.2

TEn A = 10 A = 20 A = 30 A = 40

1 0.0046 0.0022 0.0011 0.0005
2 0.0368 0.0175 0.0085 0.0034
3 0.0624 0.0303 0.0149 0.0059
4 0.0832 0.0415 0.0206 0.0082
5 0.1001 0.0511 0.0256 0.0103

TABLE III: Relative error of Cn for A = 40

TEn h = 0.4 h = 0.3 h = 0.2 h = 0.1

1 0.0114 0.0023 0.0005 0.0004
2 0.0058 0.0033 0.0034 0.0034
3 0.0076 0.0054 0.0059 0.0059
4 0.0093 0.0073 0.0082 0.0082
5 0.0108 0.0090 0.0103 0.0102

We note that the expression of Cn (34) depends on the
spectrum V+(η) computed in the regular half-plane, far from
its singularities, therefore quite-regular. For this reason, al-
though we have considered only three hm terms (M = 3) we
get precise estimation of Cn for n grater than 3. In order to
analyze the effect of modal expansion in (52) via (58) and
the relevance of the numbers of the considered modes, Fig. 6
reports the intensity of the first three TEn modes and the total
field combining the first five modes at x = 0, −d < y < 0.
As expected the fundamental mode, which propagates, and the
second mode, which is an evanescent mode, are the dominant
contributions. The convergence is also studied in terms of GTD
diffraction coefficient (66), see Fig. 7, where on the top of
the figure the absolute value is reported in dB scale versus
the observation angle ϕ. The peaks of the GTD diffraction
coefficients occur for the GO angles: the outgoing reflected
waves ϕRA = 0.3π and ϕRD = 0.7π. On the bottom of Fig.
7 the convergence is shown for different integration parameters
through the evaluation of the relative error in log10 scale
with respect to the reference solution. This scale measures
the precision in term of digits.
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Fig. 6: Test case 1: absolute value of Ez(0, y) of the first three TEn
modes and of the total field combining the first five modes at x =
0, −d < y < 0. Results are obtained for integration parameters
A = 50, h = 0.05,M = 3 in (52) via (58) (reference solution).

With reference to Fig. 1, the absolute value of total far
field (62) in region A at a distance of krρ = 10 from O
is reported in Fig. 8 the reference solution A = 50, h = 0.05
with three hm terms, also in terms of GO field component (63)
and UTD field component (67). The figure reports also the
comparison between the reference solutions and the solution
obtained with same parameters but with the subregion B1
filled by free-space. The mathematical interpretation of this
last solution is equivalent to ignore mode expansion at the
free-space/dielectric interface, since all hm terms are null
(αm = χm, i.e. M = 0). We note that the diffracted
component is significantly sensitive to the presence of the
dielectric and also depends on the inclusion of hm terms.

Finally Fig. 9 shows an independent validation by compar-
ing the results obtained for the reference solution and applica-
tion of FEM code as described previously in the introduction
of Section VI in terms of absolute value and phase of the
total far field. We recall that the phase is a very sensitive
parameter to check the quality of convergence in comparison
to the absolute value. The agreement between the two solutions
is evident, in particular we notice that to capture the sharp
behaviour of the phase in the region π/4 < ϕ < π/3 we have
fully studied the convergence of our method and FEM. In
fact both methods are very sensitive to this physical behavior,
therefore the inclusions of several modes (three hm terms) in
our technique and the refinement of FEM solution have been
necessary.

B. Test Case 2

The second test case illustrates the solution while the source
is constituted of the first TEn mode that propagates in the
dielectric-loaded parallel PEC plate waveguide with size d
(subregion B2). The geometrical and physical parameters of
the problem are the same as reported in test case 1. The
intensity of the TE1 source is Eo1 = 1V/m (8). As in test
case 1 only the first TEn (n = 1) mode is above cut-off, since
kr
√
εrd/π ' 1.56, see (9).

The solution of (52) via (58) shows performances on
convergence similar to test case 1, thus in this test we focus the
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Fig. 7: Test case 1: on top the absolute value of GTD diffraction
coefficient is reported in dB, on center and bottom the relative error
on the computation of GTD diffraction coefficient in log10 scale for
different integration parameters A, h with respect to the reference
solution A = 50, h = 0.05 (M = 3). The peaks of the GTD
diffraction coefficients occur for the GO angles ϕRA = 0.3π and
ϕRD = 0.7π.

attention on the different physics phenomena of the problem
for the reference solution obtained with A = 40, h = 0.1 and
three hm terms (M = 3).

