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Abstract---Finding the energy-optimal route in the context of
parcel delivery with electric vehicles (EVs) is more complicated
than for conventional internal combustion engine (ICE) vehicles,
where the energy cost of a path is mostly determined by the total
traveled distance. In the case of EV delivery, the total energy
consumption strongly depends on the order of delivery because
the efficiency of the EV is affected by how the transported weight
changes over time as it directly affects the battery efficiency. This
makes impossible to find an optimal solution using traditional
routing algorithms such as the traveling salesman problem (TSP)
using a static quantity (e.g., distance) as a metric.
In this paper, we propose a solution for the least-energy delivery
problem using EVs; we implement an electric truck simulator
and evaluate different static metrics to assess their quality on
small size instances for which the optimal solution can be com-
puted exhaustively. A greedy algorithm using the empirically best
metric (namely, distance × residual weight) provides significant
reductions (up to 33%) with respect to a common-sense heaviest
first package delivery route determined using a metric suggested
by the battery properties, and is sensibly faster than state-of-the-
art TSP heuristic algorithms.
Index Terms---Electric truck simulator, traveling salesman prob-
lem, least-energy routing algorithm, metric evaluation

I. INTRODUCTION

Electric vehicles (EVs) are becoming increasingly popular
and are expected to progressively replace traditional internal
combustion engine vehicles (ICEVs). EVs have high energy
efficiency and do not emit greenhouse gas (GHG); even if when
accounting the emission incurred during electricity production
for the charge of EVs, their overall GHG emission is up
to 58% lower than the emissions of an average mid-size
passenger ICEVs [1]. Also, the impact on climate change by
the production of electricity and operation of EVs is less than
up to 30% compared with ICEVs when considering the average
generation of electricity in Europe. Recently, the landscape
of EVs is widening and extends to domains such as electric
racing cars, electric buses, and electric trucks.
In particular, electric trucks will replace existing ICE trucks
in the future as Tesla announced [2]. The electric truck can
accelerate faster than conventional diesel trucks because of
the characteristic of the electric motor: high torque at low
rotations per minute (RPM). In addition, 98% of the kinetic
energy can be replaced with electric energy during regenerative
braking, which makes the electric truck more energy efficient.

According to the announcement by Tesla, electric truck owners
can save more than $200,000 over a million miles based on
fuel costs alone.
This intrinsic energy efficiency can be further improved by
finding the optimal delivery route; an electric truck loads all
packages for customers at a depot, visits each customer to
deliver their package, and then returns to the depot without
payload. For a conventional ICEV, the ‘‘cost’’ of a path is
mostly driven by the distance (even if weight also matters) and
the problem nicely fits into the well-known traveling salesman
problem (TSP) using distance as a metric.
However, when considering EVs, the solution is not as
straightforward; the total energy consumption strongly depends
on the order of delivery as the efficiency of the EV is affected
by the total (vehicle + payload) weight. As a matter of fact,
one key characteristic of a battery is that it is progressively less
efficient in delivering its energy as its state of charge (SoC)
decreases [3], [4]. A fully charged battery is more efficient
to deliver a high current demand than when it is partially
discharged. As the power consumption of the electrical motor
depends on the total weight, then apparently if we deliver the
heaviest package first, the overall vehicle weight is reduced
the most after unloading this package and following such order
would be optimal. On the other hand, also distance should
be considered; if we deliver the heaviest package first and
this corresponds a very long distance from the depot, we will
discharge the battery by driving the heaviest weight for a long
time.
One first difference with respect to a plain ICEv delivery
is therefore in terms of metrics: for EVs, some combination
of weight and distance should be considered. But the most
significant difference (and complication) lies in the fact that
the calculation of the optimal energy path cannot be done
incrementally, as the energy cost of a path is ‘‘dynamic’’, i.e.,
it depends on the previous choices as a consequence of the
dependence on the residual weight.
In this paper, we propose the overall framework for the least-
energy electric truck delivery problem. We first implement
an electric truck simulator with a powertrain model and a
non-linear battery model of the Tesla Semi [5] in order to
predict the change of SOC during the package delivery. From
the simulator, we show that a conventional metric for TSP,
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Fig. 1: Motivational Example.

