POLITECNICO DI TORINO
Repository ISTITUZIONALE

An on-line testing technique for the scheduler memory of a GPGPU

Original

An on-line testing technique for the scheduler memory of a GPGPU / Di Carlo, Stefano; Condia, Josie E. Rodriguez;
Reorda, Matteo Sonza. - In; IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 8:1(2020), pp. 1-16893.
[10.1109/ACCESS.2020.2968139]

Availability:
This version is available at: 11583/2784497 since: 2020-01-30T10:31:08Z

Publisher:
Institute of Electrical and Electronics Engineers

Published
DOI:10.1109/ACCESS.2020.2968139

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

23 April 2024

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 27, 2019, accepted January 12, 2020, date of publication January 20, 2020, date of current version January 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968139

An On-Line Testing Technique for the
Scheduler Memory of a GPGPU

STEFANO DI CARLO ", (Senior Member, IEEE),

JOSIE E. RODRIGUEZ CONDIA™, (Student Member, IEEE),

AND MATTEO SONZA REORDA"™, (Fellow, IEEE)

Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Josie E. Rodriguez Condia (josie.rodriguez@polito.it)

This work was supported in part by the European Commission through the Horizon 2020 RESCUE-ETN Project under Grant 722325.

ABSTRACT The highly parallel processing capabilities and reduced power performance of General Purpose
Graphics Processing Units (GPGPUs) have been crucial factors for their massive use in multiple fields,
such as multimedia and high-performance computing applications. Nowadays, more demanding areas, such
as automotive, employ GPGPU devices where safety and reliability are mandatory design constraints.
Nevertheless, the structural complexity, the transistor density, and the implementation in the latest silicon
technologies introduce challenges to match safety and reliability requirements. In these technologies,
wear-out and aging are factors that may significantly increase the occurrence of permanent faults during the
lifetime operation. Moreover, these faults may generate unacceptable misbehaviors during the execution of
an application. These constraints require devising new methods for in-field fault detection, thus verifying the
integrity and correct behavior of the device during its whole operational life. This work proposes a technique
to generate functional self-test programs targeting the detection of permanent static faults in the memory of
the warp scheduler of a GPGPU. The proposed technique can translate fault primitives, which represent the
effect of faults in a memory cell, into self-test functions and programs composed of a sequence of operations
to excite the fault in the memory and to propagate its effects to a visible location, thus detecting its presence.
We focused on the memory in the warp scheduler because it represents a crucial module for the device
operation. Furthermore, this memory is present in each Streaming Multiprocessor (SM) of a GPGPU. Some
experimental results to validate the method have been gathered, resorting to the NVIDIA Visual Profiler and
the Nsight Debugger using the NVIDIA-GEFORCE GTX GPU platform and a structural fault simulator.
The CUDA programming environment was used to implement the test procedures.

INDEX TERMS Functional test, general purpose graphics processing units (GPGPUs), memory test,

software-based self-test (SBST).

I. INTRODUCTION

The General Purpose Graphics Processing Units (GPG-
PUs) are well-known processing solutions for data-intensive
applications, such as those in the multimedia and the
High-Performance Computing (HPC) fields, due to their
parallel processing capabilities and the relatively reduced
power consumption. Nowadays, these devices are relevant
for safety-critical applications, especially in the automotive
domain. In this field, these devices are crucial components
in real-time processing controllers (e.g., Sensor-Fusion plat-
forms and Advanced Driver Assistance Systems (ADAS))

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan Zhang

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

to make decisions based on multidimensional information
coming from in-field sensors, such as cameras, radars, and
lidars. Unfortunately, the in-field operation of these devices
demands high reliability and safety conditions considering
that failures produced by any hardware fault may generate
unexpected consequences. For this purpose, industry regu-
lations in the field (e.g., ISO 26262) impose a set of strict
reliability conditions, including the need for suitable forms
of on-line test detection. These mechanisms must verify the
system integrity periodically and identify any permanent fault
in the system.

Among the multiple test strategies, functional testing
based on self-test programs (often known as Software-based
Self-test (SBST) [1]) is increasingly common and now widely

16893

https://orcid.org/0000-0002-7512-5356
https://orcid.org/0000-0001-5957-5624
https://orcid.org/0000-0003-2899-7669
https://orcid.org/0000-0002-2058-2373

IEEE Access

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

supported by several semiconductor manufacturers and
IP providers in the automotive field, such as STMicro-
electronics [2], Infineon [3], Microchip [4], ARM [5] and
Renesas [6].

The main idea behind SBST is to provide the system inte-
gration companies using these devices with software routines
(known as self-test procedures) able to detect permanent
faults and verify the correct operation of the internal modules.

One classical technique employed to test memory cells
using self-test procedures uses March algorithms, which
are composed of March elements. One March element is a
sequence of reading and writing operations performed on
all the memory words in a specified order. Each sequence
generates specific pattern values to be written and evaluate
those read from memory.

March elements are developed using Fault Primitives
(FPs), which represent the faults affecting a memory cell,
and these are employed to design the test patterns as self-test
procedures.

The collection of self-test procedures composes libraries,
and commonly the semiconductor companies design and pro-
vide them as complementary tools to check the reliability in a
device. The Fault Coverage (FC) achieved by an SBST library
is computed concerning the structural faults (e.g., stuck-at
faults). Moreover, it is possible to combine these routines and
the application code.

The self-test procedures are active when required
(e.g., at the power-on, power-off, or periodically), generating
test patterns and exciting a target module. Moreover, these
routines check the test results and trigger an observability
mechanism, such as an interrupt flag or a software exception,
when a fault is detected.

A similar approach can also be applied when considering
ADAS systems. In this case, the integration of GPGPUs (or
similar accelerators in terms of features and architecture) is
quite common. GPGPUs are composed of numerous par-
allel Processing Units (PUs). Moreover, GPGPUs include
multiple micro-architectural modules also present in CPU
based-systems (e.g., the ALU and the Register File (RF)).
Thus, it is possible to reuse or adapt techniques originally
proposed for CPUs and employ them during the self-test
program design.

In contrast, unconventional methods are needed to evaluate
critical modules, such as the warp Scheduler Controller (SC),
which is specific to GPGPU architectures. Such a module
manages, stores and processes the information regarding the
operational state of each thread (e.g., enabling or disabling its
execution). A micro-architectural analysis of the SC shows
that most of its area is devoted to storing information in
a status memory. At the end of each instruction cycle, the
SC updates the information in the status memory.

This work proposes a method to develop self-test proce-
dures targeting the detection of faults in the memory of the
SC of a GPGPU.

The proposed method defines a set of FPs describing
static and permanent faults in memory. These FPs are

16894

| Fault Primitives (FP) |

Target module

s Oper?tlf)nal . Warp Scheduler | ;
restrictions ' memory i
Adapted | T
FPs
Test patterns | Steps
(TPs) i
Test
L March CUDA
Direction Elements functions > program
kernels
v
March o
Algorithms e

FIGURE 1. General scheme of the proposed approach for mapping TPs
targeting FPs into test kernels.

customized for the SC and translated considering the opera-
tional restrictions of the memory in the SC. Then, the FPs are
used to extract the corresponding test patterns (TPs), i.e., the
sequence of reading and writing operations. These TPs maps
into high-level self-test routines or functions for the GPGPU,
thus generating test programs. Finally, the same mapping
and translation process is performed from March elements
into self-test routines, thus providing the same fault detec-
tion coverage of the original March elements. In the end,
this method can translate any element of a March algorithm
targeting the status memory of the SC into a self-test proce-
dure. Fig. 1 shows a general scheme describing the proposed
approach.

The main contributions of this work include the following:

o The identification of the FPs for all faults (including
single and multiple coupling faults) in the status memory
of the warp scheduler controller of a GPGPU.

o A method to translate, map and adapt each FP (and
associated TPs) or March element into self-test routines
and high-level functions targeting the detection of all
permanent static faults in the memory cells of the status
memory in the warp scheduler of a GPGPU.

o A software mechanism to avoid the operation of the
dispatcher units in the SM during the execution of a
program kernel in the GPGPU.

« A method to employ the dispatcher units efficiently by
using a parallel approach to test the memory in the warp
scheduler controller.

« A method to design self-test routines by only using a
high-level abstraction language using the CUDA pro-
gramming environment.

The organization of the paper is the following. Section II
briefly describes the internal GPGPU architecture detailing
the architecture of the memory in the SC and its functional
behavior. Section III summarizes the previous work in the
area. Section IV overviews the effects of permanent faults in
the SC memory on generic applications. Section V presents
the fault primitives (FPs) for a generic memory and describes
the main features of the SC memory and its operational
restrictions. Section VI defines the methods to generate test

VOLUME 8, 2020

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

IEEE Access

patterns for the target memory employing software-based
approaches. Section VII describes the test pattern generation
targeting each memory field and

presents a test case algorithm, detailing the general imple-
mentation of TPs using high-level functions in the CUDA
environment. Section VIII reports on the validation we per-
formed to assess the effectiveness of the proposed techniques
and introduces an alternative implementation method for
performance optimization. Finally, Section IX draws some
conclusions.

Il. BACKGROUND

This section provides a general overview of the micro-
architecture structure of a GPGPU focusing on the behavior
of the warp scheduler and its internal memory.

A. GPGPU MICROARCHITECTURE

In NVIDIA terminology, the micro-architecture of a GPGPU
includes several copies of some processing blocks (also
known as Streaming Multiprocessors (SMs)).

The SM is the main module inside a GPGPU, and it is
optimized to process the same instruction on multiple data
sources employing internal execution units (CUDA cores).
The controller in the SM manages and traces the execution
of the group of assigned threads (also called warps). An addi-
tional controller (block controller) distributes the tasks among
the available SMs in the GPGPU.

The basic structure of an SM includes an instruction cache,
some logic for fetching and decoding instructions, one warp
scheduler, one or more dispatcher units, a register file, Load
and Store (LD/TS) modules for memory access, multiple
CUDA cores or scalar processors (SPs), and some internal
accelerators (Fig. 2).

The classical architecture of an SM includes multiple
execution units supporting integer (INT) and floating-point
(FP64/FP32) operations. Moreover, modern architectures use
accelerator cores, which are specially designed modules
for specific tasks or operations, such as Special Functions
Units (SFUs) and Tensor cores targeted to perform matrix
operations in hardware. Thus, the definition and composition
of an SM may vary across technologies and architectures.
In some GPGPU architectures, the number of threads in
a warp may vary. Moreover, the structure of an SM may
include multiple basic SM modules or exclude the accelerator
modules.

B. THE WARP SCHEDULER

The warp scheduler controller (SC) is one of the critical
modules involved in the execution of an application in a
GPGPU. The GPGPU operation starts with a device configu-
ration and is followed by transferring the instructions and the
data operands into the device memories. The host performs
these previous operations and also manages and monitors
the GPGPU operations. After the configuration phase of the
device, a block scheduler distributes tasks across the available
SMs in the system. The SM executes a task in an SM in groups

VOLUME 8, 2020

Instruction Cache
Scheduler

Register File

FP32 || FP32

w2 e

FP32 || FP32
FP32 || FP32

‘ FP32 ‘ FP32 ‘

|
|
Dispatcher ‘

‘ INT H INT |

| INT | INT |

INT || INT
INT || INT

| INT | INT |

Tensor Core

FP6

EEs

FP32 || FP32
FP32 || FP32 SFU

LD/TS HLD/TS ‘

| INT H INT |
" INT || INT
INT || INT

‘LD/TS H LD/TS HLD/TS ‘ ‘ LD/TS

|| [T
s RiRs-NiNs-} D= |T
|| = = = =

BN I - - - -

LD/TS ‘ ‘ LD/TS

FIGURE 2. A general scheme of the basic processing unit in the SM of a
GPGPU (adapted from [9]).

of threads (warps) [7] (commonly 32 to 48 consecutive
threads). One SC is located inside the SM to control/manage
the warp distribution and to verify the task operations [8].
The SC is composed of multiple memories (one principal,
and some minor ones) storing updated information regarding
warp status execution in the SM. It is essential to clarify
that, during kernel operation, all warps share and execute the
same instruction. Finally, the host extracts the results from the
device memory.

The main SC memory is composed of addressable blocks
known as Line-Entries (LEs). Each LE preserves the status
information of a thread group during the kernel execution.
The SC allocates the information in LEs organized statically
and consecutively. The total number of used LEs directly
depends on the configuration of an application.