In region A no GO field is present, thus the total far field is
constituted of the GTD component without shadow boundary.
In subregion B2, the source excites x-regressive modal fields
with higher intensity with respect to test case 1, as expected.
In this test case, the FIE’s source (53) is constituted only of
ψi term due to the the modal excitation while Isca and Iscd
are null.

Without loss of clarity, we do not report the spectrum in w
of V+(η), that in this case is continuous without peaks. The
application of saddle point technique allows to obtain the total
far field component (65) in region A at a distance of krρ = 10
from O (Fig. 1) in terms of GTD diffraction coefficient (66),
see Fig. 10 on top where the comparison between dielectric
and free space filling of subregion B2 is reported. We recall
that in case of free space filling of subregion B2 all hm terms
are null in (52). On the bottom of Fig. 10 the convergence
is shown for different integration parameters through the
evaluation of the relative error in log10 scale with respect to
the reference solution obtained for A = 40, h = 0.1,M = 3.
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Fig. 8: Test case 1: on top the GO field, the UTD component and,
the total far-field pattern at krρ = 10 for the reference solution A =
50, h = 0.05 with three hm terms (M = 3), on center and bottom
respectively the UTD component and, the total far-field pattern at
krρ = 10 for the reference solution and the solution obtained with
same parameters but with the subregion B1 filled by free-space (M =
0).

In order to analyze the effect of excited TEn modes, Fig.
11 reports the intensity of electric field of modal expansions at
x = 0, −d < y < 0. Since only the fundamental TE1 mode
propagates and due to the kind of excitation (TE1 mode),
we have that Cn have higher values and decrease slowly in
comparison with test case 1. In fact we have that the first 12
values are greater than |C1|/75

|C1/Cn| = [1., 3.7, 8.6, 13.9, 19.8, 26.1, 32.8, 39.9, 47.5,
55.3, 63.4, 71.9, 80.6, 89.7, 98.9, 108.4, 118.2, 128.2]

(70)
Similar convergence properties are obtained while subregion
B2 is filled by free-space. As reported in Fig. 11 the most
relevant contribution comes from C1 in both cases. In par-
ticular we not that for dielectric filling of subregion B2
(Eo1 + C1)/Eo1 = 1.325 + 0.166j while for free space
(Eo1 + C1)/Eo1 = 0.846 + 0.180j due to the reflection
properties at the port x = 0, −d < y < 0 and phase
composition.

C. Test Case 3

This test case illustrates the solution for a practical example
where: k = kr − jki with ki = 0.0001kr (kr = 1), d =
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Fig. 9: Test case 1: absolute value (top) and phase (bottom) of the total
far-field pattern at krρ = 10 for the reference solution A = 50, h =
0.05 with three hm terms compared with the same quantity obtained
thought FEM code as described in the introduction of Section VI.
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Fig. 10: Test case 2: on top the absolute value of total far field (65)
in region A at a distance of krρ = 10 from O (Fig. 1), on bottom the
relative error in log10 scale for different integration parameters A, h
with respect to the reference solution A = 40, h = 0.1,M = 3.

1.10λ, Φa = 50π/180 (50o), εr = 5 with an illumination
constituted of a Ez-polarized incident plane wave with ϕo =
45π/180 and Eo = 1V/m. In this test case we stress our
methodology by considering acute aperture angle of region A
that generates multiple reflections, denser dielectric and multi-
modal propagation in subregions B2.

According to [44], while the angular region is acute we need
to consider singularity lines contribution, see also Section IV,
V for discussion. In this case we need to consider pΦ

1 to get
the solution in terms of starting spectra and then we need to
consider also pΦ

2 to extend the validity of spectra in w plane
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Fig. 11: Test case 2. On top absolute value of Ez(x, y) at x =
0, −d < y < 0 for the incident TE1 mode, the total electric field
combining the incident and reflected TE1 mode and for the total field
combining the incident TE1 and the first 18 reflected TEn modes
respectively while subregion B2 is filled by dielectric medium (black)
and by free-space (gray). On bottom the same results for the phase
of the total electric field. The numerical results are reported for the
reference solution with A = 40, h = 0.1,M = 3.

for w < wpΦ
2
− 4Φ + π/2 = −1.920 to contain the interval

−π < w < 0 [44] needed for the application of recursive
equations (Appendix A).

