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Digital mammography: a weak continuity texture
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ABSTRACT
This paper proposes a Weak Continuity Texture Representation (WCTR) method for detecting clustered microcalci-
fications in digitized mammograms. This technique is compared with other texture-analysis methods (Co-occurrence
Matrices, Gabor Energy Mask, and Wavelet Filter) . The WCTR is a new method for texture representation, based on
the characterization of textures using statistics of their coarseness. From edge maps, obtained by a weak membrane
at different noise levels, density values are computed which are representative of the texture coarseness. We chose six
different noise levels; each texture class is then represented by six edge-density values. Textural features extracted
using the four methods are used to discriminate between positive ROT's containing clustered microcalcifications and
negative ROT's containing normal tissue; a three-layer backpropagation neural network is employed as a classifier.
A ROC analysis is used to evaluate the classification performance. From an original database of 151 ROTs two
different combinations of training and testing sets are used: 50/70 training cases and 101/81 testing cases. The best
performance is obtained with the WCTR method in both cases (92% and 93% respectively). These results show the
effectiveness of WCTR for the detection of microcalcifications in mammographic images.

Keywords: mammographic images, microcalcifications, computer-aided diagnosis, neural networks, texture anal-
ysis , weak continuity.

1. INTRODUCTION
Mammography has been used in clinical practice since 1927 in the diagnosis of breast abnormalities, reaching in the
sixties a high degree of accuracy in the discrimination between benignant and malignant diseases.2 Screening projects
in the sixties and seventies showed as a strong decrease of breast cancer risk for women over 50 can be obtained
with a systematical usage of mammography.2 Actually, screen-film mammography associated with clinical breast
examination and breast self-examination is widely recognized as the only effective imaging modality for early detection
of breast cancer in women,1 2 Among the early indicator of breast cancer, microcalcifications are one of the primary
signs.2 Microcalcifications are tiny, granule like deposits of calcium; several studies demonstrate that the presence
of clustered microcalcifications in X-ray mammograms is a basical marker for the early detection of breast cancer,
especially for individual microcalcifications with diameters up to about 0.7 mm and with an average diameter of 0.3
mm.2 However, the interpretation of X-ray mammograms is very difficult because of the small differences in the image
densities of various breast tissues, particularly for dense breast. The interpretation of mammograms by radiologists
is performed by a visual examination of films for the presence of abnormalities that indicate cancerous changes.
Unfortunately, for difficult-to-diagnose cases, the detection (or not detection) of supposed microcalcifications can
lead to a false diagnosis, with the risk of unnecessary surgical intervention. Therefore, computerized analysis to help
decision making, for biopsy recommendation and diagnosis of breast cancer, might be of significant value to improve
the true-positive rate of breast cancer detection. In the actual interpretation of mammographic microcalcifications,
the grey-level values defining local structures in the microcalcification clusters play a significant role.2 It has been
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demonstrated in clinical studies described in,2 that the grouping of microcalcification regions, in order to define the
shape of the cluster, is highly dependent on the gray-level based-structure and texture of the image. Indeed, texture
information plays an important role in image analysis and understanding, with potential applications in remote
sensing, quality control, and medical diagnosis. Texture is one of the important characteristics used in identifying
an object or a region of interest (ROT) in an image.3 Moreover, the introduction of digital mammographic systems
is pushing on the development of reliable methods for semiautomatic screening of mammograms for early detection
of breast cancer.

Computerized mammographic image analysis can be divided into three steps: enhancement of mammographic
features; detection and localization of suspicious areas and classification. Most of the techniques used in the com-
puterized analysis of mammographic microcalcifications first segment the digitized gray-level image into binary
regions representing the microcalcifications,4 5; feature analysis is then performed on such binary images. Since
mammographic images may often be poor in contrast, lacking in the definition of microcalcification region, the seg-
mentation process for extraction of such regions is not reliable and accurate. Therefore, the shape features of the
binary segmented individual microcalcifications may not be reliable, particularly for difficult-to-diagnose cases. It
has been demostrated in clinical studies described in2 that the grouping of microcalcification regions, in order to
define the shape of the cluster, is highly dependent on the gray level based structure and texture of the image. For
those reasons in the last years several researchers has investigated the effectiveness of texture analysis technique for
microcalcification detection and analysis,6 .