Each LE includes the following fields: a Warp ID field,
a Thread Active-Mask (TAM) field, and a Warp Pro-
gram Counter (WPC) field. Each TAM field may be com-
posed of 48 or 32 bits. The size depends on the GPGPU
architecture. In the TAM field, the logical value represents
the thread state. Logic “1” corresponds to the active state,
while logic “0” corresponds to an inactive thread.

The WPC field is generally composed of 32 bits. Never-
theless, GPGPUs targeting HPC applications include more
memory. Thus this field could be composed of up to
35 bits. New designs of the SC module integrate more
fields and store the status information for each thread
independently [9].

During the device configuration phase, the SC initializes
all LEs by setting all the thread states as active. In the exe-
cution phase, the SC reads a LE at the beginning of each
instruction cycle. Then, the SC updates the information in the
LE at the end of the same cycle.

16895

IEEE Access

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

lIl. RELATED WORKS IN THE AREA

SBST techniques were initially developed for CPU-based
systems. Several published works targeted different internal
and external modules in these systems. In [1], the authors
present a comprehensive overview of SBST techniques for
end-of-manufacturing testing. Similar works proposed solu-
tions for other device subsystems, such as cache memo-
ries [10], [11], on-chip memories [12], peripherals [13], and
communication components [14].

SBST can also be employed for on-line testing of a
device, thus verifying the integrity of the internal modules
during its operation. However, some key points should be
suitably adapted, such as the triggering conditions of the
test, the results retrieval, the required resources minimiza-
tion (e.g., in terms of memory), the test time execution,
and the coding style. In [15], the authors introduced some
solutions facing the issues raised by the usage of SBST
solutions. In [16], the authors described multiple solutions
adopted in real industry test cases. Similarly, some algo-
rithms for automatically compacting existing test programs
to reduce their size [17]-[19], or duration [20] have been
recently proposed. In another work [21], the authors proved
that formal techniques could be successfully adopted and
used for in-field test program generation for pipelined pro-
cessors. In [22], the authors explored High-level Decision
Diagrams for test program generation. In [23], the authors
proposed a dynamic scheduling mechanism to apply SBST
during the in-field operation of embedded processors. Finally,
in [24], an approach is presented to employ information
from multiple abstraction layers for designing efficient SBST
programs.

Some other works faced new challenges in the area of
SBST, including emerging techniques for developing and
optimizing the self-test procedures (STLs) in multicore pro-
cessors, or targeting other architectures, such as VLIW
processors [25].

In [26], the authors proposed an SBST approach to
test the execution units in dual-issue processors (mul-
tiple instructions executed in the same clock cycle) by
synchronizing and duplicating the dispatched instruc-
tions, thus forcing each pipeline to execute the same
instruction.

In [27], the authors presented a method to test by software
a branch calculation unit in VLIW processors by employ-
ing a set of routines and checking previously-stored golden
results. Moreover, in that work, the calculation unit can
be replaced by a spare unit using hardware configuring
capabilities of the system. In [28], the authors presented
a method to test permanent faults in the execution units
and repair the program execution on superscalar processors
with static scheduling. Similarly, the authors in [29] pro-
posed a method to employ the implicit parallel architecture
of Chip-Multithread (CMT) multiprocessors. This technique
targets the multiple execution units in the data-path and man-
ages the functional test by splitting and reducing the total time
execution.

16896

The use of SBST techniques on accelerators, such as the
GPGPUs, can partly be based on the adaptation of standard
strategies initially developed in the past for processors. Nev-
ertheless, the architecture complexity and density of these
devices complicate this adaptation. These issues mainly arise
by the lack of a well-known ISA format and internal archi-
tectural structure information to develop the SBST strategies.
Moreover, in these technologies, it is common to employ
high-level programming environments to tame the applica-
tion complexity.

A few works proposed methods aimed to test of
GPGPU-based systems. In [30], the authors adapted the
CPU testing techniques to GPUs using a high-level program-
ming language approach and combining pseudo-assembly
instructions to test the integer and the floating execution
units in the Streaming Multiprocessor (SM) cores. Moreover,
the same method was partially applied to functionally test the
special function units (SFUs) in the GPGPUs. Other works
introduced application robustness [31] and mitigation strate-
gies [32] for the data-path modules. Those methods employed
combinations of high-level languages and in-line assembly
code again.

Similarly, some authors targeted and evaluated the effect of
faults in data-path units [33], including the register file [34],
and pipeline registers [35]. Other work proposed graceful
performance degradation strategies to face permanent faults
in SM units by employing specially instrumented kernels
and coding styles, thus distributing the tasks across the
available SMs [32]. In [36], the authors introduced soft-
ware methods to avoid corrupted units in the GPGPU by
instrumenting the code and modifying the block scheduler
algorithms.

The authors in [37] described an initial approach to detect
faults and mitigate errors in the GPGPU control units. In that
work, intensive experiments and software-based methods par-
tially identified the dispatcher policy of the block scheduler.
Moreover, this work introduced some mitigation strategies
targeting permanent faults during the in-field execution of the
GPGPU. In [38], some first techniques tested and detected
permanent faults in the SC of the GPGPU and its internal
memory. Finally, authors in [39] recently proposed some
methods for periodic on-line testing of the execution units
(or Scalar Processors (SPs)) in the SM by generating a diver-
gence path and executing partial workloads of a test program.

A detailed analysis of the previous works on GPGPUs
shows that most of them targeted the fault testing on data-path
units. Moreover, only a few works proposed solutions to
detect faults in control modules. Similarly, to the best of
our knowledge, SBST test procedures targeting SFUs in a
GPGPU are still open study cases.

In the present work, we remove multiple limitations pre-
sented in some previous works [38], [40]. In [38], a set of
proposed incremental functional test techniques targeted the
detection of faults in single memory cells of the SC. The
assembly language of the GPGPU described each proposed
method during the implementation phase. In [39], several

VOLUME 8, 2020

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

IEEE Access

functional test techniques detected a wide range of static
faults present in single memory cells and by the interaction of
multiple cells (CFs). In this work, the proposed methods used
high-level functions for the implementation. Moreover, these
methods can generate the required patterns to implement any
March operation or algorithm [41].

IV. EFFECTS OF PERMANENT FAULTS IN THE
SCHEDULER MEMORY

A fault located in the memory of the scheduler can generate
misbehaviors, which may seriously compromise the correct
operation of the device. Some previous works reported that
faults affecting this module may have a critical impact on
the system execution and can cause wrong memory results
or even system hanging [42]. Nevertheless, those works only
targeted transient fault effects.

We performed fault simulation experiments on a GPGPU
model using four representative applications to extend con-
clusions and to evaluate the effects of permanent faults. Flex-
Grip [43], [44] was selected as a GPGPU model to perform
the experiments. This open-source model is described in
VHDL and includes the basic modules employed in modern
GPGPUs for program kernel execution. Using this model,
we could inject a permanent fault in each module location and
observe the fault effects during the execution of the selected
application.

The model implements the G80 architecture by NVIDIA
and supports 27 assembly instructions (SASS) and up to
74 different instruction formats. The model is technology
independent, so the ModelSim framework is used to simulate
the model.

FlexGrip includes an SC containing a memory which stores
status warp information, as in real devices. Each memory
location includes the TAM and WPC fields. Some other
fields are also included in the memory and are related to the
configuration parameters coming from the host or external
schedulers.

The selected benchmarks employed in the simulation cam-
paigns are briefly described in the following:

o VectorAdd: this kernel corresponds to an embarrass-
ingly parallel application adding two independent vec-
tors of 1,024 elements.

o FFT: this kernel is the implementation of the butterfly
element and operates on an input vector of 64 elements.

o Edge: this kernel implements an image detection algo-
rithm employing the Sobel method using a 3x3 stencil
element applied to a 16x16 image.

o MatrixMul: this kernel performs the multiplication of
two independent 32x32 size matrices.

Itis worth noting that, due to the limitations of the FlexGrip
model, all the above applications employ integer operands,
only.

The fault injection campaign employs the RT level descrip-
tion of FlexGrip. A custom fault simulator was designed
using a high-level abstraction language (Python) targeting
the warp memory in the SC of one SM. The fault injector

VOLUME 8, 2020

TABLE 1. Effects of permanent faults affecting the SC memory.

Benchmark Faults %
enchmar SDC Hang Timeout Silent Cumulative Total
VectorAdd 21.87 35.93 0 42.18 57.81
FFT 3437 51.56 0 14.07 85.93
Edge 937 625 7.03 21.1 78.90
MatrixMul 1.9 54.68 0 43.46 56.54

can place permanent faults corresponding to stuck-at faults
affecting single bits of the SC memory. The tool includes
a fault controller, a fault injector, and a fault checker and
classifier.

The fault controller manages and configures a simulator
tool (ModelSim) that holds the GPGPU model. The fault
injector decodes the target fault location and translates it into
representative commands. Then, the injector sends the com-
mands to the simulation environment, and the fault simulation
starts. Finally, the fault checker and classifier identify the
fault effects and generate a fault report. The method to inject
a fault in the simulation framework follows the approach
presented in [34].

The fault injection campaign starts with one fault-free
simulation, which aims at characterizing the application in
terms of memory results and execution time (number of clock
cycles). Then, the fault injector loads a fault list and uses
each fault in the list to generate the commands to inject
in the model during the simulation of a fault. When the
fault simulation finishes, the fault checker classifies a fault
depending on the produced effect. A silent data corruption
(SDC) is detected if the memory results differ from those of
the fault-free simulation. The hang condition is defined as the
case when the system is not able the generate memory results
or is not able to finish the program execution. Finally, a fault
effect is classified as timeout or performance degradation
when the execution time differs between the fault-free and the
faulty case. It is worth noting that memory results comparison
has the highest priority in the classification of fault effects.

The fault simulator uses a multi-threading fault injection
approach dividing each fault list into two pieces. Finally, eight
fault campaigns injected 4,096 randomly sampled permanent
faults per campaign. According to [45], the number of injec-
tions allows us to reach a 2% error margin on the estimated
metrics, with a 99% confidence level. Table 1 presents a
summary of fault effects, where the rightmost column reports
the cumulative percentage of the faults in the SDC, Hang
and Timeout categories. From results, a permanent fault can
generate different effects depending on the features of the
application and used GPGPU resources.

In general, a permanent fault affecting the WPC field gen-
erates mainly hanging conditions. On the other hand, faults
affecting the TAM field generate most of the SDC conditions.

A high percentage of faults (56.5% to 85.9%) affecting the
scheduler memory produces a failure, proving the criticality
of this unit in the operation of the GPGPU. Moreover, these
faults may generate unacceptable conditions for complex

16897

IEEE Access

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

TABLE 2. Fault primitives for a single memory cell.

Fault type Fault Model FP
DRDF Deceptive RDF er JA/A>

AFFP(SCH)
<X,(W;,rg,rg),A/Z>

<Ar,lAIA> <A W,r,.r,),Al A>
TF Transition fault ZWA JA]=> < gy(WK’ W), AlA>
<AWz/A/=> < AW, r,W.,r),Al A>
<AW;/Al-> <A Wer,Wer),AlA>
<AW,JA/-> <AW,r,W,r)AlA>

RDF Read destructive < Ar /A/A> <A,W,,r,r),AlA>

A
fault _ _
<Ar,/AlA> <A W,,r,r),AlA>

WDF Write
destructive fault

applications, and some of these effects can be unaccept-
able for safety-critical applications. Other kinds of faults
(e.g., Coupling Faults) affecting the scheduler memory do
produce similar results.

V. FAULT PRIMITIVES FOR THE SCHEDULER MEMORY

A. FAULT PRIMITIVES

Fault primitives (FPs) represent memory failures and are the
combination of a sequence of memory operations and the
observations, including deviations from the expected value.
This sequence of memory operations are employed to sen-
sitize a condition in the memory cell and may also be used
to verify and to detect any possible failure in a memory
cell.

An FP is composed of one or a sequence of memory
operations, which can be writing or reading, and the observed
effect on the cell. In reading operations, it is common to
include the logic output value as a third element. The FPs
may target multiple sets of functional faults that can affect
a single memory cell and also couples of interfering cells in
memory.