Since kr
√
εrd/π ' 4.919 the first four TEn modes are

above cut-off. For this reason we select as reference solution
of (52) via (58) the one obtained with A = 40, h = 0.1 and
five hm terms (M = 5). According to GO, the Ez-polarized
incident plane wave (with incoming direction ϕo and outgoing
direction ϕI = −π + ϕo) impinges on the structure and
generates further 7 waves: 1) starting with the first reflection
from the PEC face ϕ = Φ

[ϕRA, ϕRCRA, ϕRARCRA, ϕRCRARCRA] = [−π + 2Φ− ϕo,
π − 2Φ + ϕo,−π + 4Φ− ϕo, π − 4Φ + ϕo]

(71)
2) starting with the first reflection from the subregion B1

[ϕRC , ϕRARC , ϕRCRARC ] =
= [π − ϕo,−π + 2Φ + ϕo, π − 2Φ− ϕo]

(72)

Poles in η plane are obtained with ηgo = −k coswgo with
wgo = −2Φ + ϕo,−2Φ + ϕo,−4Φ + ϕo,−4Φ + ϕo corre-
sponding to waves first reflected from the PEC face ϕ = Φ
(case 1) and with wgo = −2Φ − ϕo,−2Φ − ϕo,−4Φ − ϕo
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corresponding to waves first reflected from subregion B1 (case
2). The reflection coefficient from the PEC face ϕ = Φ is −1
while the reflection coefficient from the subregion B1 is given
by

Γgo =
Yc(ηgo)− Yd(ηgo)
Yc(ηgo) + Yd(ηgo)

(73)

where Yc(η) and Yd(η) are defined in Section III.
For what concerns the GO component we note that only

the last reflections ϕRCRARCRA, ϕRCRARC generate shadow
boundaries.

With the physical parameters reported in this test case, we
note that the FIE’s source (53) is only constituted of some of
the terms: we neglect ψi due to the absence of modal excitation
and we need to consider the GO contributions of ϕI , ϕRA,
ϕRC and ϕRCRA waves in Ic(η) (45) of Isca(η) (44) and in
Iscd(η) (47). Due to the acute aperture angle Φ, pΦ

1 needs to
be considered in (44).

First we discuss the solution in terms of the spectrum
V̂d(w): Fig. 12 shows on top the effect the inclusion pΦ

2

on the approximate solution while extending the spectrum
toward w = −π from w = 0, on bottom the figures shows
the spectrum V̂d(w) extended by recursive equations up to
w = −2π.
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Fig. 12: Test case 3. On top |V̂d(w)| with or without considering
pΦ

2 for −π < w < 0: we notice the spike at wpΦ
2

= −4Φ + π/2

corresponding to pΦ
2 and GO peaks at wo = −ϕo and wra = −2Φ+

ϕo. On bottom log10 |V̂d(w)| with pΦ
2 and after the application of

recursive equations: we notice the GO peaks at wgo = ±ϕo − 2nΦ
with n ∈ N. Results for A = 40, h = 0.1,M = 5.

With reference to Fig. 1, the absolute value of total far field
(62) in region A at a distance of krρ = 10 from O is reported
in Fig. 13 for the reference solution A = 40, h = 0.1,M = 5,
also in terms of GO (63) and UTD (67) field components.

In order to analyze the effect of excited TEn modes in
subregion B2, Fig. 14 reports the intensity of electric field as
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Fig. 13: Test case 3: GO field, the UTD component and, the total
far-field pattern at krρ = 10 for the reference solution A = 40, h =
0.1,M = 5. Shadow boundaries are at ϕRCRARCRA, ϕRCRARC .

modal expansions at different value of x and for a different
number of modes. In this test case, due to the geometry and
materials, we have that: 1) the most intense Cn is the second
one (|C2| is twice of |C1| and |C3|), 2) Cn decrease slowly
with respect to the previous test cases, 3) only the first four
modes are propagating. These considerations are summarizes
in Table IV and shown in Fig. 14.

TABLE IV: Modal expansion for A = 10, h = 0.1,M = 5

TEn χn/k Cn

1 2.18938 - 9 10−6j -0.32391 + 0.03023j
2 2.04293 - 0.00004j -0.38061 - 0.59211j
3 1.77214 - 0.00010j -0.16863 - 0.24266 j
4 1.30162 - 0.00025j -0.048750 - 0.17580j
5 0.00127 - 0.40656j 0.04277 - 0.09959 j
6 0.00048 - 1.56141j 0.01876 - 0.04745j
7 0.00045 - 2.26362j 0.01120 - 0.03080j
8 0.00046 - 2.86760j 0.00738 - 0.02208j
9 0.00049 - 3.42572j 0.00515 - 0.01679j

10 0.00052 - 3.95742j 0.00374 - 0.01328j

VII. CONCLUSIONS

This paper demonstrates the effectiveness of the quasi-
analytical method known as GWHT in studying radiation and
scattering complex canonical problems. In particular in this pa-
per we have examined an arbitrarily flanged dielectric-loaded
waveguide that resembles scattering analysis for example in
radar applications such as inlets in aerospace engineering or
antenna problem similar to a horn fed by a waveguide loaded
by a dielectric material. In this problem the GWHT is further
extended and it is now capable of handling piecewise constant
inhomogeneous dielectric layers by resorting to the application
of characteristic Green’s function procedure starting from the
wave equation.