In this paper we propose a Weak Continuity Texture Representation (WCTR) for texture classification. The
WCTR is a new method for texture representation, proposed by one of the authors that has shown to be effective
in representation of real textures for classification purposes.8 The WCTR method is based on the characterization
of textures using statistics of their coarseness.3 From edges maps, obtained by a weak membrane at different
noise level, density values are computed which are representative of the texture coarseness. Here we chose six
different noise levels; each texture class is then represented by six edge-density values. In order to evaluate the
WCTR method performance we made a comparative study with three very well known texture analysis methods,
which were successfully employed for microcalcification detection,9 ,6 7 : Co-occurrence Matrices (CM) ,1O Gabor
Energy Mask (GEM)" and Wavelet Filter (WF).'2 Textural features extracted using these four methods are used
to classify Region Of Interests (ROIs) into positive ROIs containing clustered microcalcifications and negative ROIs
containing normal tissue. To evaluate the classification efficacies of these texture-analysis methods, a three-layer
backpropagation neural network was employed as a classifier. A Receiver Operating Characteristic (ROC) analysis
was used to evaluate the classification performances.

The paper is organized as follows: Section 2 describes the employed texture analysis techniques, with a particular
emphasis on WCTR. The experimental results are presented in Section 3; the three-layer backpropagation neural
network used as classifier is also described in Section 3. Finally, conclusions are given in Section 4.

2. TEXTURE ANALYSIS
2.1. Weak Continuity Texture Representation
The WCTR is a model based on the characterization of textures using statistic of their coarseness,3 13 It is based
on the properties of the Weak Continuity (WC) approach,'4 which is a very effective tool for edge detection: the
WC approach allows a multi-scale edge detection, and furthermore its non linearity leads to a selective smoothing
and thus to a high robustness to the noise.

The basic idea is to represent the input signal by a weak string, that is an elastic string satisfying the weak
continuity constraints. For two dimensional signals, such as images, the string will be substituted by an elastic
membrane: the weak membrane. The general model consists on the minimization of a given functional, that for the
weak membrane will be:

E=D+T+F, (1)

with
D =

f(u(x,y)
— f(x,y))2dxdy, (2)
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T=lf (()2+()2dxdY (3)/K\ Dx 0x

F=nfdxdy=nIZ (4)

and where f(x, y) are the input data over a domain 11 E R2, u(x, y) is the function that will be restored, K represents
the contour set, Z is a measure of the contours contained in the image and, finally, 1 and n are two input parameters.
The last two terms are weights determining a compromise among the three terms above. The first term in (1) assures
the similarity of the computed u to the input data. We can say that, by means of this term, we lead the solution to be
faithful to the data. The second term regulates the elasticity of the membrane: high values of 1 produce a smoothing
of u while low values of the parameter itself assure that u is close to the input data f. The main property of this
technique is that the continuity of the solution is weak: the solution tries to be continuous, but some discontinuities
are allowed. Finally, the third term takes into account the "penalties" of the contours, that is for each discontinuity
point there's a price to pay. It has to be stressed that the introduction of the last term, and the constraint on the
domain of the second integral, causes the non-linearity of the functional, since the first two terms alone can be solved
by the Euler-Lagrange equation: (32u 32\

u(x,y)—f(x,y)—l —+-- =0. (5)

This is equivalent to convolve the data with a linear filter whose impulse response is15

1 1 x+yflh(x,y) = exp —
; (6)

the introduction of the third term allows the functional to perfom a selective smoothing, preserving the image
discontinuities and eliminating the noise overlapping the "good" signal. The minimization of (1) can be made by
means of the line process {l, m} indicating the continuity inside the interval [ui, u.iJ.