The FPs have been used in the past to define memory
test techniques, i.e., March algorithms, able to generate an
appropriate sequence of patterns (reading and writing opera-
tions), thus testing a memory. The complexity of these algo-
rithms grows proportionally to the size of the memory. Addi-
tional details regarding a complete theoretical description of
memory functional fault models may be found in [46]. For
the purpose of this work, we target the procedures required
to translate FPs and March algorithms into functional self-
test programs able to detect faults in the scheduler memory
of GPGPUs.

1) SINGLE CELL STATIC FAULTS

Considering the set of FPs presented in [46], Table 2 reports
the full set of static FPs for single memory cells. The term
“static” refers to the fact that they represent faults sensi-
tized by a single memory operation. Each row includes the
Addressable Functional Fault Primitive for the scheduler,
denoted as AFFP(SCH), and also contains the initialization
steps required to sensitize the fault.

16898

In Table 2, the “A” symbol represents a logic test stimulus
written in the target bit-field or cell of a LE. Similarly, “A” is
the complementary pattern. Each AFFP organizes as follows:

AFFP =< initial _condition, (Stimuli),

Fault_value, Fault_Free_value > (1)

For example, considering the DRDF, the FP is expressed
as: FP :< ArA/A/A >, with (ArA) as the initial sequence
of operations in the cell (the initial state and one reading
operation), the second element (A) describes the effect of
the fault in the cell, and the last item (A) represents the
logic output value of the cell. The associated AFFP(SCH)
(AFFP(SCH) :< A, Wy, r3, rA),A/A >) employs the same
initial logic state (A). The second and third memory opera-
tions in the sequence (W3, r3) initialize the cell in the SC.
The final reading operation (rj) is one of the operational
restrictions presented in the target memory. The fifth element
(A) represents the effect of the fault in the cell, and the last
parameter (A) is the fault-free logic output value and used
during the test pattern generation process.

2) COUPLING CELL PERMANENT FAULTS

The coupling FPs are associated with the interaction and
effect between two independent cells, an aggressor (a) cell,
and a victim (v) cell. These cells can belong to the same LE or
not. Table 3 shows the considered FPs. X, Y, and Z represent
logic values.

In the proposed approach, the State Faults (SF) FP <
AJA/— >< AJA/— >, the State Coupling Faults (CFst)
FP< A, V/V/— >< V/V/— >< AV)V/— ><
A;V)V/— >< A;V/V/— >, and the Incorrect Read
Faults IRF) FP < A >< A >< rj/A/A >< ra/A/A >
are not considered, mainly because of the absence of a clear
mechanism to cause the initial conditions or to detect these
faults in the scheduler memory.

The AFFP(SCH)s in both cases, single and coupling,
present some similarities in the associated Sensitizing Oper-
ation Sequences (SOSs). Thus, it is feasible to collapse iden-
tical patterns. The single-cell AFFPs of RDF and DRDF
share the same sensibility patterns. Similarly, some coupling
faults (CFrd, CFir, and CFdrd) were grouped using the same
SOS, since the only difference among them is the number of
consecutive reading operations. Therefore, the SOSs with the
lowest number of reading operations were neglected, and the
CFdrd SOS is employed to sensitize those coupling faults.
In the end, the number of patterns was reduced to 30.

At this point, the AFFP(SCH) is partially complete and
must be adapted considering the operational restrictions valid
for the SC. The next sub-section describes the operational
restrictions of the target memory.

B. SCHEDULER MEMORY OPERATIONAL RESTRICTIONS

As said previously, this memory presents some operational
constraints. These are considered in the FP adaptation process
and are crucial to generate the test patterns. The memory in

VOLUME 8, 2020

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

IEEE Access

TABLE 3. Static Fault Primitives for coupling cells in memory.

Fault type Fault Model FP

AFFP(SCH)

CFtr Transition coupling fault

<XULW,Y /17) —>

CFds Disturb Coupling fault

< XYVt YV [—>

CFwd Write destructive coupling

fault

CFrd Read destructive coupling
fault

CFir Incorrect read coupling fault

CFdrd Deceptive read destructive CF

< X*0,W.* /0Y/—>

<X*ZV W,] ZV [—>

< XOYU, W,V /YY) —>

< XYV [TV /P>

< XY VYV)YV >

<X /YUY >

< X407, (W% rg® Wo¥, 1%, 15" 15%) , 0%, XV >
< X207, (Wy®, g W, 1%, 1x%, 1Y) , 0%, XV >

< X*1°, (W rg® WY, %, rg% "), 1°, X7 >
< X1, Wy & WP, % rgt), 17, X7 >

< XaZ_U, (Wga, rg“, WZV, T‘ZU, W)?a, Tga, rz”) JZY, 70 >
< XaZV, (W)-(a, rz%, WZU, 147, WXU', rz%, TZV) , Z_V, Z% >
< Xaz‘v, (WXa, TXa, WZU, rzY, Wga, T'Xa, TZU) ,Z7, VA
<XeZv, Wy g WoP gt W r% 1" , 2V, 27 >
< X7V, Wy 1y W35P, r3% Wy 4%, 13Y) , ZY, 2V >
<Xz, Wy 1y WP 1y, Wy S 1% 10" 20, 27 >
< Xayv, (W)?a, T)?a, Wyv, sz”, Tyv, Tgu, Tyu) ,YY, YU >
< Xeyv, (Wg re® Wyl vl 1Y, 24 1Y) Y, Y >
< XYY, Wy, 1 WP, r5Y 1 1r5Y) , Y7, V7 >
XYY, Wy, g% Wy, 1y ¥, 1k %, 1 %), YV, Y >
<Xva7v, (Wga, rg“, Wyv, Tyv, W;v, T'yu), YY, yv>
<Xa}7v' (WXa' TXa' W?V, r?v' W)?v: T)?U), Yv' }7v>
<Xy, Wz rz® Wy, eV, Wy¥, %), ¥V, XV>
<Xayv’ (WXa, rXa’ Wyv, ryv’ Wyv, ryv)' 71;' Xv>
<Xa7v’ (W)?a, r)?a' Wyv, T.?v, TY’U: T‘}?V), yv, 7v>
<Xa}711, (Wxa, TXa, Wyu, T‘yv, T'yv, Tyv), Yv, yo>
<)?ayv‘ (W)?a, r)?a’ Wyv, ryv' ryv, ryv)' 71;, Yyv>
<Xy, Wy, % Wy, 1y, Y 1Y), VY, Y >
<Xa}7v‘ (W)?a, r)?a’ WVV: r?v’ r}_,v)’ Yv, Yv>
<Xa}7v‘ (Wxa, Txa, Wyy, T'yv, Tyv), Yv, yv>
<Xayv’ (W)?a, Tga, Wyv, ryv’ ryv' Tyv), 7'], yr>
<Xayv’ (WXar rXa’ Wyv, ryv’ ryv, ryu)' Yv, Yyv>

the SC cannot undergo any possible operation or sequence
of operations. In particular, the following operational restric-
tions are present (for each of them, we first describe the
restriction, then summarize the effects, and finally explain
how to take it into account):

1) By default, the initial state of all threads in a warp is
the active state. It means that the TAM field starts with a
“1”” value in all bits. This condition is triggered during the
GPGPU configuration phase.

Restriction effect: This condition reduces the available
number of test patterns to be applied, and it also forces the
addition of an initial condition during test pattern injection,
thus reducing the performance of the test.

Potential solution: 1t is not possible to avoid the initial
conditions. Nevertheless, it is possible to split the target test
fields during a test procedure and apply multiple test patterns
replacing the effect of the missing one. Multiple injections
procedures are required for this purpose.

2) In the TAM field, when a warp ends the execution of
an instruction, the SC updates the content of the associate
LE including an implicit reading procedure. In contrast, writ-
ing procedures are present each time an instruction starts its
execution or when the application flow changes the number
of active threads in a warp.

Restriction effect: This condition complicates the injection
of consecutive specific writing and reading operations in
the LEs. The implicit reading operation may increase the

VOLUME 8, 2020

complexity of the injection of some specific operations in this
field.

Potential Solution: In this memory, it is not possible to
avoid the operational restriction. However, this restriction
does not affect the testing procedures of static coupling faults.

3) Stimulus applied into the TAM field can generate thread
divergence causing a program-flow division into two paths
(the Taken and the Not-Taken). The SC manages these paths
and executes them serially.

Restriction effect: This condition adds some undesirable
writing and reading operations and latency. Moreover, ini-
tialization procedures may be required between pattern injec-
tions of consecutive patterns.

Potential Solution: This restriction cannot be avoided.
Nevertheless, the additional path (Not-Taken) can be
neglected for the coupling faults test and considered as a tran-
sition of the initialization phase for the next pattern injection.

4) The execution of a divergence path (Taken or Not-
Taken) is not stoppable when a thread group is operating in
the SM resources. Moreover, the use of conventional func-
tions has no effect on stopping these threads.

Restriction effect: This condition involves the develop-
ment of additional mechanisms to manage the stopping and
restarting operations of warps belonging to LEs. Moreover,
this behavior imposes restrictions on test patterns selected for
the TAM field. Finally, many writing and reading procedures
are required to test the field, considering that the imposed

16899

IEEE Access

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

restrictions limit the injection pattern, and at least one active
state bit should be maintained during evaluation.

Potential Solution: A method to stop the warp execution
lies in resorting to some thread synchronization methods
(i.e., __syncthreads()) and semaphore variables to identify the
warp state. Nevertheless, at least one thread must remain in
the active state to retain the warp in a hanging condition with
the possibility to restart it again. On the other hand, a LE with
the TAM field filled with inactive threads denotes a finished
warp and cannot be relaunched for this program kernel.

5) The GPGPU has two warp dispatcher units. These units
dispatch the available warps into the SM resources based on
performance and optimization features. Moreover, dispatch-
ers use complex data-hazards mechanisms and elaborated
dispatching policies. Thus, the execution order of a group
of warps may be complex to predict. Furthermore, clear
structural descriptions and internal operational details are not
provided by the device manufacturer [7]-[9].

Restriction effect: This behavior may compromise the exe-
cution of test patterns in consecutive LEs and adds latency
among the injection of patterns into the memory LEs.

Potential Solution:software-based mechanisms can skip
the operation of these modules to obtain the expected inter-
action behavior among consecutive LEs during test injection.
This mechanism adds semaphore variables and internal loops
to maintain the state condition of a target warp and the
associated LE.

C. ADAPTING FPS TO TEST THE SCHEDULER MEMORY
We can identify a test pattern for each one of the consid-
ered FPs. This pattern is directly derived from the associated
AFFP. The following example shows the steps required to
generate and adapt the test patterns from the associated FP.
Consider the FP:

FP:< X2, W}/Z"|— >)

In this example, this FP describes one disturb coupling
fault between two cells (@) and (v) with an initial logic state
X and Z, respectively. A writing process in the aggressor
(a) cell generates the logic toggle of the victim (v) cell. The
associated AFFP is:

AFFP :< X2",W#/Z"]Z" > 3)

From the AFFP, it is possible to derive an initial test pattern
(TP). The TP adds the condition to check the state of the
(v) cell and is:

TP :< XZ", Wy, 1) > 4)

The first two terms in (4) represent the initial logic state
in (a) and (v) cells. The consecutive terms describe the
patterns to evaluate the fault. Thus, the TP starts a writing
process in the (a) cell to generate the fault condition, and
then, a reading procedure is performed on the (v) cell to
verify the fault effect in the affected cell. This TP is valid for
general-purpose memories with regular writing and reading

16900

procedures. However, the special purpose memory, in the SC,
includes a set of constraints presented in the previous section;
thus, to include the operational restrictions and initialization
conditions into the AFFP and TP, some additional procedures
are placed as a part of the pattern. Equations (5) and (6)
present the adapted versions of the AFFP and TP for the SC
memory.

The additional memory procedures in (5) and (6) were
selected as follows: the first four terms in parenthesis,
in AFFP(SCH), and TP(SCH), describe the initial logic states
for both cells. The second and fourth terms are the unavoid-
able reading operations on each cell of the SC memory by the
operational restrictions. The fifth term represents the sensitive
operation of the FP. The sixth term is the implicit reading
procedure due to the previous operation. Finally, the seventh
parameter, in TP(SCH) is the additional operation to observe
the failure in the memory cell.

