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Abstract— In this work, in order to accurately predict 

diffraction phenomena in propagation problems, we introduce 
the analysis of the scattering of multiple wedges using the semi-
analytical method known as Generalized Wiener-Hopf 
Technique. The analysis is of interest to correctly model path-loss 
in real-life scenarios for wireless communications. 
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I. INTRODUCTION 

Accuracy in study of diffraction problems is of great 
interest in wireless propagation and security applications. In 
particular when the intensity of field is a sensible issue, the 
propagation model needs to take into account the correct 
modelling of diffraction phenomena. In this paper we consider 
the diffraction by multiple perfectly electrically conducting 
(PEC) wedges in separated objects as in Fig. 1.a or in joined 
objects as in Fig. 1.b. Both configurations have been studied in 
literature. In particular for the separated wedges we report a 
wide literature listed in [1], while for the joined wedges we 
acknowledge the works [2-6] and references therein. In 
wireless propagation, often, the modelling scheme of the 
interaction among objects or sharp structures make reference to 
ray-tracing or iterative schemes like iterative physical optics. 
Usually a far field assumption among the edges of the wedges 
is taken into account. 

In this work we introduce the analysis of the scattering of 
multiple wedges using the semi-analytical method known as 
Generalized Wiener-Hopf Technique (GWHT) [7] to improve 
the estimation of field in presence of diffraction by multiple 
wedges. The Generalized version of the Wiener-Hopf 
technique is now able to study new classes of problems for its 
capability to handle complex scattering problems constituted of 
angular, rectangular and layer shapes made by different 
materials (see [8]-[11] and references therein). Our 
mathematical model is comprehensive i.e. it takes into account 
the entire structure in one shot and it is independent on 
geometrical distance of edges. Moreover, the Generalized 
Wiener-Hopf equations (GWHEs) obtained by the application 
of the method are defined in the spectral domain and their 
solution in terms of spectral transformation of the field 
components contains all the physical properties of the problem. 

In general, the GWHEs cannot be solved exactly. To 
overcome this limitation we resort to the Fredholm 

Factorization [12]. The Fredholm factorization allow to obtain 
semi-analytical solutions of GWHEs of a given problem with 
high accuracy and efficiency. The complete solution procedure 
consists of the following steps: 1) deduction of GWHEs, 2) 
Fredholm factorization, 3) analytic continuation of the 
approximate solution, 4) evaluation of field components via 
inverse spectral transformation and asymptotics. 

 
Fig. 1. Scattering by multiple wedges: a) separated wedges, b) joined wedges 

II. FORMULATION 

The procedure starts form subdividing the geometry of the 
problem into sub-regions which are homogeneous in geometry 
and material as for example the angular regions 1,2,3,4 and the 
layer region 5 in Fig. 1.a, while in Fig. 1.b we have the angular 
regions 1 and 3 and the half-layer region 2. For each sub-
region we deduce the relevant GWHEs. In this paper we need 
the model of three kind of sub-regions. The GWHEs are 
written in terms of unilateral Laplace transforms and to model 
this problem we make use: radial Laplace transforms, Fourier 
transforms and their split into unilateral forms. All this 
quantities will be interpreted as WH unknowns.  

Making reference to region 1, taking into account a 
cylindrical reference system, the radial Laplace transforms for 
the Ez-polarized case at  are 
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With reference to region 5, taking into account a Cartesian 
reference system, the Fourier transforms (2) for the Ez-
polarized case at y=0,-d are splitted into unilateral transforms 
yielding (3)-(6) with shift factor s [13] in (5)-(6): 
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 For region 2 of Fig. 1.b, taking into account a Cartesian 
reference system, we define the odd-Fourier transforms  
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that can be used to model the field components in the half-
slab/layer region as usually done for the layered regions. 

A. Angular region 

Without loss of generality in this sub-section we report the 
GWHE relevant for sub-region 1 at Ez polarization: 
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Similar equations hold for the other angular sub-regions taking 
into account the different reference systems and spectral 
unknowns. By applying Fredholm factorization we obtain an 
integral representation that eliminates the minus unknowns 
defined on the PEC face: 
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With  ( ) cos ( / ) arccos( / )k k       ,  is obtuse, and 

Ica depends on the sources. This integral representation can be 
interpreted as a constitutive equation of an equivalent network 
model of Norton kind. We need to pay particular attention in 
case of acute aperture angles  [14]. In this case we need to 
add extra terms to the model [9] due to the mathematical 
properties of the kernel known as sectional analytic functions. 

B. Slab/Layer region 

Transmission line modelling can be used to model multi-
layered region [7]. In our case the following equivalent 
network model constituted of two ports holds [13]: 
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The application of Fredholm factorizations to (12) yields a 
system of integral representations that can be interpreted as a 4-
port Norton equivalent network. 

C. Half-slab/layer region 

The classical transmission line modelling for multilayered 
regions can be extended to half-layers by considering odd and 
even Fourier transforms. For our problem (PEC boundary 
conditions in region 2 of Fig. 1.b) we use odd-Fourier 
transforms at Ez polarization. By noting that 
ˆ ( ) ( ) ( )F F F       and applying Fredholm factorization we 

obtain a two port equivalent network model. 

III. SOLUTION OF THE PROBLEMS 

The problems represented in Fig. 1 can be interpreted as 
connection of equivalent network models as reported in the 
previous sections. By coupling the models and eliminating the 
equivalent current unknowns I we obtain a system of a system 
of Fredholm integral equations of second kind with only 
voltage unknowns V. Solution is performed by analytical-
numerical techniques in terms of approximate spectra of the 
voltages. Asymptotic estimation via UTD of the total field is 
performed from the spectra. Further details on the formulation, 
numerical validations and results will be shown during the 
presentation. 
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