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Abstract. Electromechanical actuators (EMAs) based on Permanent Magnet Synchronous Motors 
(PMSMs) are currently employed on various aircraft systems, and are becoming more and more 
widespread in safety critical applications. Compared to other electrical machines, PMSM offer a high 
power to weight ratio and low cogging: this makes them suited for position control and actuation 
tasks. EMAs offer several advantages over hydraulic servoactuators, in terms of modularity, 
mechanical simplicity, overall weight and fuel efficiency. At the same time, their basic reliability is 
inherently lower compared to hydraulic actuators. Then, the use of EMAs for safety critical aircraft 
systems requires the adoption of risk mitigation techniques to counter this issue. In this framework, 
diagnostic and prognostic strategies can be used for the system health management, to monitor its 
behaviour in search of the early signs of the most common or dangerous failure modes. We propose 
a low fidelity model of a PMSM based EMA, intended for model-based diagnostic and prognostic 
monitoring. The model features low computational cost, allowing the execution in nearly real-time, 
combined with suitable accuracy in the simulation of faulty system operations. This simplified 
emulator is validated by comparing its behaviour to a higher fidelity model, employed as a simulated 
test bench. 

1 Introduction 

Multifidelity approaches to prognostics involve using and developing models of the 
monitored system with varying levels of accuracy and computational complexity, and 
different application domains [1-4]. As an example, complex high fidelity models are used 
to train the machine learning tools employed for fault detection. These models can be 
similar in complexity to those used in the system design phase, but while the latter focus 
on the nominal system operations, prognostics models are intended to accurately 
simulate the effect of faults on system performance. Lower fidelity models are typically 
employed in model-based Fault Detection and Identification (FDI) [5-8], where a 
moderate-to-high accuracy is required combined with a low computational complexity. 
For example, fault detection based on meta-heuristic optimization [9-12] requires a model 
of the system faults able to be executed iteratively in a reasonable time, in order to match 
the model response to the actual system and provide an estimate of its health condition. 

In this work we focus on the FDI task for a Permanent Magnet Synchronous Motor 
(PMSM) Electromechanical Actuator (EMA), and we propose a simplified model of the 
servo system, intended for prognostic tasks. Electromechanical actuators are being 
considered for  aircraft flight control systems [13, 14], but issues regarding their reliability 
still limit their diffusion on safety critical applications [15]. For this reason, prognostics is 
often regarded as an enabling factor for the widespread diffusion of EMAs in aeronautics. 

 
 

                                                 
 



1.1 EMA architecture and Fault Modes 

Referring to Figure 1, a typical EMA architecture involves an Actuator Control 
Electronics (ACE) module, which compares the position command to the actual position 
measured by sensors, to compute a current command for the power electronics module. 
The Power Electronics convert the DC or AC electrical power supply into the required 
three-phase power for the PMSM, with the required frequency and amplitude depending 
on the command and rotor angular position. A mechanical transmission connects the 
motor to the controlled component on which external load is applied. The transmission 
usually consists in a reduction gearbox (planetary or ordinary) and a device for converting 
rotary motion into linear motion. For this purpose, ball-screws and roller-screws are 
preferred over lead screws for their higher efficiency, and over rack-and-pinion for their 
lower backlash and higher specific load. Eventually, a network of sensors is used to close 
the feedback loops. A resolver on the motor shaft is needed for actuating the 
commutation sequence, while Rotary Variable Differential Transducers (RVDTs) or Linear 
Variable Differential Transducers (LVDTs) on the transmission output provide absolute 
position information for the control loop. Current sensors are used for closing the inner 
current loop and provide torque control, while the motor speed can be measured by a 
dedicated sensor or computed as the derivative of motor position. 

We consider five different failure modes among the most likely to occur on 
electromechanical systems, according to a work by Edward Balaban et al. [16]. In 
particular, an increase of friction may be caused by wear of the gearbox or degradation of 
the lubricant; an increase of backlash is due mainly to ballscrew thread degradation. As 
regards the motor, partial short circuit and rotor eccentricity may be caused by the 
degradation of the winding insulation and rotor bearings respectively. Eventually, a 
controller gain drift may be the result of degradation of analog electronics, overheating of 
components, drift of the reference voltage for analog-to-digital conversion, or drift of 
position transducer gains. 