AFFP(SCH):=<X“Z", (W, r§, Wy, ry, Wa.r%), 2", 2" >

(&)

TP(SCH) :< X“Z", (W, r, Wy, ry, WE, 18, ry) > (6)

It is worth noting that during the scheduler operation,
it is possible to perform reading operations in the memory
for the TAM and WPC fields. Considering the TAM fields,
the only condition is that each bit field maintains the same
logic value. On the other hand, the WPC changes by execut-
ing a new instruction. Thus a reading operation can be par-
tially performed. These toggling bit fields cannot be included
in the previous pattern, so the previous pattern should be
applied more than once to test the WPC field thoroughly.
As explained below, the TP(SCH) can be directly derived
from the associated AFFP(SCH), since the same writing and
reading operations are performed. Tables 2 and 3 present the
complete list of AFFP(SCH)s.

VI. METHODS TO GENERATE SBST PATTERNS FOR THE
SCHEDULER MEMORY

As introduced in Section II, the SC memory is a special
purpose memory and includes some restrictions in terms
of writing and reading operations. Moreover, the accessing
method to each LEs cannot follow the conventional pro-
cedures used in processors to access data memories. Thus,
alternative methods should be proposed to inject test patterns
based on writing and reading operations.

In this work, we focus on detecting permanent faults and
static coupling faults in the WPC and the TAM fields of the
SC memory.

This section presents the software methods employed to
perform reading and writing operations in the SC memory
for the TAM and WPC fields.

A. THE SC MEMORY BEHAVIOR TO READ AND WRITE
OPERATIONS

The in-field controller operation imposes restrictions when
perform writing (W(x)) and reading (R(x)) sequences in the

VOLUME 8, 2020

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

IEEE Access

if (Tid <4)
o g
B; 2 * =
| = =
else = (¢}
{ U] g
X: (€] o
Y 8 =3
H (@
} ¢) =
Time >

FIGURE 3. A general scheme of the classical intra-warp divergence
management for the NIVIDIA's Pascal and previous GPGPU architectures.

Embarrassingly
parallel instruction

Control-

flow ins. Taken path

execution

Barrier

p 4<C— o,
\“
<)
Threads __,/'
Synchronization Dispatcher

operation

Not-taken path

FIGURE 4. A general scheme of the write and read operations generated
by a divergence path function in a bit of the TAM field. The nesting
divergence case is not considered in the scheme.

SC memory. These restrictions depended on the target field
in the LE, as presented in section IV.B.

The methods to perform W x)procedures into the WPC and
the TAM fields are similar among them and use control-flow
instructions.

Conditional control-flow instructions can produce a writ-
ing operation in the TAM field. However, their execution
may generate thread divergence creating two paths (the Taken
and the not-Taken), which are managed by the warp sched-
uler and are executed independently in a serial fashion until
reaching a convergence. Then, the threads are executed again
in parallel (see Fig. 3). Thus, the execution of one con-
ditional control-flow instruction generates a process where
all the instructions in the first thread path (Taken) are exe-
cuted, generating a Wy, followed by the execution of all
instructions in the second path (Not-Taken), forcing an inverse
writing W) operation on the same bit field. New architec-
tures include deeper granularity and can process divergence
threads independently by storing more parameters into the SC
memory [9], thus partially reducing the latency of divergence
thread paths.

The time execution of each writing procedure on each path
directly depends on the total number of instructions in the
path. For the TAM field, the reading sequence is implicitly
added after the execution of each instruction. Fig. 4 represents
the effect of a conditional control-flow instruction which

VOLUME 8, 2020

modifies the state of one-bit of the TAM field in terms of W
and Rx) operations. The divergence instruction can generate
writing operations of both logic values (1 and 0) on the same
bit field consecutively.

The access to the WPC field in a LE employs sequential
execution of instructions. Nevertheless, this execution is a
naive method, and some high-part fields are complex to stim-
ulate. In a GPGPU, each warp employs the same program
counter to fetch and execute an instruction. Unconditional
control-flow instructions to specific locations can be used to
generate the test patterns in this field. Taking into account
that each warp executed by the SM resources employs a
shared program counter, it is required to add mechanisms to
stimulate these fields. Nevertheless, the same behavior of the
TAM field is also presented in this field, and R(x) operations
are generated after a W x) sequence.

We consider the divergence management mechanism
implemented in NVIDIA Pascal and previous architectures
to face the TAM fields [47].

VII. TEST PATTERN GENERATION

The generation of TPs for the targeted memory considers and
analyzes each possible restriction caused during the mapping
process from FPs into software functions.

Regarding operational restrictions, which were introduced
in section IV.B, the first and the second ones cannot be
avoided, and test patterns targeting the TAM fields must face
the starting condition of all threads active (all bits equal
to 1). Some FPs require initialization conditions of bits in
logic 0. Thus additional patterns must be generated and
applied before starting the test sequences for the target FPs.

The second restriction describes the impossibility of per-
forming a Wy, without one consecutive implicit R(x) opera-
tion at the end of each instruction cycle. The FPs definition,
design, and implementation TPs must include those consec-
utive Wx) and R(x) procedures.

Regarding the third listed constraint describes the impos-
sibility to stop a divergence path when it started. A technique
to control and reduce the effect uses the selection of a limited
number of operations and control-flow functions presented
on each path. A set of input patterns (see Table 4) may
be employed to divide the self-test program into chunks.
These test patterns are carefully selected to increase the fault
detection inside and among LEs.

The third restriction arises during the execution of a not-
taken path. Initially, the SC submits threads executing the
divergence taken-path. Then, the SC inverts the state of the
threads in a warp activating those that were inactive and
inactivating those that executed the taken path. In this way,
an inverse W) operation, in the TAM field, starts the not-
taken path execution. The not-taken path can be temporary
skipped or delayed by the addition of nested divergence paths.
These nesting conditions introduce additional operations in a
procedure. Nevertheless, these do not affect the test pattern
generation or the adaptation of a March operation into high-
level functions.

16901

IEEE Access

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

TABLE 4. Selected test patterns for coupling fault detection in a LE.

Test Pattern
1111...0000.../0000...1111...
00001111.../11110000...
0011...0011.../1100...1100...
1010...1010.../0101...0101...
TITTIITLTII1111l..,

Description
First-half X, second-half X
First four bits X, second four X
First two bits X, second four X
Alternated X and X
All in ones

Concerning the fourth constraint, the previous test pat-
terns must remain at least one thread (bif) in the active
state (logic I). This condition explains the missing pattern
(all in Os) in Table 4.

The fifth restriction (warp control issues by dispatcher
units) is faced by using combinations of thread synchroniza-
tion functions, i.e., thread barrier instructions, semaphore
mechanisms (local variables), and control-flow loops. These
elements are placed in strategic locations in a function to
stop/skip the operation of the dispatchers and to control the
warp submission into the SM resources. The loops retain the
state of LEs during a stopping condition.

This technique can hang the operation of an active warp
temporarily and dispatch a desired one. It is worth noting that
some undesired consecutive R(x) operations may be a product
of the skipping method for the dispatchers. Thus, adding
latency in the program execution. On the other hand, these
R(x) operations in a LE do not produce consequences in the
test pattern generation and the March operation or algorithm
adaptation, as previously described.

During SC operation, this unit manages the content of the
WPC and the TAM parameters employing W) operations,
which are the product of control-flow instructions (condi-
tional and unconditional). Considering that in most GPGPU
technologies, the divergence paths are serially executed in
different operation cycles, the proposed technique uses the
taken-path as the principal path for test pattern generation.
Thus, the inverse W(x) operations are neglected and are not
used in most of the cases.

The next section proposes and details a method to skip the
dispatcher operation employing the mechanisms introduced
below. The consecutive sections present the sequence of steps
to produce W(x) and R(x) procedures into the WPC and the
TAM parameters of a LE.

A. A METHOD TO SKIP THE DISPATCHER UNIT
OPERATION IN THE SM

The basic operation of the dispatcher units is the management
and warp submission to the SM resources. The operation
of this unit depends on multiple parameters to increase per-
formance. Those parameters include the application coding
style, data operands sources, internal hazards, and availabil-
ity. Moreover, the dispatchers also consider the instruction
conflict and latency and internal warp distribution policies;
thus, in general, warps are not dispatched following a sequen-
tial approach with a direct incidence in the LEs. This opera-
tion restricts the application of test patterns on (a) and (v)
cells. Thus its operation should be controlled or avoided.

16902

Aggressor program: Victim program:
Qita=1 ifA—2
Apply pe 3FF); Appl 1t 3FF);
Ag]; y pattern(3FF); Az;}) ly pattern(3FF) A=1 Aizii
Loop() Loop) @] @Ofdo i
Barrier(); ¢—— ‘Barricr()ﬂ— v 00002030 0[00] (V) 1[1 1 [1 Ll (1) 1 l[l
} } = =
Qita=; Qa0 o, @]0000 0[do[0/0d] (0000 olo/0jololo
Remove patiern(: - Remove pattemO: ¢ 1 [[(1]t [1[1[1] (v[o[oloo]o[o[olo[d[0
Loop() Loop()
I3 s
?Barricr();q—
1

(
Barrier(); —— Warp Stop
} } condition

FIGURE 5. Example of the method used to skip the operations of the
dispatcher unit employing semaphores and synchronization functions
between consecutive aggressor and victim cells.

The proposed method employs software approaches to start
and stop the warp execution and keep the belonging LE state.
It is worth noting that the main idea is to stop the execution
of an active warp temporarily instead of entirely terminate
the warp operation and sequentially inject patterns to keep
the coherency of the TP injection. Moreover, a set of vari-
ables that behave as semaphores and thread synchronization
checkers contribute for this purpose as control and communi-
cation mechanisms among threads. Finally, the same kernel
procedures operate in (a) and (v) cells.

Fig. 5 represents a basic example of the mechanism
employed to skip the operation of the dispatcher. In this
example, a kernel program executes concurrently warps cor-
responding to consecutive LEs behaving as (a) and (v)cells.
The kernel includes one external comparison parameter (A).
Moreover, (A) is shared between both warps. As shown in
the example, the injection pattern and the starting cell can be
selected by changing the (A) value in the semaphore.

The process starts with a warp selection through (A) value
comparison. In this example, (A) begins in 1, and the warp
corresponding to the (a) cell is selected to start its execution.
Then, a pattern is applied (3FFh), the semaphore variable
is updated with (A=2), and the barrier instruction stops the
warp.

The dispatcher picks any other available warp and dis-
patches it to the system. However, if the submitted warp
is not the expected one, a loop mechanism stops it again.
It should be clarified that a previously stopped warp continues
its execution after the last executed instruction before the
stopping condition. Employing this mechanism, the target (v)
warp, with an A=2 state, can start the execution in an ordered
manner.

Once (v) is dispatched, the semaphore condition is true,
and the pattern is injected on the cell, followed by a new
update in the semaphore value and a barrier function. This
last instruction restarts the dispatcher operation and picks any
available warp again.

In final steps, the dispatcher submits the warp correspond-
ing to (@) again and enters in a path to remove the pattern. This
pattern can be the Not-Taken path or an additional nesting
path for a new pattern injection. Moreover, the semaphore
is again updated. Finally, the dispatcher submits (v) and
removes the pattern. In the end, the cells are ready to start

VOLUME 8, 2020

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

IEEE Access

a new pattern injection. The loop requires an additional local
variable to calculate the number of loop execution times. It is
worth noting that we did not consider the Not-taken path to
include operations related to the injection of new patterns.

B. TEST PATTERNS FOR THE TAM FIELD
The scheme in Fig. 4 describes the sequence of steps and
stimulus instructions to generate patterns in one LE. The
following steps are derived from this scheme and perform
W (x) procedures in the target parameter (TAM).

This method presents effectiveness in evaluating some
coupling faults between two cells belonging to different LEs
(CFir, CFdrd, and CFrd).

1) SEQUENCE OF STEPS FOR PATTERN GENERATION IN A
SINGLE CELL
1) Execute an embarrassingly parallel function (F) (Initial
condition).
2) Execute a divergence generator function (W) in the
target bit(s) of TAM).
3) Execute the taken path (R(xin the full TAM).
4) Execute the not-taken path (Inverse W) and
R procedures on selected bit(s) field).
5) Convergence point execution (CP) (parallel execution
of instructions and implicitR x)procedures).