total delivery distance, like any other ‘‘static’’ metric, does
not minimize total energy consumption for an EV delivery. As
only an exhaustive exploration of all path guarantees to find
the optimal path, we evaluate different static metrics (functions
of weight and distance) on small graph instances to assess their
quality; then using the best metric derived in this calibration
phase we show how a greedy algorithm using that metric
provides significant reductions (up to 33%) with respect to the
common-sense heaviest first package delivery.

II. MOTIVATION

We have built a small motivating example in order to show how
it is not possible to build an energy-optimal delivery schedule
using a ‘‘static’’ metric. Fig. 1(a) shows a simple 3-destination
delivery task from a depot (D) with a rough mapping on the
plane, and the distance matrix between any pair of destinations;
without loss of generality we have assumed symmetric between
node pairs.
In order to assess the energy cost of a delivery path, we will use
a time diagram that plots the evolution of the total transported
weight over traveled distance. Weight can be used as a proxy of
power consumption as the electric motor power is proportional
to the total weight of the vehicle plus the payload. This is
clearly a simplification and does not take into account all the
non-linearities of a battery, but even this approximation helps
showing the point we are making.
Distance is used as a proxy of time, assuming a constant speed
for the deliveries. Again, this is an approximation of the real
setting, where speed can be extremely varying. When using a
real battery model in the loop, however, the real speed profile
of the vehicle can be accounted for. Therefore, evolution of
weight over distance is a proxy of power over time, and the area
of one such curve is then an estimate of the energy consumed
for that delivery route.
Fig. 1(b) shows two such delivery routes for a case in which
the weight are W1 = 10,W2 = 20,W3 = 30 and vehicle
weight is Wv = 40. The dotted red curve represents a route
for which packages are delivered in heaviest-first order (D →
3 → 2 → 1 → D), whereas the solid blue line denotes a
route with packages delivered in increasing order of distances
(D → 1→ 3→ 2→ D). In this specific case the ‘‘shortest-
first’’ policy works best (smaller area under the curve) and, by

exhaustive exploration of the 3!=6 combinations of deliveries
it can be shown to yield the best value of the metric.
Fig. 1(c) shows two other waveforms for the same delivery task
in which the weights are now W1 = 30,W2 = 20,W3 = 10,
that is, in which the heaviest package corresponds to the closest
destination (node 1). In this case the red dotted profile of the
‘‘heaviest-first’’ yields the best value of the metric, while the
‘‘shortest-first’’ yields a slightly worse value. Notice that the
blue solid line corresponds to the same order of delivery (yet
with a different cost) as in Fig. 1(b) as the distance has not
changed in the two examples.
Notice also that (due the symmetric distances) there are two
paths (e.g., D → 1 → 3 → 2 → D and D → 2 → 3 →
1→ D) with the same distance but with different ‘‘energy’’
cost. Therefore, an algorithm that picks edge simply based on
distance could even get farther from the optimal solution.
This example, yet in the presence of a number of approxima-
tions, shows the main two points raised by our work. First, no
simple static metric can solve optimally the problem of finding
the energy-optimal delivery route.
Secondly, due to the state-dependent characteristic of the cost
function, only an exhaustive exploration can find the optimal
solution. Since this is not feasible but for very small instances,
we need to find a provably good static metric that can be used
in a heuristic algorithm. From our motivating example, this
static metric should combine weight and distance as both affect
the energy consumption of the EV.