The problem is formulated in a unique entire model based
on GWHEs with the help of network interpretations that takes
into consideration the true near-field interaction among the
different materials and structures.

The numerical results shows the efficacy of the method.
he semi-analyticity of the GWHT solution allows engineering
and physical insights in terms of spectral component of
electromagnetic field, GTD/UTD diffraction coefficients, total
far fields and modal fields.

In this paper we have used a novel and effective procedure
to handle with complete WH equations, GWHEs via FIEs that
is described in Sections III and IV.



14

−7 −6 −5 −4 −3 −2 −1 0
0

0.2

0.4

0.6

0.8

1

y

|Ez(x, y)|, total 10TEn modes

 

 
x = 0
x = −λr
x = −5λr
x = −10λr

−7 −6 −5 −4 −3 −2 −1 0
0

0.2

0.4

0.6

0.8

1

y

|E(x = 0, y)|, totalN TEn modes

 

 
N = 1
N = 3
N = 4
N = 10

−7 −6 −5 −4 −3 −2 −1 0
0

0.2

0.4

0.6

0.8

1

y

|E(x = −10λr, y)|, totalN TEn modes

 

 
N = 1
N = 3
N = 4
N = 10

Fig. 14: Test case 3. On Top the intensity of electric field obtained
considering the first 10 modes is plotted for different values of
x = 0,−λr,−5λr,−10λr . The intensity of electric field obtained
considering the first N modes is plotted for x = 0 (center) and
x = −10λr (bottom). Results for A = 40, h = 0.1,M = 5.

APPENDIX A
ANALYTIC CONTINUATION

To analytically extend the validity of the approximated
spectra V+(η) and I+(η) in roper and improper sheets we
resort to recursive equations in w plane (η = −k cosw )
directly obtained from the system of GWHEs (10) and (35)
after mathematical manipulation in terms of the quantities
V̂d(w) = sinwV+(−k cosw) and Î+(w) = I+(−k cosw).
The mapping η = −k cosw is described for example in
Appendix I of [28] with the definition of proper and improper
plane according to the multivariate function τ1(η). Starting
from (10) we obtain in w plane:

−Yo sinwV̂+(w)− Î+(w) = −Îa+(w + Φ) (74)

as m = kcos(w + Φ). Since plus unknowns (axial spectra)
are even functions in w [26], we can eliminate the minus
function (face spectrum) and get a difference equation with
plus unknowns. In fact by replacing w with w − Φ

−Yo sin(w − Φ)V̂+(w − Φ)− Î+(w − Φ) = −Îa+(w) (75)

and considering now Îa+(w) = Îa+(−w) we get

−Yo sin(w)V̂+(w)−Î+(w)=Yo sin(w+2Φ)V̂+(w+2Φ)−Î+(w+2Φ)
(76)

after replacing again w with w + Φ.

Starting from (35) we obtain in w plane:

Ŷd(w)V̂+(w)+ Î+(w) = ψ̂i+(w)+ ψ̂+(w)+X̂+(w+π) (77)

where Ŷd(w) = Yd(−k cosw), ψ̂i+(w) = ψi+(−k cosw),
ψ̂+(w) = ψ+(−k cosw), X̂+(w) = X+(−k cosw) with
X+(−η) = ψ−(η). Using the same procedure already applied
in (10) we eliminate the minus unknown and we get a
difference equation with plus unknowns:

Ŷ (w)V̂+(w) + Î+(w)− ψ̂i+(w)− ψ̂+(w) =

= Ŷ (−w − 2π)V̂+(w + 2π) + Î+(w + 2π)+

−ψ̂i+(w + 2π)− ψ̂+(w + 2π)

(78)

Since ψ̂+(w + 2π) = ψ̂+(w) and ψ̂i+(w + 2π) = ψ̂i+(w)

we can eliminate the functions ψ̂+(·) and ψ̂i+(·) in (78).
Finally the system of equations (76) and (78) yields the

recursive equations (79) for V̂+(w) and Î+(w) that are suitable
to extend in the whole w plane the approximated spectra
obtained from (52) via (58) taking into account the effect of
the singularity lines in −π < w < 0 and considering the
symmetry properties of plus functions that are even in w.
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