The previous steps form the basic Wy procedure into
a LE. On the other hand, the proposed method may neglect
the Not-Taken path for test patterns generation. Thus, step 4
can be ignored, for the purpose of test pattern generation,
and is mainly employed as a connection to start a new March
operation.

In the Taken Path, of a thread group, additional func-
tions are added to stop and hang the warp execution. Then,
the warp scheduler selects an available warp, and the dis-
patcher launches it in the SM resources. The CFdrd, the CFrd,
and the CFir coupling faults can be suitably tested by means
of both divergence paths, due to the number of W) and
R(x) operations involved. Nevertheless, some additional steps
must be added to test a bigger number of coupling fault sets.

2) SEQUENCE OF STEPS FOR PATTERN GENERATION IN
MULTIPLE CELLS

The detection of coupling faults, among cells of different LEs,
requires more steps, including synchronization operations,
nesting divergence functions, and warp selection routines
to assure the correct pattern generation and evaluation of
each fault set. The following steps are based on the scheme
presented in Fig. 4, and the interaction between two cells.
Experimental observations were used to determine the inter-
action among cells. The following list describes the suggested
steps to test this type of coupling faults:

1) Execute an embarrassingly parallel function (F).

2) Select a target warp or LE ((a) cell).

3) Execute the first divergence function (W(x) operation
in the target bit(s) field of (a) cell).

VOLUME 8, 2020

4) Execute the taken path of divergence (R(x) the full
TAM field for (a) cell).

5) Execute a barrier function in the (a) cell path, thus
stopping the warp execution and launching a new warp.

6) Select a new target warp ((v) cell).

7) Execute a second divergence function (W) in the tar-
get bit(s) of a (v) cell).

8) Execute the taken path for the second divergence (R(x)
operations of the full TAM field in the (v) cell).

9) Execute a barrier function in the (v) cell path, launching
anew warp.

10) Execute the not-taken path for the (a) cell (inverted
W) operation in the target bit(s) of the TAM field,
followed by Rx) operations).

11) Execute a barrier function in the (a) cell path.

12) Execute the not-taken path for the (v) cell (inverted
W) procedures in the target bit(s) of the TAM field,
Sfollowed byR (x) operations).

13) Execute a barrier function in the (v) cell path.

14) Execute the convergence point (CP).

The step range, from 9 up to 13, originally is part of
the neglected operations required to start a new test pat-
tern sequence. Nevertheless, these steps potentially can be
employed to test additional coupling fault conditions in the
TAM parameter (CFtr, CFds).

In the first divergence, an external pattern is applied to
the target (a) cell. This pattern divides the warp by selecting
the active threads during the evaluation of a (v) cell. This
division is performed by a divergence which splits the warp
into two equal groups of consecutive threads (group 1: 0 to
15 and group 2: 16 to 31). Nevertheless, the functions must be
evaluated independently, in both groups, to cover all coupling
faults.

In this method, the R(x) operations are integrated with
the W(y) ones. In the simplest case, R() operations can be
performed by the execution of non-control-flow instructions
during the execution of a warp. In the TAM field, one R
operation is presented when the number of active threads, in a
warp, is the same after executing one instruction. Similarly,
for the WPC field, the execution of instructions can maintain
the value in most fields, but for the WPC parameter, some bits
should be neglected during the fault evaluation.

As introduced previously, R operations are presented
after each instruction cycle in both targeted fields. Moreover,
these cannot be avoided. The SC checks the LE continuously
at the starting and ending points of each instruction cycle to
preserve the SM coherency during the warp operation. Other
halted and stopped LEs are read when those turn into the
active state by the SC management.

Step 8 describes the addition of a nested divergence func-
tion. This nested divergence function is effective in retaining
awarp in an active state and maintain at least one active thread
in the TAM field, thus limiting the effect of the fourth con-
straint in the memory. Moreover, this is suitable to detect the
coupling faults of the groups (CFir and CFrd). The divergence

16903

IEEE Access

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

function can be located after steps 4 or 10, considering an (a)
cell. Similarly, this function can also be placed after step 8 for
a (v) cell.

A third nested divergence function is required to detect the
faults in the CFwd set. The new divergence sensitizes some
missing conditions and guarantees the required W, opera-
tions in the memory. The third nested divergence function
operates selecting only the thread O (first) or the thread 31
(last) for each path. This divergence should be applied in both
cases also to test coupling faults in those fields. Some bar-
rier instructions are added on each path for synchronization
purposes. In the sequence of steps, the 14th step is replaced
and the 4th, 5th, 10th, and 11th are added to generate a new
operation on the (a) cell. Thus, the third nested divergence
function is executed during the second nested divergence,
in the not-taken path.

This sequence can be used to evaluate any interaction
among the (a) and (v) cells. Finally, barrier functions and
shared variables may be placed on the steps to control the dis-
placements across the LEs in any memory direction(dropping
or incrementing).

C. TEST PATTERNS IN WPC

The proposed technique considers those GPGPU architec-
tures with a shared WPC parameter in all threads of a
warp. In this strategy, the test program design and execu-
tion must target the highest possible parallelism. Thus the
approach avoids thread divergence to maintain the parallel
execution of the threads in a warp. For this purpose, a set
of routines are located in specific and strategic addresses
of the system memory. The target memory addresses, for
each routine, are based on the test patterns introduced
in Table 4.

Each routine is mainly composed of embarrassingly paral-
lel operations and thread barriers. The primary function calls
each routine using unconditional control-flow instructions.
Inside the routines, a set of barrier functions halts the oper-
ation of a warp and starts the execution of a new one. The
same method used to select the warps, in the TAM parameter
evaluation, is also used for testing the WPC parameter.

Some WPC bit fields, in the highest part of the memory,
are difficult to evaluate by the complexity to locate the test
routines. The inclusion of additional GPGPU functions and
program kernels in the memory solves the test location issue.

The host locates these functions and programs in memory
during the configuration of the device. Finally, the method is
flexible, and the implementation may consider division into
pieces to evaluate specific WPC fields through independent
kernels in short execution times.

1) SEQUENCE OF STEPS FOR PATTERN GENERATION IN
SINGLE CELLS

The following sequence of steps describes the procedures of
writing and reading into the WPC parameter to evaluate a
single cell.

16904

1) Execute an embarrassingly parallel instruction (F)
(R(x) procedures).

2) Execute an unconditional control-flow routine (calling
a function and W xy and Rx) procedures).

3) Return from the routine, and then compare the signa-
ture. Start a new call to another routine (Wx) and Rx)
procedures).

4) (Restart and repeat steps 2 and 3 when required).

As previously discussed, R(xy operations are integrated into
the W xy operations in the target memory. For each memory
parameter (TAM or WPC), the processing thread computes
a signature (d_signature). This parameter is an observation
mechanism to evaluate and detect any fault in the LE. More-
over, a mismatch in the signature represents the presence of
a fault in the memory cell. Finally, the method evaluates a
signature at the end or in the middle of each test program
routine.

2) SEQUENCE OF STEPS FOR PATTERN GENERATION IN
MULTIPLE CELLS

As previously introduced for the TAM parameter, the test pat-
tern generation of coupling faults among LEs requires more
elaborated steps. The (a) and (v) target cells are carefully
chosen by the warp selector mechanism, which may generate
divergence, in case of intra-warps cells, or not when the cells
belong to different LEs. The following sequence of steps can
generate test conditions and patterns.

1) Execute an embarrassingly parallel instruction (F).

2) Execute unconditional control-flow operations calling
and selecting an (a) cell (W) operation in the (a)
cell).

3) Execute the routine and a barrier instruction in the path
of the (a) cell launching a warp containing the (v) cell
(Rx) operation in the target (a) cell of a LE).

4) Selection of the target (v) cell and execution of uncon-
ditional control-flow operations (W x) operation in the
(v) cell).

5) Execute the routine and a barrier instruction in the path
of the (v) cell, dispatch of a new warp containing (a)
cell.

6) Return to the main program path and the start of the new
operation of embarrassingly parallel instructions (W)
operation in the returning stage, R in the parallel
execution).

This sequence of steps allows the test pattern generation
and evaluation of the groups, CFtr and CFds, of coupling
faults. Nevertheless, other steps must be added to evaluate
missing coupling fault groups, such as CFir. In this case,
the new steps are located after the 5 step, and these include
the execution of additional functions in the routine, thus
generating implicit R(joperations in the LE. New barrier
instructions are also placed to generate elaborated stimulus in
both cells. The generation of test patterns for CFwd coupling
faults needs a new W x)operation in the (a) cell employing a
new routine, which is included after the 6 step.

VOLUME 8, 2020

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

IEEE Access

Example of March Adapted approach of
operations March operations
T (W) U (W) Ro)*, T (Wa)*, T Ray)*, T (W)
T R, W) U (W), Ro)*, T (Re)* , T (R, Wa)

U (We) 4 (Way, Rp)*, T Rp)*, ¥ (W)

T Re) U (W), Ro)*, T (Re)

U (W) U (Way, Rp)*, T Ra)*, U (Way)

T (Rq)) U (Way, Rip)*, T (Rqry)

FIGURE 6. A normal sequence of March operations and the adapted
approach for the memory in the scheduler. (x) Example of initialization
operations.

D. MARCH ALGORITHMS ADAPTATION
March algorithms are well-known methods to detect coupling
faults in memories. Thus, those methods can be employed to
generalize the proposed technique to detect permanent and
static coupling faults in the SC memory.

Those algorithms are composed of a set of writing and
reading operations (or March operations) to be performed
in the SC memory. The injection direction in operation is
considered as an additional parameter to consider in the
implementation phase.

It is not possible to inject consecutive March operations
in the SC memory by its operational restrictions. Neverthe-
less, this restriction can be partially avoided by applying
March operation patterns in a segmented fashion. In this
method, a March operation is firstly performed, followed by a
set of initialization operations. Then, the second March oper-
ation is injected and, finally, new initialization operations
are included for other March operations. Fig. 6 shows an
adaptation example employing the segmented approach.

The application of segmented patterns into the target mem-
ory locations does not reduce the effectiveness of the pro-
posed method and the adaptation of a March operation.

This initiation sequence is composed of additional W)
and R(x) operations required to access the target memory
locations or to avoid the normal scheduler execution. In some
cases, these initialization operations include March opera-
tions in other LEs. Thus, March operations are described
independently as a set of program kernels.

The division of a test kernel in chunks, or multiple test
programs, allows the fault evaluation during idle intervals of
the in-field operation of the device. The division must also
consider the observability mechanism and the Host interac-
tion. For this purpose, the test signatures are stores in free
locations of the global memory. Thus, these can be reused
in multiple test kernels. Similarly, the Host may locate and
trigger the test programs aside from the application kernels.

As a proof of concept, we employed two March algorithms
(MATS+ and MATS++) to demonstrate the features of the
proposed technique and generated a set of test programs for
the TAM and WPC fields for each LE in the SC memory.

1) MATS+ AND MATS++ ALGORITHMS
Each algorithm is adapted following the proposed technique.
Moreover, it is described in multiple test kernels; thus,

VOLUME 8, 2020

TABLE 5. MATS+ and (x) MATS++ operations as a sequence of CUDA
kernel executions.

Original March
operations Ad(z;pted tMarch Equivalent CUDA BBK Kkernel
(MATS+) perations
M1: § (W) Init. Steps: Test_kernel_dropping
(W), Rw)s <TOTAL_BLOCKS, TOTAL_THREADS>
M1:] (W), R) (TOTAL_THREADS,
vector_params[0], dfsignature);
M2: 1 (R), Init. Steps: Test_kernel_dropping_x
W) (W, Riwy)s <TOTAL_BLOCKS, TOTAL_THREADS>
M2:1 (W), Ry, (TOTAL_THREADS,
W(l), R(l)) vector_params[1], dfsignature);
M3: U (Ra), W), Init. Steps: Test_kernel_incrementing
R*) (W), Rw)s <TOTAL_BLOCKS, TOTAL_THREADS>
M3:U (R, (TOTAL_THREADS,
W(U), R(U)) vector_params[0], d_signature);

its operation is performed by applying multiple test parts.
Table 5 shows the operations in the MATS+ algorithm (the
reader may refer to [11] for details regarding March test
notation). It can be noted that initialization steps (in bond)
and implicit Ryyoperations are included in the adaptation of
each operation. The initialization steps are needed to generate
a specific test pattern in the target LE (or warp) and to avoid
the execution of the dispatcher units. This method is used for
each LE in the memory.