 

Fig. 1. Typical architecture of an Electromechanical actuator for flight controls. 



 

Fig. 2. Block diagram of the High Fidelity EMA model. Despite being a lumped parameters model, the 
simulation is very accurate but computationally intensive (two orders of magnitude above real-
time). 

2 High Fidelity (HF) model  

We start from a complex and detailed High Fidelity (HF) model, initially presented in 
[17, 18], and schematically represented in the block diagram of Figure 2. 

This model, implemented in the Matlab-Simulink simulation environment, accounts for 
several aspects of the EMA operations from a physical point of view. The three-phase RL 
stator circuit, the hysteresis current control, as well as the magnetic coupling between 
rotor and stator are modelled analytically, starting from the well-known physical 
governing equations of dynamics and electromagnetism, and employing a lumped 
parameter representation of the components. Electromagnetic and mechanical FEM are 
not employed, since their use would require a computational time not compatible with a 
dynamical model, even a high fidelity one. This approach allows for an accurate simulation 
of the actual EMA, and has been validated with data available in literature; however, the 
resulting model is quite computationally intensive and not suitable for iterative evaluation 
within FDI algorithms. The motor-transmission dynamical model is a second order model 
accounting for several nonlinearities, such as dry friction (modelled as proposed by [19] 
and assessed in [20]), backlash, and mechanical end-stops. 

The most computationally expensive section is the three-phase RL model: the short RL 
characteristic time requires a very short integration time step (below one microsecond for 
the particular EMA taken into account) to guarantee numerical stability. At the same time, 
the three-phase star-connected circuit may be unbalanced as an effect of electrical faults. 
Then, the standard delta-star conversion cannot be applied and the voltage of the floating 
neutral node is computed iteratively at each time step; the task is performed by the Sim 
Power System Simulink solver, and accounts for most of the required computational time.  



 

Fig. 3. Block diagram of the Low Fidelity EMA model 

As a result, the computational time of the HF model is almost two orders of magnitude 
above real-time, meaning that one second of simulation time translates into about one 
minute of computing time on an average laptop PC. This is totally incompatible with 
iterative execution for FDI in a real operating scenario, since a single fault identification 
would require several hours. 

3 Low Fidelity (LF) model: assumptions and architecture 

In this work, we present a simplified model of the considered EMA, intended for online 
nearly real-time monitoring and fault detection tasks. The main assumption taken into 
account is to treat the PMSM as an equivalent single-phase motor, with a simple first 
order dynamical model and equivalent electrical and mechanical characteristics. The most 
important signal to monitor for EMA FDI is the motor current [17-22], as it is sensitive to a 
number of fault modes. As a result of the model simplifying assumptions, three-phase 
current signals are not available in the monitoring model; we choose to calibrate the 
model in order to compare the single-phase equivalent current of the monitor with the 
quadrature current of the PMSM, since both quantities are proportional to the motor 
torque. The actual quadrature current Iq, as opposed to the commanded one, is computed 
through the Clarke-Park transformation applied to the measured current signals IA, IB, IC: 

   (1) 
where [P] and [C] are the Park matrix and the Clarke matrix respectively, and Id is the 
direct current. The block diagram of Figure 3 reports the architecture of the simplified 
model. All the complex PMSM and power electronics models are replaced with a first 
order model with a simplified hysteresis current loop. 

 

Fig. 4. Placement of the shape functions for electrical faults simulation in the LF model 

 



As regards the simulation of faults, mechanical and control faults can be simulated 
directly as in the HF model, since the subsystems they act on are mostly unchanged. On 
the other hand, electrical faults require a surrogate modeling approach. We use shape 
functions [21, 22] to modulate the motor back-EMF coefficient, resistance, and torque 
gain as a function of the rotor angular position. 