III. BACKGROUND AND RELATED WORK

A. Battery Model

The model of the battery pack requires then a model for the
individual cell, and the model must be able to accurately
account for the load current and SOC variations of the usable
battery capacity. A single cell in the pack can be modeled with
a circuit-equivalent model that models the capacity dependency
on current magnitude and dynamics [6], [7]. Fig. 2 depicts the
circuit-equivalent model of a battery cell. It consists of a left-
hand part for modeling the battery lifetime and a right-hand part
represents the transient battery voltage. Notice that the left-part
also account for current magnitude and frequency dependency
on battery capacity. From this model we built the battery
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Fig. 2: Adopted circuit-equivalent model for battery cell.

pack model by simply scaling all parameters according to the
series/parallel connection; although somehow ideal (e.g., cell
mismatches are not considered) this is still more accurate than a
linear model that neglects state-dependent battery characteristic.
Given this model, we can track the energy consumed by the
EV by applying to the model the drawn power (as current
and voltage waveforms) corresponding to the electrical motor
consumption on a given leg of the route. In the most general
case there will a non-ideal power conversion step between
the electrical motor and the battery. In this case, it suffices to
scale the motor current and voltage according to the converter
efficiency η < 1, which can be any complex function of the
motor parameters, i.e., Pbatt = Pmotor · η.

B. Vehicle Routing Problem

The vehicle routing problem is formulated as a graph
G(V,E,C) where V = {v0, · · · , vN} is the set of vertices
including N destinations and a depot, E = {eij |i,j∈V } is the set
of edges between two vertices vi and vj , and C = {cij |i,j∈V }
is the cost related to each edge eij . Vertex v0 is the depot,
while the remaining vertices in V represent customers that
need to be served. The TSP consists in finding a route based
at the depot, such that each of the vertices is visited exactly
once while minimizing the overall routing cost.
The formulation of the vehicle routing problem is generalized
as the TSP. Because TSP is known as NP-hard, several
approximation algorithms are proposed during several decades.
Christofides designed an approximation algorithm for TSP
using the minimum spanning tree (MST) algorithm, which
obtains approximated results less than 1.5 times of the optimal
solution [8]. From the general TSP, there are several variants of
TSP to consider various constraints and delivery requirements.
There is a variant of TSP considering a set of potential
customers living near secured customers [9]. The salesman
finds the shortest path to cover all potential customers within
a certain distance from the path. A fleet of delivery vehicles
characterized by different capacities and costs is an important
variant of TSP [10], [11]. There is a set of customers and a
set of different types of vehicles. Each vehicle has different
capacity in terms of the number of customers and operation cost;
the goal is to find a set of routes for each vehicle minimizing
total delivery cost. Authors consider the number of customers
that each vehicle should be responsible for, but they do not
consider the vehicle weight changing with each delivery.
Recently, the vehicle routing problem with pick-up and delivery
considers the situation in which packages have to be picked-up
from one of customers and delivered to another location [12],
[13]. During the pick-up and delivery process, visiting each
pickup and delivery places occurs exactly once and total

package weight during the delivery should not exceed the
capacity. This problem considers the weight of each package,
however, does not consider the energy consumption that
changes after unloading each package.