The adaptation to high-level functions is based on inde-
pendent kernels (Basic Block Kernel or BBK) describing a
March operation. These BBKs uses the signature location
in memory and an external test pattern as input parameters.
The external pattern is only present for the evaluation of the
TAM field in the LE.

Table 5 also presents the adaptation of the algorithm into
a set of independent test kernels. In this example, it can be
observed that the external pattern is different in each case. The
same pattern is applied to the first and third kernels. On the
other hand, the second program needs the opposed value to
generate the desired pattern. The kernel sequence (dropping,
dropping_x, incrementing) must use the patterns in Table 4 to
evaluate all target coupling faults. In the end, this program
kernel sequence is applied eight times.

2) ALGORITHM IMPLEMENTATION IN THE CUDA
ENVIRONMENT

In Fig. 7, the scheme presents the interaction between (a)
and (v) using the method introduced in section IV.A.
Although the diagram depicts a parallel program execution in
(a) and (v), the execution of the algorithm is fully sequential
for each SM. In fact, on each SM core, only one SC and
its internal memory exist. However, this scheme shows the
complexity in the test program description to ensure that (a)
and(v) cells interact in the expected fashion.

The method employed to inject patterns in the cells uses a
selection mechanism to identify and classify the LEs (warps)
as even or odd (as (a)-(v), or (v)-(a)). Moreover, addi-
tional conditions in the kernel description were added to
check the edge conditions of (a) in the memory borders

16905

IEEE Access

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

‘ Test operation ‘
|

‘ Load injection parameters ‘

‘ Dispatcher units execution checker ‘

‘Aggressor and Victim cells selection‘

|Aggressor cells: Victim cells:

‘ Start pattern injection ‘4- —P{ Start pattern injection ‘

‘ Evaluation (signatures) ‘ ‘ Evaluation (signatures) ‘

‘ Warp temporary stop } i Warp temporary stop ‘

v

Warp synchronization ‘

NO . YES
Finished test?

‘ Finish March operation

FIGURE 7. A general flow diagram of the test algorithm for the TAM and
WPC fields in the scheduler memory.

(i.e., LE number O or 31 and target (v) number -1 or 32,
respectively). In these cases, the (a) cell is maintained as
inactive while the other cells perform the injection sequence.
The mechanism employed for thread communication is based
on the method to skip the dispatcher units operation, see
section VL.A.

The implementation of the program kernels also consid-
ered the direction of pattern injection. Independent kernels
were designed, as presented in Table 5, to perform the pattern
injection in both directions.

The pseudo-code reported in Fig 8 describes a general
CUDA implementation of one of the test programs aimed to
detect coupling faults. This kernel is executed concurrently
by an (a) and a (v) warps (or LEs).

The warp selection mechanism divides both cells and also
controls the execution of the program sequentially.

In Fig. 8, we detailed the implementation of the warp
selection and detection process. The main difference among
them is the total number of conditions required to generate
the start of detection of the target LE.

It should be noted that, in both cases, the returning steps
after and before warp synchronization are neglected to inject
any test pattern into the cells.

In the TAM case, these intervals are generated during
the Not-Taken path evaluation. In the WPC algorithm, these
intervals belong to the returning procedures from a called
routine.

The warp selector mechanism generates independent paths
for the (a) and(v) cells. Internally, the path may use diver-
gence operations, stimulating the parameter under evaluation.
In (a), a second divergence path is employed to add the
necessary initialization condition (W) for the assessment
of those coupling faults which need this initial state.

The pseudo-code presents the worst-case scenario for
test pattern injection. Thus the kernel description can be

16906

TABLE 6. Example of a TP sequence for coupling fault evaluation.

Target TP operations TP, = {w,’, r\", wyv, ryv, ryv, ryv}
March The equivalent operation The equivalent operation
Operation for TAM fields for WPC fields
wxa D1vergence(§;eneratlon mn Subroutine call in (a) cell
Execution of multiple . .
a . Lo Execution of consecutive
Ix instryctions in the instructions in (a) cell
taken path of (a)
wyv Dlvergence(‘%)e neration in Subroutine call in (v) cell
Execution of multiple . .
v . Lo Execution of consecutive
ry instructions in the instructions (v) cell
taken path of (v)
Execution of multiple Execution of consecutive
r, instructions in the instructions in (v) cell

taken path of (v)

simplified to avoid the second divergence for some static
coupling and permanent faults.

3) ADAPTING MARCH OPERATIONS TO TEST THE
SCHEDULER MEMORY

Each March operation represents a set of W(x) and R(x)
operations in a selected direction. The implementation of a
March operation, considering the FPs for the SC memory,
included the direction parameter as an additional factor in the
adaptation.

a: ADAPTING THE MARCH WRITING AND READING
PROCEDURES

Each operation (W(x) and R(y)) is translated into equivalent
software functions on the target fields (TAM and WPC).
Table 6 presents an example of the adaptation of a TP for
coupling fault detection composed of multiple W(xy and Ry
operations.

It is worth noting that this example does not present the
additional steps after the pattern injection and the Not-taken
path operations for (a) and (v) warps. Thus, those steps are
considered as initialization operations for the next pattern.

The final step to adopt a March operation is the adaptation
of the direction parameter in the kernel. The next subsection
presents the method to add and select this parameter in the
design.

b: ADAPTING THE MARCH DIRECTION OPERATIONS

The application of a March operation has an associated injec-
tion direction (¢, {1, {}). This parameter is related to the FP to
test and TP to inject.

The CUDA implementation of the TPs included, on each
kernel, an external parameter describing the injection direc-
tion (Incrementing and Dropping) of each operation. More-
over, this organization is static. Thus, the warps with lower or
higher IDs will be the first selected and have priority access to
the SM resources. It is worth noting that warp selection does
not generate any divergence in the SM. Nevertheless, the warp

VOLUME 8, 2020

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

IEEE Access

__global _ void Test_kernel dropping x (int* divergence parameters, int* signature ...)

i

Parameter initialization();

» Definition and initialization of variables (local and shared).

Thread warp size check correction();

®)

» Warp size checker.

for warp in kernel do:

@)

» Search each Warp ID

if Warp_Selected() then:

®)

» Select a Warp ID in order (/ncrementing/ Dropping)

Load divergence parameters();

®)

» Load the external pattern to be used in (a) cells.

if warp is Aggressorthen:

‘)

» Check if warp ID is (a) cells.

Aggressor warp enabled();
if divergence parameter is ‘0’ then:
Signature_evaluation updating();

€3]

» Check if (a)cell has associated (v) cells.
» Execution of the Not-taken path (First divergence)
P Signature update and R, procedure.

Barrier operation();
else:
Signature evaluation updating ();

» Warp Stop.
» Execution of Taken path (First divergence)
P Signature evaluation and R, operation.

for Warp _Id > 0 do:
if divergence parameter(0) is ‘1’ then:

[©)

» Check if (v) cell has been executed
» Execution of the Nesting functions (Second divergence)

Signature evaluation updating (), Barrier operation(); » Signature evaluation and R, operation.

else if divergence parameter(31)is ‘1’ then:

[©)

» Execution of the Nesting functions (Second divergence)

Signature evaluation updating (); Barrier operation(); » Signature evaluation and R, operation.

else:
Signature evaluation updating ();Barrier operation();

[©)

» Execution of the Nesting functions (Second divergence)
P Signature evaluation and R, operation.

Signature_evaluation updating ();

P Implicit Read in one instruction cycle.

Warp ID --;

» Drop in Warp ID value.

else if warp is Victim then:

» Check if warp ID is (v).

victim warp enabled();
if threads in warp (‘<16 / ©15”) then:
Signature evaluation updating

[©)

P Check if (v)has associated (a) cell.
» Thread division into lower or higher part

» Signature updating and Ry, procedure.

Signature evaluation updating ();

P Signature updating and R procedure.

for Warp Id > 0 do:

P Check if (a) cell has been executed

Barrier operation();

» Warp Stop.

Barrier operation();

» Warp Stop.

else:

[®

» Warp is not selected to be launched.

Signature _evaluation_updating (); Barrier operation();

P Signature updating, Implicit R procedure, Warp stop.

Warp_synchronization();

@)

» Warp synchronization.

Clear Parameters();

®)

» Cleaning variables.

}

FIGURE 8. A pseudo-code (CUDA) describing the program kernel implementation to detect coupling faults. (*¥) Functions to generate
divergence paths in the (a) and (v) cells in the LEs. (§) functions to skip dispatchers. ($) optional functions to evaluate edge conditions in LEs.

selection process and direction management are based on
the previously described method to skip the dispatcher unit
introduced in section VL. A.

One selection loop is added into the test programs to
manage the warp selection, considering the direction of the
March operation. This selection loop is initialized with a
base, an offset, and a limit. The base and the limit define the
direction to be applied. The test program starts with the same
conditions for each warp in the test kernel; thus, during the
kernel execution, the loop selects the warps in the range of
the base and the offset values. Then, the base and offset are
updated until the limit is reached. This selection mechanism
has a higher priority for the warps in the range of selection.
However, this method has low priority in the border warps
and increases the latency in their execution. Moreover, the
dispatching process may add additional conditions to select
even or odd warps and generate TPs for multiple coupling
faults.

Inside the loop, a base and offset are employed to select
the external parameters and to identify the warps that can be
dispatched into the SM.

VOLUME 8, 2020

Multiple shared memory locations are employed to con-
trol and manage the coherency of pattern injection between
consecutive (a) and (v) warps. This local synchronization
mechanism is local for the interaction between consecutive
cells belonging to different LEs in the memory.

VIIl. EXPERIMENTAL RESULTS
A. PERFORMANCE RESULTS
Some experiments were performed to validate the proposed
methods. We employed an NVIDIAe¢GeForce GTX 960M
GPGPU with 32 threads per warp and 1.176 GHz of clock
rate. The evaluation and validation of the test programs
are performed by employing the NVIDIAeNsight™5.6 and
the NVIDIAe¢Visual profiler tools. These tools are used to
determine resources overhead and performance parameters.
Moreover, these also verify the correct operation of the imple-
mented test kernels in the GPGPU.

Table 7 reports the performance results of the implemented
test programs following the proposed technique for different
LE sizes in the SC memory. The second column in the table

16907

IEEE Access

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

TABLE 7. Performance parameters of the implemented test programs to evaluate different LE sizes. (+) active kernel functions, only.

LE parameter

TAM WPC
LE size 32 16 8 32 16 8
BBK execution (uS) 778.98 359.30 168.30 573.50 187.79 91.52
Total execution (mS) 18.69 8.62 4.04 13.86 4.51 2.19
BBK incrementing kernel (KB) 276.25 78.28 8.43 186.48 50.36 14.46
Number of instructions BBK dropping kernel (KB) 276.61 78.18 8.40 436.13 73.49 15.58
executed per pattern (KB) 829.11 234.74 25.26 809.08 174.21 44.49
Total (MB) 6.63 1.88 0.202 6.473 1.397 0.356
System memory (KB) 1.84 1.84 1.84 2.42(+ 2.42(+ 2.42(+
GPGPU memory overhead ghared memorryy (B) 260.0 132.0 68.0 4.(§ : 4.(§ : 4.(§ :

also reports the required idle time intervals to perform an
individual test sequence of the whole procedure.

The BBKs were originally designed and implemented to
be executed in one SM of the GPGPU with a configuration of
one block per grid.

The implementation of the proposed method used an equal
number of local registers, and this number is independent of
the line-entry size. The TAM kernels required 28 registers,
and the WPC kernels required 37.

The number of instructions to evaluate a parameter (3 test
kernels) in the LEs of the memory is relatively high (809 and
809KB for WPC and TAM parameters, respectively). This
behavior is explained by the selection of the programming
environment (CUDA-C) to implement the functions and the
additional mechanism employed to manage and avoid the
dispatcher units. Moreover, the total number of instructions
is also proportional to the number of line entries tested.

As shown in Table 7, some milliseconds are required to
execute all program kernels. Moreover, the kernels present a
low cost in terms of the system memory overhead to perform
the test of one pattern for 32 LEs (2.4KB in the WPC param-
eter and 1.84KB in the TAM field). Nevertheless, the test
program for the WPC parameter is also composed of some
inactive kernels in memory to place the routines in the target
memory locations to be tested. This test procedure requires
the entire system memory space. Hence, the evaluation of the
WPC parameter during device operation should be limited to
the Power-On/Power-Off intervals.