Figure 1. Two examples of mammographic images
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2.1.1. The Proposed Model
The WC representation introduced in the last section can be very useful for edge detection at different scale and
noise levels. Here we propose to use these properties in order to classify texture which have different coarseness at
different scales, in presence of (possibly high) noise.

For this purpose, we will use Z, which is the set of the contours of an image at a given scale level. Thus, given
f on 1 E 2, we are looking for the set K1, such that:

E(u,K) =f(u(x,y) _ f(x,y))2dxdy+lf (()2 +
(3)2) dxdy+nfdxdy (7)

will be minimized. Starting from K1,, we can define the characteristic function

'H :1— {O,1},

which is defined as:

7_I_f ifx,yEK1,—
1 0 otherwise

Thus, for given values of the parameters (1, n), 7-1 will represent a binary map of the detected edges in the original
image f(x, y). From 'H it is thus possible to compute the density edges for a given scale (1 parameter) and for a given
noise level (i-i parameter):

z(H1,) = fkdxdy
(8)

where R is the measure of the region R c ft Different values of (8), computed for different values of (1, n), can be
used for texture representation and classification.

2 .2 . Go-Occurrence Matrices Methods
The Co-occurrence Matrices Method (CMM) was proposed by Haralick in 1973,10 and since then has been widely
used for texture analysis. Consider an image I[N x NJ, with N9 gray-tone; if we assume that the textural information
in I is given by the spatial relationship between the gray tone, this texture-context information will be adequately
specified by the matrix of relative frequencies P3 with which two neighboring resolution cells, separated by distance
d, occur on the image, one with gray tone i and the other with gray tone j. Such matrices of gray-tone spatial-
dependence frequencies are a function of the angular relationship between the neighboring resolution cells, as well as
a function of the distance between them:

CM(d,b) [P(d,b)]. (9)

In texture classification, individual elements of CMs are seldom used; instead, features are computed from the
matrices. A large number of textural features have been proposed, starting with the original fourteen features
described in.10 Here we used the set of features listed above:

f' = >P, (10)

f2 = (11)

— ' (z — j)(j —
(12)

0-jo-ij ,3

f =(i—j)2P,, (13)

= ij)P —
I1x1Ly

(14)
ax cr
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where , /Ly , cr and a are the means and standard deviations of row and column sums, respectively, and

0-i =(i _ ,u)2 cr =(j
2.3. Gabor Energy Filters
The Fourier Transform (FT) of a function f(x) gives a measure of its irregularities (high frequencies), but this
information is not spatially localized. For localizing the information obtained by the FT, Gabor'6 defined a new
decomposition using a Gaussian window in the Fourier integral. These functions have been later extended to 2-D by
Daugman.'7 A Gabor function is given by

G(x, y) = g(x', y') exp[2rrj(Ux + Vy)], (15)

with
(x',y') = (xcos8 +ysinO, —xsin +ycos8).

They are rotated spatial-domain coordinates; (u, v) denote frequency-domain coordinates, and (U, V) represent a
particular 2-D frequency.'7 The complex exponential is a 2-D complex sinusoid at frequency

w = U2 + V2

and
q = arctan(V/U);

it specifies the orientation of the sinusoid. The function g(x, y) is the 2-D Gaussian

g(x,y)= •exp — 22 (16)
2rrcro 2 a cT J

where a and cry,, are related with the spatial extent and bandwidth of the filter. The Gabor function can thus be
viewed as a Gaussian modulated by a complex sinusoid. In this paper we will assume that a =cr = a. This means
that the parameter 0 is not needed and the Gabor function becomes:

G(x,y) = 2 exp {_2)} . exp[2j(Ux + Vy)]. (17)

We can define now the Gabor Filter G9:

Gg(I(x,y)) = I(x,y) *G(x,y), (18)

where I(x, y) is an image. Gabor Filters applied to texture analysis measure the similarity between neighbourhoods
in an image and Gabor functions. A family of Gabor functions can be generated for varying frequencies (w) and
Gaussian window standard deviations (a); expressing (U, V) by means of the orientation 0,18 we can write the Gabor
function as

G9(x, y, 0, , xo, Yo) = exp{_ — x0)2±(y —

Yo)2]}
sin ((x cosO — ysinO) + ), (19)

where (x0, Yo) specify the center of the Gaussian.

