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Abstract

This paper proposes the study of a magnetic gear by means of multi-
objective optimisation. Magnetic gears are structures able to transfer
motion between two or more mechanical axles with a given speed ra-
tio. In this aspect they are analogous to a classical mechanical gear but
they allow to transfer motion without contact between the moving parts.
To replace a standard mechanical gear in an automotive powertrain, the
design of a magnetic gear able to transfer the torque needed by the appli-
cation is required. At the same time, beside the torque, the replacement
of the mechanical gear should not alter the dynamic of the powertrain
so that also mechanical parameters, as for instance the moment of iner-
tia, must be considered in the design. To cope with these requirements,
a multi-objective optimisation approach is proposed that maximises the
transmitted torque per unit mass of the magnetic gear while minimising
the moment of inertia of the moving parts. Due to the computational
intensive evaluation of the magnetic performance, the optimisation is car-
ried out by a deterministic optimisation algorithm coupled to a weighted
sum approach of objectives. Results are discussed and compared with
those of a commercial application.

Index terms— Electromechanics, magnetic gears, multi-objective optimiza-
tion, automotive

1 Introduction

Magnetic gears are passive structures where motion is transferred between dif-
ferent axles by the interactions of magnetic flux waves rotating in the air gaps.
The rotating flux waves are usually obtained by two sets of rotating permanent
magnets, one inner and one outer, creating a different number of poles. The
interaction of these two rotating flux waves is modulated by a third part made of
a number of ferromagnetic pieces placed in the middle between the two perma-
nent magnet arrays. The resulting action is a transfer of torque between the two
permanent magnet parts and a rotation speed that depends on the combination
of the number of the interacting magnetic poles [1].
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There are different advantages and drawbacks that must be investigated
before the adoption of magnetic gears in mechanical transmission systems: one
advantage is the possibility to transfer torque in a contactless way, avoiding
wearing of the mechanical parts in contact, largely reducing noise and other
negative effects. In addition, the absence of contact removes the need of a clutch
device limiting the maximum stress acting on the system. Also efficiencies of
the magnetic gears are higher that those of mechanical ones [2]. On the other
side, to get the same performances, the volumes of mechanical and magnetic
gears are different: mechanical gears are compact due to the high local force
values between teeth while magnetic counterparts must rely of higher lever arm
values to transfer torque, so they are usually larger than the classical ones.

A design procedure of magnetic gears must necessarily rely on numerical
magnetic field analysis: different effects like the shape of the magnetic flux
around the ferromagnetic poles, the local saturation of the ferromagnetic mate-
rials and, in general, the complex shape of flux distribution are not easily dealt
by analytical methods so that usually two-dimensional finite elements tools are
employed [3].

Starting from these assumptions, the optimisation of one magnetic gear able
to replace a planetary mechanical one in the powertrain of a hybrid car has been
setup. The torque transfer requirements of the gear have been defined by the
technical report [4] that presents data on one of the most diffuse hybrid cars. The
preliminary analyses performed allowed to point out that magnetic gears can be
a valid replacement for the planetary gears as concerns torque transmission but
highlighted also that volumes in the magnetic counterparts are higher and that
mass distribution can create possible problems to the rotational dynamics of the
powertrain. As a consequence, the need for the multi-objective optimisation of
the system arose, calling for the maximisation of the transmitted torque while
minimising at the same time the moment of inertia of the rotating parts.

Optimisation of the structure must rely on the evaluation of the two objec-
tives: torque and moment of inertia as function of the geometrical parameters
used to describe the structure. While the moment of inertia can be defined on
bare geometry and mass density data of all parts, the evaluation of torque must
rely on a nonlinear numerical analysis of the structure. In addition, to keep the
study as general as possible, instead of maximising the torque value, its mass
density, that is the torque divided by the mass of the structure, is considered.
This assumption allows to compare different geometrical structures in an easier
way.

Previous studies of the magnetic gear have pointed out that a two dimen-
sional analysis is sufficient to get the evaluation of the main parameters of
the magnetic structure [3]. Thus the evaluation of the maximum transmissi-
ble torque requires the solution of one finite element two dimensional nonlinear
problem.

Due to the computational cost of the analysis the optimisation process has
been carried out by a deterministic algorithm exploiting a weighted sum of the
objectives and, under the hypothesis of convexity, an exploration of the Pareto
front is performed by changing the weights [5].