Regarding the share memory resources (Table 7), the TAM
kernels require a low number of memory locations. For
this kernel, this parameter is directly dependent on the total
number of line entries considered and the number of shared
thread variables employed as semaphores used to avoid the
execution of the dispatcher units. On the other hand, the WPC
kernels employ a constant number of shared memory loca-
tions, as this kernel does not require semaphore variables
among the threads.

Six test kernel functions are needed to control the warp
execution and to stop the operation of the dispatchers. For this
purpose, the conditional functions (divergence functions) are
employed during the evaluation of coupling faults between
cells. These functions include additional instructions in the
test program implementation. In contrast, the instruction size

16908

of the BBK is relatively small (=*280KB) and is executed
in less than 780us. In the TAM test programs, the number
of shared memory locations has a linear dependency on the
evaluated LEs. In contrast, the WPC test programs employ a
constant amount of shared variables independently of the SC
memory size. This constant amount can be explained con-
sidering that the techniques for testing the WPC parameter
are more straightforward than those employed to evaluate the
TAM field, including the warp selection mechanism to stop
the operation of the dispatchers.

A detailed analysis of the TAM test programs with the
NVIDIA Visual Profiler shows that the concurrency opera-
tion of these test kernels, under multiple LE size, is 0%. The
concurrency operation is an indicator of the level of paral-
lelism in the program. This zero percentage in concurrency is
mainly generated in the program by the complexity to follow
the required steps and create the patterns to evaluate the TAM
parameter in a LE and the TAM. Additional analyses with the
Visual Profiler showed that the implementations of the test
programs spend almost 60% of the execution time in thread
synchronization operations or halting conditions. In the WPC
test kernels, the halting and the synchronization functions
affect in a lower manner the execution time, which is near
to 50%. In both cases, these operations are needed to stop or
avoid the execution of the dispatcher modules during the test
operation.

B. FAULT DETECTION RESULTS

We employed, as a verification tool, a memory fault simulator
to evaluate the effectiveness of the proposed technique and to
check the FC.

This simulator reads an input file with the generated mem-
ory procedures (writing and reading) during the program
kernel execution. A detailed description and additional infor-
mation about the memory fault simulator can be found in [18].

To the best of our knowledge, comparative functional
test techniques targeting the same memory structure in the
scheduler of a GPGPU were not proposed in the past, thus
limiting the possibilities of a direct comparison. Neverthe-
less, we selected three representative benchmarks to evaluate,
compare, and show the efficacy of the proposed functional
test mechanism. Each benchmark was configured with a

VOLUME 8, 2020

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

IEEE Access

TABLE 8. Fault coverage of the MATS++ test kernels for an SC memory
with 32 LEs. () FPs that were not initially considered in the proposed
technique.

MATS+ VectorAdd MxM Edge
Fault Algorithm FC (%) FC (%) FC (%)
primitive FC (%)
TAM WPC TAM WPC TAM WPC TAM WPC

TF 1 100 344 100 375 1.6 355
TF 0 0.0 844 00 875 100 895
RDF 1 100 84.4 0.0 3848 100 40.5
RDF 0 100 100 0.0 344 100 89.1 1.6 905
DRDF 1 100 0.0 0.0 0.0 0.0 0.0
DRDF 0 00 00 100 0.0 00 00
WDF 1 0.0 344 00 375 100 355
WDF 0 0.0 844 00 875 1.6 855
CFds_X,

CFir X, 100 100 - - - - - -
CFtr X

CFrd_X,
CFwd_X, 100 100 - - - - - -
CFdrd_X

CFst X 100 (*) 100 (*) - - ; ; -)
SF X 100(*) 100 (*) - - ; - .)
CFid_X 100 (*) 100 (*) - - ; ; -)

workload equivalent to the one adopted for the functional test.
These applications are:

1) Vector addition (VectorAdd): is a parallel program ker-
nel, and it is selected considering that most applications
include sections of fully parallel execution.

2) Matrix multiplication (MxM): is commonly used dur-
ing the implementation of algorithms for image pro-
cessing and neural network applications.

3) Edge detection (Edge): is a typical application in the
image pre-processing and the computer vision fields.

Each test program and benchmark include a debugging
function able to trace the memory operations in the SC. This
debugging function generates a compatible input file for the
memory simulator. Table 8 presents the obtained results for
the proposed functional test mechanisms and the selected
benchmarks expressed in terms of FC.

According to the results, the proposed technique can
test the static single and coupling faults effectively in the
SC memory. Although the original test programs design was
not targeted to consider some groups of faults, such as the
state coupling faults (CFst), the state faults (SF), and inver-
sion coupling faults (CFid), the results in the fault simulation
show that the test program kernels indirectly evaluated these
groups of faults. The additional nesting divergence functions,
for both cells (a and v), directly caused the detection of faults
in the CFid group. Moreover, the time delays during the test
injection provoke the required initial conditions in those cells
that are not directly evaluated, thus, indirectly evaluating the
faults of the CFst and SF groups.

During the first attempts to determine FC results from the
fault simulations using the proposed method, we obtained
some moderate percentages (96%) for some specific patterns

VOLUME 8, 2020

in the memory. After a detailed check of these conditions,
we concluded that the initial stage of some LEs, targeting
the TAM fields, remains in an active state, thus avoiding the
evaluation of some FPs with a W) as a starting logic state.
These restrictions were finally removed through the addition
of the second divergence path to consider the conditions of
initialization.

A comparison of results among the implemented test pro-
grams and the selected benchmarks allow us to affirm that an
application by itself is not suitable to generate a considerable
number of functional test patterns in the SC memory. The
previous behavior is clearly represented in the low percentage
of FC of each single cell FP group. The VectorAdd and MxM
applications operated fully parallel and did not produce all the
required logic state changes for the TAM field. The parallel
behavior explains the zero percentage presented in the FC
in some FPs groups. A similar situation is shown in the low
percentage of the TAM field in the Edge application. This
behavior is generated by some divergence paths produced
during the evaluation of the convolution algorithm. Never-
theless, the generated divergence is not enough to increase
the percentage of FC in most single-cell groups of FPs.

Concerning FC results in the WPC field, these directly
depend on the total number of instructions and the number of
internal loops described in the program kernel. The longest
benchmark (Edge), which also includes up to 25 loops,
denotes a higher FC in comparison with the other applications
with a lower number of instructions and with none (Vec-
torAdd) or a few (MxM) loops in their description. A direct
comparison of FC results between the proposed functional
test mechanism and the representative applications shows the
need and relevance of the proposed functional test solution in
terms of detecting faults in a large number of groups of FPs.

The FC results in the benchmark for the coupling fault
groups are not presented in Table 8. However, it is possible to
state that the same trend towards a low FC for single-cell FPs
is also valid for the multiple cell groups.

C. KERNEL PERFORMANCE OPTIMIZATION

The implemented kernels apply the March operations sequen-
tially following the direction of a March operation. However,
the software management of the kernels (by using semaphore
variables, loops, and synchronization functions) is effective
in generating test patterns in the memory, but it also reduces
the execution performance. Thus, the total kernel execution
time requires hundreds of microseconds in the experiments.
Nevertheless, as detailed previously, it was noted that the
operation of the synchronization loops causes a large part of
the latency in execution time.

We propose a set of optimizations in the kernel description
by modifying the method employed to apply the March opera-
tion and reduce the time execution in the kernels. This method
arbitrarily uses the operation on groups of two independent
consecutive LEs (Warps), one as (a) and the other as (v),
following the direction parameter of the original BBK. Thus,
the injection of a W x) or R(x) operation only depends on the

16909

IEEE Access

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

Vo

(@)r=0 (Wr=1
(Vo (a)r-;
(@ro (Wr=1

> >

(Vr=2 (V-0 (@)r=1 * 4
(V-1 (a)r= =2 (@)r-0 (V)11 *
(V)r=0 (@)1= T=1 (V)0 (@71 *
(@)r-o =0 (@r-0
=0 T=1

FIGURE 9. Proposed methods to apply a March operation, including the
direction parameter. (Left) Sequential method using software techniques
to skip the dispatcher unit operation. (Right) Using an arbitrary parallel
injection in pairs of LEs.

correlated pairs of LEs (see Fig. 9). This method takes advan-
tage of the operation of the dispatcher units to manage the
pattern injection on consecutive LEs. Thus, a high percentage
of the latency presented in the previous sequential method
can be removed. Nevertheless, it must be considered that
synchronization loops cannot be entirely excluded. However,
those can be optimized to reduce the final latency.

The first loop, employed in the sequential selection of a
warp, was removed and replaced by the simple loop mecha-
nism, which also selects LE as (a) or (v). Then, on each path,
this solution includes optional synchronization loops for each
condition. One additional loop and break-loop condition are
placed at the end of the kernel execution after the pattern is
applied, and the LEs are ready to finish.

The main purpose of the loop and the break-loop condi-
tions is the reduction of inefficient synchronization loops and
the associated latency for a large number of warps. In this
strategy, the synchronization is only evaluated between the
aggressor and victim warps, instead of adopting a global
synchronization with all warps, as in the other strategy.

The break-loop condition was designed to be executed at
the end when a warp terminates its execution, and intra-warp
divergence is not active, thus simplifying the management of
non-consecutive warps.

The same semaphore mechanisms are employed to keep
the order in the execution. Nevertheless, the total amount of
semaphores is incremented up to 32, which is equal to the
number of LEs in the scheduler memory.

This optimized solution should be applied twice for the
(a)-(v) and (v)-(a) cells configurations, respectively, to cover
all conditions in the memory.

A performance comparison between a sequential version
of a test kernel and the optimized version was performed.
Table 9 presents the performance parameters for two BBKs
(increasing and dropping).

The effectiveness of the proposed optimizations in the ker-
nel description can be noted by comparing the execution time
of the BBKs (original and optimized). For the Dropping BBK
version, the execution time is reduced by more than 77%.
Similarly, the Increasing BBK version presents a reduction
of more than 79%. The total number of registers employed
by each kernel remains the same. In contrast, each optimized
kernel version uses up to 64 times more shared memory

16910

TABLE 9. Performance parameter for the original and optimized version
of a test kernel. (+) The resource overhead is calculated per kernel.

Time . Shared memory Instruction

BBK execution (us) Registers (bytes) size (bytes)
Dropping
(Original) 208,701 37 4 1,152
Dropping * *
(Optimized) 47,868 37(%) 256(*) 2,944
Improved 160,833 0 -252 -1,792
Increasing
(Original) 176,750 37 4 1,728
Increasing * *
(Optimized) 35,801 37(*%) 256(*) 2,944
Improved 140,949 0 -252 -1,216

locations and almost double the number of instructions in the
kernel description. Although this optimization required more
resources in terms of shared and system memory locations,
these can be partially neglected when comparing with the
high percentage of execution performance gain.

In Table 9, it should be considered that the selected BBKs
do not include a second nesting divergence for pattern injec-
tion. This additional nesting would require one extra synchro-
nization loop. Thus each path would include one such loop,
as it is presented in the original implementation. Neverthe-
less, the improvement process is the same as described below.

It is well-known for parallel programs that the usage of
synchronization loops reduces the execution performance and
could generate conflicts in the intra-warp execution; thus,
in general terms, these methods should be avoided. Never-
theless, the added mechanisms were carefully designed to
operate in specific regions when the warp does not diverge.
Moreover, the loop break condition is limited to convergence
warp states: in this way, the coherence of the kernels is not
affected.

IX. CONCLUSION
A functional technique was proposed targeting the develop-
ment of Self-test programs aiming to perform the on-line
test of static and coupling faults in the scheduler memory
of a GPGPU. This technique was developed and imple-
mented, considering the available micro-architectural infor-
mation of a GPGPU and a high-level programming envi-
ronment (CUDA). The results on some representative test
cases showed that the proposed approach is effective and
can test all the fault primitives, thus validating and ensuring
complete coverage of all static and coupling faults in the
targeted structure.

Optimizations to effectively implement the same kernel
to describe a generic March operation targeting the memory
within the scheduler are also presented.

REFERENCES

[1] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. S. Reorda, ‘“Microproces-
sor software-based self-testing,” IEEE Des. Test. Comput., vol. 27, no. 3,
pp. 4-19, May 2010.