For texture analysis purpose, we will compute the Gabor Energy Filter (GEF) at each pixel for each combination
of wavelength and orientation, where the energy is defined as the sum over the phases of the squared filter values.
That is

S2(xo,yo,0) =
2

+
2

(20)

Energy calculated using equation (20) for each combination of A and 0 may be used as textural features.'8

Proc. SPIE Vol. 4322 1709

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



24 Wavelet FIlters
Wavelets,'9 20 have been shown to be useful for texture classification in literature, due to their finite duration which
provides both the frequency and spatial locality.2' The hierarchical wavelet transform uses a family of wavelet
functions and its associated scaling functions to decompose the original signal (image) into different subbands.
The decomposition process is recursively applied to the low-frequency sub-band to generate the next level of the
hierarchy. If an orthonormal wavelet basis has been chosen, the computed coefficients are independent and possess
distinct features of the original signal. Wavelet Packets (WP) can be described by the following collection of basis
function,'9 20:

w2(2x—
1) = v1 h(rn 2l)vW(2x— rn), (21)

W21(21x — 1) = VTg(m — 2l)W(2'x — m) (22)

where p is a scale index, 1 is a translation index, h is a lower-pass filter, g is a hig-pass filter with

g(k) = (1)kh(l k).

The function W0(x) can be identified with the scaling function and W1 with the mother wavelet . The inverse
relationship between \VP of different scales can be specified as follows:

vW(2x — k) = h(k — 2l)W2(2'x —
1) + g(k —21)vW21(21x—

1). (23)

Due to the orthonormal property, the WP coefficients at different scale and position of a signal f(x) can be easily
computed via

C,k L: f(x)W(2x k)dx (24)

for discrete signals. WP coefficients may be computed efficiently as follows: from (23), we have

= h(k — 2l)C' + g(k — 21)Glk. (25)

Using equations (21-22), we have
CJ = h(m 2l)Cm, (26)

= g(m — 2l)Cm, (27)

Figure 2. Two examples of 2D Gabor functions.
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Figur 3 Foii in I o ROT o in ml ro I ft 1011

Note that cgk is given by

C8k f) - k)dx. (28)

The 2-D WP basis fnnctions can be expressed by the prodnct of two 1-D \VP basis fnnctions along the horizontal
and vertical directions respectively,'9 ,20 The corresponding 2-D filter coefficients have fonr gronps:

hh(k,1) = h(k)h(1),

hg(k,l) = h(k)g(l),

gh(k,l) = g(k)h(l),

gg(k,l) = g(k)g(1).

3. EXPERIMENTS
3.1. Data Selection
We tested the performance of WCTR, CMM, GEF and WP for microcalcifications detection on a database of 81
images prodnced by the "Centro per la Cnra e Ia Prevenzione dei Tnmori" of the University of Rome "La Sapienza";
each image was digitized from film nsing a CCD camera operating at a spatial resolution of 604 x 575 pixels for
image; the pixel rate was of 11, 5MHz, and the pixel size of 10pm x l5pm. From the 81 images, 151 Region of
Interest (ROT) were selected by expert radiologists, each of 128 x 128 pixels. Among the selected 151 ROTs, 75 were
positive and 76 were negative; examples of four different ROTs are shown in Figure 3. Tn a preprocessing step, each
extracted ROT was stretched to the normahzed gray-level range of O-255,