In the following the main steps of the study are described. In Section 2
a description of the magnetic gear structure is presented together with some
data about the powertrain application and its constraints and requirements.
Afterwards, the magnetic finite element model that computes the torque is
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explained in Section 3 and the proposed optimisation approach is described in
Section 4 and Section 5. Finally, the results of the optimisation are discussed
and some preliminary conclusions are drawn.

2 Planetary and Magnetic gears

A sketch of a mechanical planetary gear with its main three parts is reported in
Fig. 1: the sun gear, the planetary gears, generally three of them that are con-
nected by a carrier, and the ring gear. The structure has 2 degrees of freedom,
therefore in order to completely define its kinematics it is necessary to know the
rotational speed of at least two elements (for example sun and ring) and then
evaluate the other velocity (carrier).

[Figure 1 about here.]

If the carrier part is kept fixed in space, the ratio between the two angular
speeds of sun and ring is constrained by the number of teeth of the two cogs Zr
and Zs ring and sun respectively:

τs/r = −Zr
Zs

(1)

A similar gear structure can be realised also by a magnetic configuration where
the sun and the ring are made by two rotors carrying permanent magnet arrays
and ferromagnetic yokes for flux closing. Between the two rotors, a ring of
ferromagnetic poles is set whose task is to modulate the two magnetic flux
waves rotating in the air gaps. In Fig. 2 a sketch of a magnetic planetary gear
is reported.

If the flux modulator is kept stationary, and the one of the two rotors is
being driven, the magnetic gear ratio is governed by the following equations [1]:{

Gr = −p−ns

ns
= −nr

ns

p = ns + nr
(2)

where:

• p is the number of poles of ferromagnetic modulation ring;

• ns is the number of pole-pairs in the inner rotor (sun);

• nr is the number of pole-pairs in the outer rotor (ring);

It is apparent that this result is similar to the one obtained in (1).

[Figure 2 about here.]

Planetary gears can be used in the powertrain of a hybrid vehicle where two
or more sources of power/energy are combined in order to obtain the required
power necessary to propel the car [4]. These vehicles combine the internal
combustion engine (ICE) with an electric traction motor that is powered from a
secondary storage device, that generally is a battery pack. The planetary gear
is used as a power split device allowing to have two torque sources applied to
the main mechanical axle.
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3 Evaluation of torque in a magnetic gear

As it has been previously pointed out, the performance of a magnetic gear can
be evaluated by a two dimensional finite element method taking into account
non linearities of the ferromagnetic regions of the gear.

The analysis is performed by means of a magneto-static solution of the struc-
ture. The relative motion of the parts should call for a dynamic solution as time-
varying magnetic flux can induce eddy currents in conductive parts and losses in
ferromagnetic materials. A previous study of the magnetic gear highlighted that
these phenomena can be, in a preliminary study, neglected [3]. Nonlinearity in
ferromagnetic phenomena is instead correctly taken into account as this effect is
of primary importance. Saturation can be in fact critical in ferromagnetic yokes
since their magnetic reluctance influences the magnetic flux magnitude created
by the permanent magnets and, consequently, the torque.

The torque transmitted between the parts is computed, in the post-processing
phase, through the Maxwell’s stress tensor. Torque is evaluated along different
shell-paths on the two air-gap of the machine and results are then averaged [6].
As a result, each torque evaluation in a particular angular position requires a
FEM evaluation.

Since the value of the torque depends on the relative position of the three
magnetic parts, its behaviour must be evaluated in a significant number of
angular positions. Under the hypothesis that the steel pole pieces are fixed,
each configuration is identified by the angle of the sun (θs) and that of the ring
(θr). The discretisation of these two angles should be tiny enough to have a
good reconstruction of the torque. In Fig. 3 the map of the torque as function
of θs and θr for ns = 5 and nr = 18 is reported. As it can be guessed by Fig. 3,
machine periodicity can be exploited to reduce the number of FEM runs needed
to evaluate the torque in any of the relative angular locations. This periodicity
derives from the kinematic of the gear, in fact each point at constant torque
repeats with periodicity τs = 360◦/ns = 72◦ (along the y axis in figure) and
τr = 360◦/nr = 20◦ (along the x axis) and the slope of each curve at constant
torque is equal to the gear ratio Gr. As an example, the value of the torque
at the points P1 is the same of that of the points P∗ and P

′
suitably shifted.

Hence, it is possible to reconstruct the overall torque-angles map by analysing
the magnetic gear starting from a single configuration of one of the two rotors
and rotating the other one within one period. An example of this evaluation
is provided in Fig. 3(b). It is worth mentioning that, if the topology of the
magnetic gear (i.e. ns, nr and p) does not change, to get the maximum torque
it is possible to run only one FEM simulation with the relative position that
gives rise to the maximum torque.