VOLUME 8, 2020

S.D.

Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

IEEE Access

2

—

,_
w
—

4

=

[5

—

[6

—

[7

—

[8

[t

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

“Guidelines for obtaining IEC 60335 Class B certification for

any STM32 application,” STMicroelectron., Geneva, Switzerland,
Appl. Note AN3307, 2016.
(2018). Infineon Technologies. [Online]. Available: https:/

www.hitex.com/software-components/selftest-libraries-safety-libs/pro-
sil-safetcore-safetlib/

DS52076A 16-bit CPU Self-Test Library User’s Guide, Microchip Tech-
nol., Chandler, AZ, USA, 2012, p. 52.

(2018). ARM Technologies. [Online]. Available: https://developer.arm.
com/technologies /functional-safety

(2018). Renesas Technology. [Online]. Available: https://www.
renesas.com/en-eu/products/synergy/software/add-ons.html#read
“NVIDIA’s next generation CUDATM compute architecture: FERMI,”
NVIDIA Corp., Santa Clara, CA, USA, White Paper V1.1, 2009.

J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro,
vol. 30, no. 2, pp. 56-69, Mar. 2010.

“V100 GPU architecture. The world’s most advanced data center GPU,”
NVIDIA Corp., Santa Clara, CA, USA, White Paper Version WP-
08608-001_v1.1, 2017, p. 108.

S. Di Carlo, P. Prinetto, and A. Savino, “Software-based self-test of
set-associative cache memories,” IEEE Trans. Comput., vol. 60, no. 7,
pp. 1030-1044, Jul. 2011.

G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos, “A software-
based self-test methodology for on-line testing of processor caches,” in
Proc. IEEE Int. Test Conf., Sep. 2011, pp. 1-10.

A. Van De Goor, G. Gaydadjiev, and S. Hamdioui, “Memory testing
with a RISC microcontroller,” in Proc. Design, Autom. Test Eur. Conf.
Exhibit. (DATE), Mar. 2010, pp. 214-219.

M. Grosso, W. J. H. Perez, D. Ravotto, E. Sanchez, M. S. Reorda, and
J. V. Medina, “A software-based self-test methodology for system periph-
erals,” in Proc. 15th IEEE Eur. Test Symp., May 2010, pp. 195-200.

A. Apostolakis, D. Gizopoulos, M. Psarakis, D. Ravotto, and M. S. Reorda,
“Test program generation for communication peripherals in processor-
based SoC devices,” IEEE Des. Test. Comput., vol. 26, no. 2, pp. 52-63,
Mar. 2009.

A. Paschalis and D. Gizopoulos, “Effective software-based self-test strate-
gies for on-line periodic testing of embedded processors,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 1, pp. 88-99,
Jan. 2005.

P. Bernardi, R. Cantoro, S. De Luca, E. Sanchez, and A. San-
sonetti, ‘“Development flow for on-line core self-test of automotive
microcontrollers,” IEEE Trans. Comput., vol. 65, no. 3, pp. 744-754,
Mar. 2016.

M. Gaudesi, M. S. Reorda, and I. Pomeranz, “On test program com-
paction,” in Proc. 20th IEEE Eur. Test Symp. (ETS), May 2015, pp. 1-6.
J. Hudec, “An efficient adaptive method of software-based self test gener-
ation for RISC processors,” in Proc. 4th Eastern Eur. Regional Conf. Eng.
Comput. Based Syst., Aug. 2015, pp. 119-121.

J. Zhou and H.-J. Wunderlich, ‘“‘Software-based self-test of processors
under power constraints,” in Proc. Design Autom. Test Eur. Conf., 2006,
pp. 1-6.

M. Gaudesi, I. Pomeranz, M. S. Reorda, and G. Squillero, “New techniques
to reduce the execution time of functional test programs,” IEEE Trans.
Comput., vol. 66, no. 7, pp. 1268-1273, Jul. 2017.

A. Riefert, R. Cantoro, M. Sauer, M. Sonza Reorda, and B. Becker, ““A flex-
ible framework for the automatic generation of SBST programs,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 10, pp. 3055-3066,
Oct. 2016.

R. Ubar, A. Tsertov, A. Jasnetski, and M. Brik, “Software-based self-
test generation for microprocessors with high-level decision diagrams,”
in Proc. 15th Latin Amer. Test Workshop (LATW), 2014, pp. 1-6.

N. Bartzoudis, V. Tantsios, and K. McDonald-Maier, “Dynamic schedul-
ing of test routines for efficient online self-testing of embedded micro-
processors,” in Proc. 14th IEEE Int. On-Line Test. Symp., Jul. 2008,
pp. 185-187.

C.-H. Chen, C.-K. Wei, T.-H. Lu, and H.-W. Gao, “‘Software-based self-
testing with multiple-level abstractions for soft processor cores,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 5, pp. 505-517,
May 2007.

M. Hatzimihail, M. Psarakis, D. Gizopoulos, and A. Paschalis, ““A method-
ology for detecting performance faults in microprocessors via perfor-
mance monitoring hardware,” in Proc. IEEE Int. Test Conf., Oct. 2007,
pp. 1-10.

VOLUME 8, 2020

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

(44]

[45]

[46]

(47]

P. Bernardi, C. Bovi, R. Cantoro, S. De Luca, R. Meregalli, D. Piumatti,
E. Sanchez, and A. Sansonetti, “Software-based self-test techniques of
computational modules in dual issue embedded processors,” in Proc. 20th
IEEE Eur. Test Symp. (ETS), May 2015, pp. 1-2.

T. Koal and H. T. Vierhaus, “A software-based self-test and
hardware reconfiguration solution for VLIW processors,” in Proc.
13th IEEE Symp. Design Diag. Electron. Circuits Syst., Apr. 2010,
pp. 40-43.

M. Scholzel, T. Koal, S. Muller, S. Scharoba, S. Roder, and H. T. Vierhaus,
“A comprehensive software-based self-test and self-repair method for
statically scheduled superscalar processors,” in Proc. 17th Latin-Amer. Test
Symp. (LATS), Apr. 2016, pp. 33-38.

A. Apostolakis, M. Psarakis, D. Gizopoulos, A. Paschalis, and I.
Parulkar, “Exploiting thread-level parallelism in functional self-testing
of CMT processors,” in Proc. 14th IEEE Eur. Test Symp., 2009,
pp. 33-38.

S. Di Carlo, G. Gambardella, M. Indaco, 1. Martella, P. Prinetto, D. Rolfo,
and P. Trotta, “A software-based self test of CUDA Fermi GPUs,” in Proc.
18th IEEE Eur. TEST Symp. (ETS), May 2013, pp. 1-6.

S. Di Carlo, G. Gambardella, M. Indaco, 1. Martella, P. Prinetto, D. Rolfo,
and P. Trotta, “Increasing the robustness of CUDA Fermi GPU-based
systems,” in Proc. IEEE 19th Int. On-Line Test. Symp. (IOLTS), Jul. 2013,
pp. 234-235.

S. Di Carlo, G. Gambardella, I. Martella, P. Prinetto, D. Rolfo, and P. Trotta,
“Fault mitigation strategies for CUDA GPUs,” in Proc. IEEE Int. Test
Conf. (ITC), Sep. 2013, pp. 1-8.

N. Farazmand, R. Ubal, and D. Kaeli, “Statistical fault injection-based
AVF analysis of a GPU architecture,” Proc. SELSE, vol. 12, pp. 1-6,
Jan. 2012.

W. Nedel, F. L. Kastensmidt, and J. R. Azambuja, “Evaluating the effects
of single event upsets in soft-core GPGPUS,” in Proc. 17th Latin-Amer:
Test Symp. (LATS), Apr. 2016, pp. 93-98.

M. Gongalves, M. Saquetti, F. Kastensmidt, and J. R. Azambuja, “A low-
level software-based fault tolerance approach to detect SEUs in GPUs’
register files,” Microelectron. Rel., vols. 76-77, pp. 665-669, Sep. 2017.
D. Defour and E. Petit, “A software scheduling solution to avoid cor-
rupted units on GPUs,” J. Parallel Distrib. Comput., vols. 90-91, pp. 1-8,
Apr. 2016.

S. Di Carlo, G. Gambardella, I. Martella, P. Prinetto, D. Rolfo, and P. Trotta,
“An improved fault mitigation strategy for CUDA Fermi GPUs,” in Proc.
Dependable GPU Comput. workshop, Dresden, Germany, Mar. 2014,
pp. 1-6.

B. Du, J. E. R. Condia, M. S. Reorda, and L. Sterpone, “About the
functional test of the GPGPU scheduler,” in Proc. IEEE 24th Int.
Symp. On-Line Test. And Robust System Design (IOLTS), Jul. 2018,
pp- 85 90.

M. Abdel-Majeed and W. Dweik, “Low overhead online periodic testing
for GPGPUSs,” Integration, vol. 62, pp. 362-370, Jun. 2018.

S. D. Carlo, J. E. R. Condia, and M. S. Reorda, “On the in-field
test of the GPGPU scheduler memory,” in Proc. IEEE 22nd Int.
Symp. Design Diagnostics Electron. Circuits Syst. (DDECS), Apr. 2019,
pp. 1-6.

A. Van De Goor, “Using march tests to test SRAMSs,” IEEE Des. Test.
Comput., vol. 10, no. 1, pp. 8-14, Mar. 1993.

P. Rech, L. Pilla, P. Navaux, and L. Carro, “Impact of GPUs parallelism
management on safety-critical and HPC applications reliability,” in Proc.
44th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., Jun. 2014,
pp. 455-466.

K. Andryc, M. Merchant, and R. Tessier, “FlexGrip: A soft GPGPU for
FPGAs,” in Proc. Int. Conf. Field-Program. Technol. (FPT), Dec. 2013,
pp. 230-237.

B. Du, J. E. R. Condia, and M. S. Reorda, “An extended model to support
detailed GPGPU reliability analysis,” in Proc. 14th Int. Conf. Design
Technol. Integr. Syst. Nanosc. Era (DTIS), Apr. 2019, pp. 1-6.

R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in Proc. Design, Autom. Test
Europe Conf. Exhibit., Nice, France, Apr. 2009, pp. 502-506.

S. Di Carlo and P. Prinetto, Models in Hardware Testing: Lecture Notes of
the Forum in Honor of Christian Landrault. Dordrecht, The Netherlands:
Springer, 2009.

W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp
formation and scheduling for efficient GPU control flow,” in Proc. 40th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2007,
pp. 407-420.

16911

IEEE Access

S. D. Carlo et al.: On-Line Testing Technique for the Scheduler Memory of a GPGPU

STEFANO DI CARLO (Senior Member, IEEE)
received the M.S. degree in computer engineer-
ing and the Ph.D. degree in information technolo-
gies from the Politecnico di Torino, Turin, Italy,
in 1999 and 2003, respectively. He has been an
Assistant Professor with the Department of Con-
trol and Computer Engineering, since 2008. His
research interests include DFT techniques, SoC
testing, BIST, and memory testing. He has pub-
lished more than 150 articles in peer-reviewed the
IEEE and ACM journals and conferences. He regularly serves on the Orga-
nizing and Program Committees of major the IEEE and ACM conferences.
He is a Golden Core Member of the IEEE Computer Society.

JOSIE E. RODRIGUEZ CONDIA (Student Mem-
ber, IEEE) received the B.S. and M.S. degrees
in electronic engineering from the Universidad
Pedagégica y Tecnolégica de Colombia (UPTC),
Sogamoso, Colombia, in 2013 and 2017, respec-
tively. He is currently pursuing the Ph.D. degree
with the Department of Control and Computer
Engineering, Politecnico di Torino, Turin, Italy.
He was an Adjunct Lecturer with the Electron-
ics Department, UPTC, from 2013 to 2017. His
research interests include system functional test, SBST, DfT, parallel archi-
tectures, GPGPUs, and embedded system design.

16912

MATTEO SONZA REORDA (Fellow, IEEE)
received the M.S. degree in electronics and the
Ph.D. degree in computer engineering from the
Politecnico di Torino, Italy, in 1986 and 1990,
respectively. He is currently a Full Professor with
the Department of Control and Computer Engi-
neering, Politecnico di Torino. His research inter-
est includes design and test of reliable electronic
circuits and systems.

VOLUME 8, 2020