3.2. Featnre Extraction
3.2.1. Weak Continuity Textnre Representation
As shown in Section 2.1.1, each ROT was represented by edge density vales, computed for different values of the
parameter I (scale parameter) and n (noise parameter) . It has to be stressed that the choice of the parameters,
and particularly the choice of 1, it's a crucial point for the success of the representation. Actually, the scale level
characterizes the binary matrix containing the edges of the analysed ROT; a too large value of 1should lead to a
characterization with few features, while a too small value of the same parameter should provide a too accurate

Proc. SPIE Vol. 4322 1711

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 4 An example of six edge maps computed using the WCTR. The ROT analysed is the one showed in Figure
3, on top left.

description. On the other side, the noise level acts like a threshold parameter, which tells when the weak membrane
can breaks. In this study we chose I = 10 and six different noise levels: n = 5, 10, 15, 20, 25, 30, thus obtaining six
edge maps. From each map we computed the density value; so, each ROl was represented by a feature vector of six
components (WCTR6). Figure 4 shows an example of computed edge maps.

3 2 2 Co-occurrence Matrices Method
As shown in Section 2.2, CMs are functions of the angular relationship between the neighboring pixel as well as
functions of the distance between them. Typically choosed values for the angle 9 are 0°, 45°, 90°, 135°. For an N9
gray levels image, the CM will be of size N x N9. If N9 is too large, the number of pixel pairs contributing to each
element of the CM will be low, and the statistical significance poor. On the other hand, if the number of gray levels
is too low, much of the texture information may be lost in the image quantization. It must then be stressed that
the value of d is critical too for the analysis and it must be compared with the typical size of the texture pattern
element; if d is too large, we are averaging over several texture elements, and we get random correlations; if dis too
small, we are looking at details of the pattern. In this study we chose N = 16, d = I and 0 = 0°, 45°, 9Q0, 135°; the
five features described in Section 2.2 have been computed for these values, obtaining for every ROT a feature vector
of 20 coefficients (CM2O).

3.23 Gabor Energy Filters
As shown in Section 2.3, a GEF set is specified by the values of the parameters A, 9, xo ,Yo According to the results
obtained in,9 here we used the following set: 4 frequencies (wavelengths of 32, 16, 8 and 4 pixels), 16 centers of the
Gaussian (x0 = Ye 16, 48, 80, 112 pixels) and 0 = O,450,900, 135°. So, each ROT was represented by a feature
vector of 256 components (GEF256).

324. Wavelet Packets
Following the procedure shown in Section 2.4, WP were applied to each ROT. We computed \VP corresponding to
a Level I and a Level 2 of decomposition. Following the example of many studies in literature,2' ,22 we chose to
work with Daubechies wavelets. These are orthonormal and of compact support; thus they are suitable for analysis
of images. Indeed, the orthonormality conditions ensures that the representation of a signal at different levels is
uncorrelated; the regularity condition gives a sufficient decay of the mother wavelet in the frequency domain. We
chose the Daubechies wavelets D6 and D20, which proved to give a good combination of regular prototype wavelets
with varying sizes to extract texture information at different spatial frequencies. We computed the energy and
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Layers Number 3
Output Neurons 1

Transfer Function Log-sigmoid
Learning Rule backpropagation

error goal 0.1

Table 1 . Network architecture and learning parameters

entropy features from the Level 0 decomposition (as to say the original image) and from the level packet of the Level
1 and Level 2 decomposition according to the following equations:

v. 2
I_li j ijEnergy =

lenght * breadth ' (29)

where is the computed wavelet packet value at the i-th row and j-th column of the wavelet packet and length
and breadth are the dimensions of the wavelet packet,

Entropy = —

[
x2

]
logio

23
, (30)

i,j norm norm

with

norm=4. (31)

Each ROT was then represented by a feature vector of 18 components (WP18).