[Figure 3 about here.]

Once the geometric structure of the gear is defined, its moment of inertia
can be computed by considering the areas occupied by different materials and
assigning to each of them the related mass density. The equivalent moment of
inertia of the whole machine is computed by considering the different angular
velocities of the parts that are related by the gear ratio Gr:

Jeq = Js +
Js
Gr

(3)
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4 Geometrical description of the magnetic gear

The geometrical structure of the magnetic gear is described by the parameters
reported in Table 1. In the present study, the number of pole pairs nr, nr and
steel poles p is kept fixed as this set guarantees a torque ripple low with respect
to the maximum torque [7]. During the optimisation, the external radius and
axial length of the machine are kept constant and equal to the ones of the
reference gear that is used as starting point for the optimisation.

[Table 1 about here.]

5 Multi-objective optimisation

The torque of the gear must be maximised while minimising, at the same time,
its moment of inertia. These two objectives are contrasting each other: higher
torque values require a larger amount of permanent magnets and this is leading
to a large value of the equivalent moment of inertia. Using the Pareto approach,
this multi-objective process requires several optimisation runs in order to find
out the Pareto front [5]. Instead of using the maximum torque value T as
objective, the ratio between the maximum torque and the mass of the structure
Tρ is used. This choice puts a larger effort in optimising the exploitation of the
magnetic materials inside the structure.

In order to have an idea on the objective functions landscapes, a preliminary
parametric investigation of the objectives changing some geometric parameters
have been carried out. The results are summarised in Fig. 7: the behaviour
of the objectives appears to be quite regular and well behaved; thus, in order
to keep the number of function evaluations low, a zero-order search algorithm
Pattern Search [8], that does not make use of any gradient of the objective
function with respect to degrees of freedom, has been employed. In addition,
even if there is no theoretical proof of convexity of the objective functions, the
pattern of the torque versus some of the degrees of freedom is well behaved, thus
a first attempt to solve the multi-objective problem is carried out by weighting
the objectives.

The optimisation procedure has been run a number of ways by changing the
starting point of the search and, in all cases tested, the procedure converged at
the same minimum point. This is considered as another validation of the well
behaviour of the objective function landscape.

The simulation phases have required an average computational time of 29.6
seconds on a workstation equipped with an Intel Core i7-3770 at 3.4 GHz and
32 GB of RAM.

[Figure 4 about here.]

The multi-objective optimisation problem is scalarised by means of a weighted
sum using the parameter α that can vary between 0 and 1:

f (Tρ, Jeq) = max

[
α

Tρ
Tρ ref

− (1 − α)
Jeq

Jeq ref

]
(4)

Two parameters Tρ ref and Jeq ref are used to normalise the two components
of the objective function. These two values are computed from the reference
machine (see Table 2) used as starting point of the optimisation.
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6 Results and discussion

By running several single-objective optimisations changing the value of the α
parameter, a Pareto front can be obtained and the contrasting nature of the
two objectives can be highlighted.

In Fig. 5 the Pareto front for different values of the weight α is shown together
with maximum torque and mass of each point. For clarity sake, the same results
are reported in Fig. 6 where the same points belonging to the Pareto front are
reported as mass and moment of inertia vs. torque.

In Table 2 three different results of the optimisation, corresponding to α =
0.1, 0.5, 0.9, are reported together with the corresponding geometries.

For α = 0.1, when the moment of inertia has the larger influence on the
scalarised objective function, the optimised configuration has a reduced thick-
nesses and this penalises the torque. The resulting torque is, in fact, practically
one half of the value resulting from other cases and this is mainly due to the
occurrence of saturation in the yokes. On the opposite side (α = 0.9), the
thicknesses of the gear are larger. It is interesting to note that the optimised
geometry for α = 0.9 and α = 0.5 results in different thickness of the inner and
outer rotor permanent magnets.

The trajectory of the geometric parameters during the optimisation run is
presented in Fig. 7 for the weighting parameter α = 0.5.

[Figure 5 about here.]

[Figure 6 about here.]

[Table 2 about here.]

[Figure 7 about here.]

As it can be appreciated by the analysis of Fig. 6, torque density and moment
of inertia are conflicting objectives and their weighting leads to strongly different
results and configurations where low moment of inertia configurations must
face a torque value penalisation due to a reduction of magnet thickness and
saturation of the ferromagnetic parts, especially of the yokes. In addition, due
to different reluctances of the magnetic path in the inner and outer permanent
magnet arrays, a magnetic gear with high torque density value presents different
thickness for inner and outer permanent magnets.