IV. ANALYSIS OF ROUTING ALGORITHMS

The examples of Fig. 1 suggest that a good way to track
the actual energy spent on a delivery path (modulo the non-
idealities of the battery) would be to use a metric that is
correlated to distance × weight. More precisely, said i and j
the two vertices, dij the distance between them and Wi and
Wj the respective weights, the metric should be proportional
to dij×(Wcurrent−Wi), assuming the edge is travelled in the
direction i→ j. Wcurrent is the current weight of the vehicle
when reaching node i. We call the above metric DxWr (i.e.,
distance times residual weight).
Thus, intuitively, as the delivery problem is an instance
of TSP, one could be tempted to run some TSP heuristic
algorithm using the above cost instead of using distance as in
traditional TSP instance. Although approximate (even without
considering battery non-idealities), this strategy will leverage
well-consolidated heuristics for the solving the TSP.
There is a however a subtlety in this argument. State-of-the-art
TSP heuristics rely on the calculation of the MST algorithm
as a pre-processing. This is essentially because the cost of a
MST is the simplest lower bound for the TSP. As a matter of
fact, Since removal of one edge from any Hamiltonian cycle
(i.e., a solution of the TSP) yields a spanning tree [8]. MST
algorithms systematically grow the tree by greedily picking
edges in increasing order of the cost function; this implies
that the above cost function dij × (Wcurrent −Wi) cannot be
used, for two reasons. First, there is no equivalent of Wcurrent,
since we are not yet building a path; second, MST runs on
an undirected graph and there is no intuition about in what
direction the edge is traversed.
A possible approximation of the DxWr metric suitable for
a TSP that starts from a MST would be (i) to assume a
50% chance of travelling the edge in each direction and (ii)
approximate Wcurrent with the total weight (vehicle + payload).
This would yield the metric that we call DxW :

dij × (Wtotal − (Wi +Wj)/2)

which allows to be used in a MST-based TSP heuristic.
The computational complexity of the TSP heuristic that
provides the best approximation, i.e., Christofides’ algorithm,
is O(n3), where n is the number of vertices, assuming that
the graph is fully connected [8].
Given the number of approximation a TSP-based solution
would incur (intrinsic approximation of the algorithm plus
that of the metric, plus the fact that battery properties are not
incorporated), even though its complexity is polynomial, it
could make sense to devise an alternative and simpler greedy
algorithm that builds up the cycle as a path, one edge at a time
starting from the depot. This choice would allow one to use
the DxWr metric that more closely tracks the energy value;
by forming a path, in fact, we can calculate the equivalent of



Wcurrent for the path being built. Moreover, since we start
from the depot node, edges have an implicit direction and
DxWr can be calculated correctly. The approximation lies
obviously in the fact that the greedy solution is not optimal,
and unlike the TSP heuristic, the approximation cannot be
bounded. Christofides’ algorithm, for example, can be shown
to yield a solution that is no more than 3/2 of the optimal cost.
The greedy heuristic would clearly be linear in the number
of nodes. Should it be roughly as approximate as the TSP
heuristic, it would at least guarantee that it can handle larger
problem instances.
In our analysis we will therefore compare three classes of
algorithms to solve the optimal routing problem:

1) a set of algorithms based on enumerating all paths
(and therefore feasible only for small instances) using
different metrics and used for evaluating the quality of
the approximations;

2) heuristic TSP algorithms using different metrics
3) heuristic greedy algorithms using different metrics

V. SIMULATION RESULTS

A. Simulation Setup
1) Powertrain model: We implemented a powertrain model of
a Tesla Semi truck from the vehicle specification based on the
presentation by Elon Musk; this is currently the only source
of information for the specs as Tesla is preparing to release
the Semi in 2019 or later [14], [5]. The powertrain consists
of four Model 3 electric motors; each motor is 3-phase AC
permanent magnet electric motor with maximum power of 192
kW from 4700 to 9000 RPM, and maximum torque is 410 Nm
below 4500 RPM, respectively [15], [16]. We estimate curb
weight of Semi as the sum of typical weight of class 8 truck
and battery pack weight [17].
The powertrain model PEV , a function of torque T and angular
speed ω, is defined in [18] to consider both dynamics and loss:

Pdyna = Tω = Fds/dt = (FR + FG + FI + FA)v

PEV = Pdyna + C0 + C1v + C2v
2 + C3T

2

Pregen = εTv + ζ.