The shape functions are not representative of a particular physical behavior, but are 
built with the purpose of emulating the behavior of the detailed model, with a lower 
computational cost. The simplified model is then modified as shown in Figure 4. Both the 
eccentricity and short circuit shape functions are combinations of sine waves, which 
depend on the fault magnitude, the rotor angular position, and some calibration 
coefficients. We define the short circuit shape function as: 

φSC = kFT {NA [1+kFS sin2(θe+π)] + NB [1+kFS sin2(θe+π/3)] + NC [1+kFS sin2(θe -π/3)]} (2) 

where NA, NB, NC are the fractions of undamaged windings of each phase, kFT and kFS are 
the global and single contribution calibration coefficients, and θe is the rotor electrical 
angular position. The eccentricity shape function is: 

φECC = 1 – kE ζ [cos(θe + ϕe)]     (3) 

where ζ and ϕe are the eccentricity amplitude and direction respectively, and kE is the 
eccentricity calibration coefficient. 

4 Calibration of the LF model 

The short circuit global and single contribution calibration coefficients, the eccentricity 
calibration coefficient, as well as the equivalent torque gain and back-EMF coefficient of 
the monitoring model are initially unknown. Their values are obtained through a 
calibration based on a Genetic Algorithm (GA), which objective function is the Normalized 
Root Mean Square Error (NRMSE) between the current signals of the two models. 
The calibration is a two-steps procedure. In the first step, the models are executed in 
nominal conditions to determine the optimal values of the equivalent torque gain and 
back-EMF coefficient. Then, the PMSM electrical characteristics are frozen and the 
electrical faults are injected into the models; in this phase the GA finds the optimal values 
for the calibration coefficients of the shape functions. This process is repeated several times 
with different fault combinations and magnitudes and the resulting coefficients are averaged. 

 

Fig. 5. Comparison of the HF and LF equivalent current signals for a standard chirp position 
command, in nominal conditions, before (left) and after the first calibration step (right). 



 

Fig. 6. Comparison of the HF and LF equivalent current signals for a standard chirp position 
command, with 50% short circuit of phase A, before (left) and after the second calibration step 
(right). 

Splitting the calibration into two phases allows to reduce the dimensionality of the 
problem for the GA search, greatly reducing the required computational time. This is 
possible since the fault shape functions have no effect on the simulations when the 
system is set to nominal conditions. 

After the calibration, the current curve matches the reference one with high accuracy, 
as we can see in Figure 5 (first step of calibration) and Figure 6 (second step of 
calibration). The first calibration in nominal conditions allows reducing the NRMSE to 
about 20% of that obtained with the first guess parameters. After the second step, the 
error is further reduced by another 30%; however, being the discrepancy between the two 
curves already small, the improvement between left and right graphs of Figure 6 is small. 

5 Model validation  

To assess the performance of the simplified model and determine its accuracy in 
reproducing the output of the HF model, we collect a validation dataset containing the 
result of 100 simulations of the detailed model. Each simulation corresponds to a different 
fault combination, with a standard chirp position command and a no-load operating 
condition. 

 

Fig. 6. Statistical distribution of the NRMSE between the HF and LF current signals. 

 



The fault combinations are randomly sampled in the 8-dimensional space of the fault 
parameters, with a non-uniform distribution. As long as the model is intended for 
prognostic FDI, maximum accuracy is needed near the nominal condition, i.e. for small, 
incipient faults. For this reason, we rescale the initial uniform sampling as proposed in [3]. 

Figure 7 is the distribution of the NRMSE for the 100 validation tests. We can see an 
average error smaller than 1%, which denotes a high accuracy. Previous works [3, 23] 
observed a successful FDI with discrepancies as high as 4 to 5%, then the accuracy of the 
proposed monitoring model is considered adequate. The computational cost has been 
reduced by almost two orders of magnitude, taking a few seconds of computational time 
for each second of simulation time. The model is still not executable in real time, but the 
slow propagation rate of the faults allows to perform the FDI task with a relatively low 
frequency, e.g. once every some tenths of seconds. 

6 Conclusions  

A simplified dynamical model of a PMSM-based EMA has been developed and tested, 
reducing the computational time of more than one order of magnitude. At the same time, 
we were able to retain a high accuracy of the simulation, comparable to that of the HF 
model and adequate for diagnostic and prognostic monitoring of the system. 

The model will be employed in a future work for FDI tasks with model based meta-
heuristic approaches, and will be validated on data coming from a physical experimental 
test bench, currently under development. 
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