By making reference to the technical report [4] where a reference value of
maximum torque of 230 N/kg is stated, it is possible to see that the magnetic
gear structure is able to transfer this value of torque at the inner rotor. By the
analysis of the Pareto front picture, Fig. 5, it is possible to state that the config-
urations obtained by α values larger than 0.5 satisfy the minimum requirements.
It is also apparent that the masses of these configurations are larger than 30 kg
which is almost one order of magnitude larger than the corresponding planetary
gear.

7 Conclusions

The work performed has been devoted to the analysis of a magnetic gear with
the aim of evaluating the replacement of a classical planetary gear. Even if this
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study gives only theoretical simulated results, some general conclusions can be
drawn.

Firstly, the magnetic gear can be a valid replacement for a power split device
as it can transmit the torque requested by the vehicle, on the other hand this
can be done only if a complete redesign of the power transmission is performed.
Dimensions and masses of the magnetic gear are in fact, larger than the classical
one and must be accommodated in a way different from the present layout.

However, it must also be remarked that, despite the larger value of mass, a
magnetic gear is able to create also a torque limitation. In fact, if the torque
acting on the structure exceeds the maximum value, the two rotors are able
to slip without any damage. In the corresponding mechanical structure this
protection must be implemented by a clutch device. As a result, further studies
on the replacement of both planetary gear and clutch will have to be performed
and new comparisons assessed.

The study has been performed by approaching the multi-objective optimi-
sation problem by a weighting average of objectives. Even if the computational
cost of evaluation of the magnetic gear performance is not negligible, in the fu-
ture the use of thorough multi-objective procedure will be implemented in order
to assess the quality of the Pareto front obtained.
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Figure 1: Example of a mechanical planetary gear train.
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Figure 2: Example of a magnetic planetary gear
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(a)

(b)

Figure 3: Greyscale map of the sun-carrier torque derived by the simulation of
360 × 360 relative positions of inner and outer rotor (a). Same torque referred
to one period τr or τs while maintaining fixed the position of one of the two
rotors (b).
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(a) (b)

(c) (d)

Figure 4: Colormaps of the optimisation goals domains for 2 variables paramet-
ric analysis. Torque density versus steel poles and PMs thickness (a). Equivalent
moment of inertia versus steel poles and PMs thickness (b). Torque density ver-
sus sun and ring rotor thickness (c). Equivalent moment of inertia versus sun
and ring rotor thickness (d).

12



Figure 5: Pareto front for different values of the weight α, the colour of the
triangle corresponds to the α value whose scale is reported on the right. For
each point of the Pareto front also the corresponding values of mass M and
torque Tsc are indicated.
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Figure 6: Mass and equivalent moment of inertia of the points belonging to the
Pareto front reported as function of the maximum torque.
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Figure 7: Optimisation variables and objective function evolution for α = 0.5.
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Table 1: Appearance and parameters of the reference magnetic gear. Fixed
parameters in bold.

Parameter Name Value
Sun yoke thickness thyoke s 10 mm
Ring yoke thickness thyoke r 10 mm
Sun PM thickness thPM s 8 mm
Ring PM thickness thPM r 8 mm
Steel poles thickness thpoles 8 mm
Gear external radius Rext 125 mm
Gear axial length L 200 mm
Sun PMs pole pairs ns 5
Ring PMs pole pairs nr 18
Carrier steel poles p 13
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Table 2: Resulting optimised gears for three different values of the weight α.
α = 0.1 α = 0.5 α = 0.9

thPM s = 6 mm thPM s = 9.1 mm thPM s = 13.3 mm
thPM r = 6 mm thPM r = 7.9 mm thPM r = 9.7 mm
thpoles = 12 mm thpoles = 8.9 mm thpoles = 7.9 mm
thyoke s = 2 mm thyoke s = 3.6 mm thyoke s = 5.6 mm
thyoke r = 2.3 mm thyoke r = 3.5 mm thyoke r = 3.5 mm
Tρ = 5.9 Nm/kg Tρ = 8.3 Nm/kg Tρ = 9.0 Nm/kg
Jeq = 0.13 kg m2 Jeq = 0.18 kg m2 Jeq = 0.22 kg m2

Tsc = 137.9 Nm Tsc = 244.5 Nm Tsc = 322.1 Nm
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