There are four resistances acting on a vehicle Pdyna: rolling
resistance FR, gradient resistance FG, inertia resistance FI , and
aerodynamic resistance FA. Coefficients C0, C1, C2, and C3

are for constant loss, iron and friction loss, drivetrain loss, and
copper loss, respectively. Regenerative braking power Pregen

is a function of negative torque and speed.
We first implemented a vehicle model in ADVISOR (ADvanced
VehIcle SimulatOR) [19] by using the above vehicle specifi-
cation. Then, we extracted the coefficients of EV powertrain
model with a number of ADVISOR simulations as described
in [20]. Table I summarizes the model coefficients of Tesla
Semi. Fig. 3 shows the difference between the estimation of
power consumption by the vehicle simulator and the powertrain
models; the normalized root-mean-square error is 4.93%.

TABLE I: Model coefficients for Tesla Semi truck.
α 0.098 β 10.1522 γ 1.006 δ 2.5e-5
C0 10000 C1 0.03 C2 0.02598 C3 1.54e-5
ε 0.5912 ζ 0.0
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Fig. 3: Powertrain model validation result.

2) Battery pack model: In our experiment, we assume that
each electric motor is connected to each battery pack of
Model 3. Each battery pack is composed of 4 modules that
are connected in series; each module consists of Panasonic
NCR18650B 3400mAh Lithium battery cells arranged in a
46p24s configuration [21]. Table II summarizes the physical
electrical parameters of each cell, each module and the whole
battery pack.

TABLE II: Electrical parameters of the battery pack.
Parameters Cell Module Whole Pack

Nominal Capacity 3400 mAh 156.4 Ah 156.4 Ah
Nominal Voltage 3.6 V 86.4 V 345.6 V
Cut-off voltage 2.75 V 66.0 V 264.0 V

We built our battery single cell model based on the measure-
ment data by adopting the method described in [6]. We assumed
such 7, 104 battery cells in the pack to be ideally balanced in
the following experiments, then built battery pack model as
section III-A indicated. Concerning the regenerative braking
phase, we assumed that regenerative charging efficiency is 20%
in our simulation, i.e., 20% of the kinetic energy is converted
to electric energy and transferred into the battery pack.

B. Simulation Results

1) Comparison Against Exact Results: In this section, we
compare the energy consumption of various delivery strategies
based on different policies for a set of small-sized (4, 5, 6,
and 7) instances for which an exhaustive exploration of all the
possible delivery paths is feasible.
For each number of destinations, we randomly generated 50
instances with different distributions of locations of the depot
and of the destinations by uniformly distributing them in a
30x30 km area. We selected the area for the delivery so that all
the delivery sequences can be completed without exhausting
the battery energy before returning to a depot. For each of the
50 instances, package weights for each destination have been
chosen as uniformly distributed from 0.1 ton to 3 ton.
For each problem instance (destination and weight distribution)
we calculate by exhaustive exploration the route yielding the
smallest value of energy for a number of metrics. Energy has
been calculated by applying the battery pack model fed by
the power profile generated by the EV model of Section V-A.
In this test example, a constant speed of 76 km/h has been
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Fig. 4: Energy consumption for different metrics (exhaustive exploration).

assumed, which is an average truck speed on metropolitan area
interstates in the US, 2015 [22].

TABLE III: Exhaustive exploration of paths: List of algorithms.
Name Description
MinD paths are sorted in order of total length, and the

shortest path is selected.
MinDxWr paths are sorted in order of total D ×Wr (as

described in Section IV) and the path with the
smallest aggregate value is selected.

Heaviest first paths are built by greedily choosing vertices in
decreasing order of weights.

Shortest first paths are built by greedily picking edges starting
from the depot node in increasing order of
distance.

Smallest DxWr

first
paths are built by picking edges starting from
the depot node in increasing order of D×Wr .

TSPD TSP heuristic algo using distance as a metric.
TSPDxW TSP heuristic algo using DxW as a metric.