3.3. Classifier
An artificial neural network is a computer architecture consisting of a single interconnected processing elements
called neurons,23 ,24 25 A weight wj (coupling strength) characterizes the interconnections between any two
neurons i and j. The input to each neuron is a weighted sum of the outputs incoming from the connected neurons.
Each neuron operates on the input signal using his activation function b and produces the output response. The
typical activation functions are linear, threshold and sigmoid,23 ,24 25 Normally the neurons are organized in an
architecture with input nodes, interfacing the neural network and the external world, output nodes, producing the
network's responses, and hidden nodes, having the task of correlating and building up an "internal representation"
of the analyzed problem. Network's capacity and performance depends on the number of neurons, on the activation
functions used, and on the neurons' interconnections. Another important attribute of artificial neural networks is
that they can efficiently learn nonlinear mappings through examples contained in a training set, and use the learned
mapping for complex decision making,23 ,24 25

A three-layer, backpropagation neural network was employed as classifier in this research. In Table 1 are summa-
rized the network architecture and the learning parameters; the initial weights are randomly selected from [0.0, 1.0].
Textural features extracted as described in Section 3.2, are used as the input signals of the input layer. There is a
single output node for classification into positive or negative ROT. A non-linear sigmoid function with zero and one
saturation values is used as the activation function for each neuron, and is defined as11

oj = (32)1 + exp (> wiioi + v)

where o is the output of the j-th neuron and v is the threshold value of the j-th neuron. The network is trained
to provide a 1.0 output value for a positive ROT and a 0.0 output value for a negative ROT. In the training process,
the weights between the neurons are adjusted iteratively so that the differences between the output values and the
target values are minimized. In this study, the training process is stopped when the error per training case becomes
smaller than 0.1.
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M WCTR6 CM2O GEM256 WP18
A(set1) 0.92 0.81 0.84 0.86

A(set2) 0.93 0.87 0.89 0.90

Table 2. Classification results.

3.4. Results and Discussion
Textural features obtained using WCTR6, CM2O, GEF256 and WP18 as described in Section 3.2 were used as input
for the network described in Section 3.3. We used two different combinations of training and test sets: 50 training
cases and 101 test cases for the setl, and 70 training cases and 81 test cases for the set2. For every set, we randomly
chose 10 different partitions of the data; this procedure was applied in order to prevent a dependency of the results
on a particular partitioning of the data. The results of the network for all the different partitions were analysed by
using ROC analysis.26 RUG analysis is based on statistical decision theory and has been applied extensively to
the evaluation of clinical diagnosis. The ROC curve represents the relationship between the True-Positive Fraction
(TPF) and the False-Positive Fraction (FPF) for variation of the decision threshold. The TPF and the FPF denote
the fraction of patient actually having the disease in question that are diagnosed as positive and the fraction of
patients actually without the disease in question that are diagnosed as positive, respectively. The area under the
ROC curve A is used as a measure of the classification performance. A higher A indicates better classification
performance because a larger value of TPF is achieved at each value of FTF. An ideal performance produces an area
of 1.0.

ROC analysis was applied on the classification results obtained for setl and set2, for each of the 10 different
partitions of the data and for each different texture representation. In this way 10 different values of A ,for each set,
were obtained: for the setl we obtained an average A of 0.92 for WCTR6, of 0.81 for CM2O, of 0.84 for GEM256 and
of 0.86 for WP18. For the set2 we obtained an average A of 0.93 for WCTR6, of 0.87 for CM2O, of 0.89 for GEM256
and of 0.90 for WP18. These results are shown in Figure 5 and summarized in Table 2. The better performance
achieved by all feature representations with set2 indicates that the network has generalized better with the bigger
training set; for every data partition, the best results were obtained with the WCTR6.

4. CONCLUSIONS
In this paper we proposed WCTR for detection of microcalcifications in mammographic images. The extracted
features constituted the input of a neural network trained to classify between ROTs containing microcalcifications
and ROTs containing normal tissue. The performance of the network was evaluated by means of a ROC analysis,
and compared with other texture analysis methods commonly employed in literature for microcalcification detection:
Co-occurrence Matrices, Gabor Energy Masks and Wavelet Filters. The obtained results show the effectiveness and
potential usefulness of this approach.
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