The latter are grouped into two classes separated by the double
line in the table; the first set use path-based metrics (i.e.,
aggregating a given metric along the path) and can be therefore
only evaluated using an exhaustive exploration. In the second
set the metrics are used to greedily build the path based on
the given metric, as explained in Section IV.
Fig. 4(a) shows the energy consumption of the optimal route,
averaged over the 50 instances, for problems with 4, 5, 6,
and 7 destinations and for the set of algorithms described in
Table III. The leftmost blue bars represent the optimal routes
yielding the minimum energy consumption among all routes,
obtained by computing the actual energy consumption per each
segment using the battery model. This is the reference value
against which the other results are compared. All the other bars
refer to solutions (i.e. routes) returned by the above algorithms

and evaluated using the battery model. The objective of the
simulation is to check how the greedy algorithms (TSP-based
or not) differ from the optimal solution and how the error
increases with increased problem sizes. Bars in the plot are
in the same order as in Table III. For ease of reading, bars
referring to path-based algorithms (first part of the table) are
shown as solid bars, whereas those referring to greedy or TSP
algorithms are shown as patterned bars.
Concerning path-based algorithms, we can notice how the
MinDxWr metric (third bar from left) tracks very well the
true energy value, much better than distance alone (second bar
from left).
Concerning approximation algorithms, as a first general com-
ment we can see that all algorithms do overestimate the actual
energy consumption. Then, we immediately observe that weight
alone (Heaviest-first) track quite badly the actual consumed
energy, somehow contradicting the intuition suggested by the
battery property; the distance from the reference is already
> 20% even for the 4-destination instance. Although the actual
error may differ depending on the weight distribution (as shown
in Fig. 1), the results average 50 different runs so we can safely
assume this is not a good metric. Notice also that the tracking
error increases with larger instances.
Another observation is that a traditional TSP with distance
metric (second bar from the right) performs reasonably only
for the smallest instance; that average error increases quickly
and is already around 18% for 7 destinations. Therefore, we
can also rule out this algorithm from the list.
The remaining ones (Smallest DxWr first, Shortest first, and
TSPDxW) have errors below 10%, with the greedy algorithms
being below 5% and scaling better with problem size than



TSPDxW.
Fig. 4(b) shows the worst case error among the 50 instances for
the same set of algorithms. Results are consistent with average
error, with the maximum error significantly larger than the
average one. The greedy algorithms have show again the best
results, both in terms of error and scalability. The smallest
DxWr is the only algorithm with worst-case error around 20%
(as opposed to about 30%-35% of the others) for the 7-node
case.
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2) Application to Larger-Scale Instances: We generated a
number of instances with 10, 20, 30, 50 and 100 destinations;
for each problem size we generated 20 random instances and
collected the average value of energy and execution time.
In all cases, weights have been scaled so that the delivery
task could be completed. Fig. 5 compares the absolute energy
values for the three competitive algorithms resulting from the
previous section: TSPDxW ) and the the two greedy heuristics
(shortest first and smallest DxWr first). From Fig. 4(a) we
know that all approximations are overestimations, so we can
assume that lower values of energy imply higher accuracy.
In Fig. 5, the smallest DxWr first shows the best results: its
energy consumption 10% smaller than the TSP heuristic and
4% smaller than the shortest first one, for the larger 100-node
instance.
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Fig. 6 shows the slowdown of the TSP heuristic with respect
to the smallest DxWr first algorithm. The TSP execution time
is obviously independent of the metric used (D vs. DxW ).
The TSP heuristic is significantly slower that than the greedy
method; the slowdown increases for increasing problem sizes,
reaching 8.6x for the 100 destination case.

VI. CONCLUSIONS

The total energy consumption of an electric truck strongly
depends on the order of delivery because the efficiency of

the electric truck is affected by how the transported weight
changes over time as it directly affects the battery efficiency.
However, it is impossible to find an optimal solution using
traditional routing algorithms using ‘‘static’’ metrics such as
distance. In this paper, we demonstrate that the functions of
weight and distance as metrics provide significant reductions
with respect to the traditional routing algorithms, and a greedy
algorithm minimizing DxWr shows almost 10x fast calculation
than TSP heuristic method with better results.
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