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Abstract: A large portion of user-generated content published on the Web consists of opinions and
reviews on products, services, and places in textual form. Many travellers and tourists routinely rely
on such content to drive their choices, shaping trips and visits to any place on earth, and specifically
to select hotels in large cities. In the context of hospitality management, a challenging research
problem is to identify effective strategies to explain hotel reviews and ratings and their correlation
with the urban context. Under this umbrella, the paper investigates the use of sentence-based
embedding models to deeply explore the similarities and dissimilarities between cities in terms of the
corresponding hotel reviews and the surrounding points of interests. Reviews and point of interest
(POI) descriptions are jointly modelled in a unified latent space, allowing us to deeply investigate the
dependencies between guest feedbacks and the hotel neighborhood at different aggregation levels.
The experiments performed on public TripAdvisor hotel-review datasets confirm the applicability
and effectiveness of the proposed approach.

Keywords: text mining; deep natural language processing; open data; frequent itemset mining

1. Introduction

Online hotel bookings have radically changed the hospitality industry. Thanks to the increasing
availability of user-generated data, hotel reputation is nowadays strongly influenced by guest-provided
ratings [1]. In fact, guests are strongly encouraged to rate hotels and comment on various hotel aspects,
including location, service, cleanliness, and price. Online reviews are known to have a major impact
on hotel revenues and on customer behaviours [2]. For these reasons, in the last decade the academic
and industrial communities have devoted an increasing effort to analyzing hotel reviews and ratings.

In this paper we address the problem of explaining hotel ratings by analyzing the textual content
of the hotel reviews. An overview of the related literature is given in Section 2. Since guest reviews
are often related to the context in which the hotel is located, studying the correlations between hotel
reviews the surrounding context is particularly appealing. For example, hotel appeal strongly depends
on the accessibility to various types of points of interest (POIs) such as touristic places (e.g., museums,
monuments, squares), public transports (e.g., bus stops, underground stations), and food services (e.g.,
restaurants, pubs). Understanding which POIs are influencing the hotel reviews and to what extent
they relate guest opinions with the hotel ratings is a challenging task due to the following reasons:

• Hotel reviews are short pieces of text, which often miss a clear description of the related context.
• POIs are not explicitly tagged in most of the hotel reviews.
• Although for each of the most important cities a list of geo-referenced POIs is easy to retrieve,

POI descriptions are often unstructured.
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• A list of the most popular geo-referenced POIs is available for the most important cities, the
detailed POI descriptions are often unstructured. Hence, their preparation and processing is
prone to errors and time consuming.

In light of the above-mentioned issues, correlating review text and hotel ratings with POI
descriptions can be challenging. Therefore, there is a need for integrated and flexible solutions
allowing domain experts to easily explore the semantic correlation between hotel reviews, ratings, and
surrounding POIs with limited effort and acceptable reliability.

The present work investigates the use of a unified deep natural language processing (NLP) model
to jointly explain hotel reviews and ratings and their correlation with the surrounding POIs. Deep
NLP entails applying deep learning techniques to accomplish natural language processing task [3,4].
Embedding models produce a latent vector space, where the learned vectors explicitly encode many
linguistic regularities and patterns. The key idea behind their use is to effectively combine in a unified
space all the information needed to characterize hotel reviews, ratings, and surrounding POIs. POI
descriptions, acquired from open Web sources, are unstructured text snippets that are not required to
be previously annotated (except for POI geo-localization).

In this work, we exploit BERT embeddings [5] to transform the raw text data into a unified
review-POI latent space. The unified model encodes all the semantic relationships between hotels
as well as between hotels and POIs. Thus, it allows a deep exploration of the causes influencing
hotel rating. More specifically, the following aspects can be analyzed by exploring the unified model:
(i) the similarity between different cities in terms of guest feedbacks; (ii) the correlation between the
review text and the POI descriptions; (iii) the correlation between hotel ratings and POIs; (iv) the
characteristics of the analyzed cities (independently of the hotels).

We have conducted an experimental campaign on public TripAdvisor hotel-review datasets. The
results provide valuable insights into the viewpoints of anglophone hotel guests spread all over the
world. Despite guest opinions significantly change according to the continent, the density of POIs in
the urban area, the characteristics of the POI neighborhood, the hotel review descriptions also highlight
interesting regularities in specific city groups.

The proposed approach can be useful at different levels, from local authorities and policy makers
aiming at improving the tourism ecosystem, to hotel chains targeting new openings, to provide better
insights to both hotel owners and users besides the specific rating score.

The structure of the paper is defined as follows. Section 2 overviews the previous research studies.
Section 3 thoroughly described the methodology used in the experiments. Section 4 reports a selection
of the most relevant experimental results. Finally, Section 5 draws the conclusions of the present work
and discusses the future research directions.

2. Literature Review

2.1. Explaining Hotel Reviews

Explaining hotel ratings and reviews is a popular research problem. The main challenge is to
understand the key factors that contribute to customer satisfaction or dissatisfaction by means of
data-driven approaches [6]. As shown by [2], the presence of positive rating has a strong influence on
customer actions to the extent that it could be deemed as more influential than advertising strategies.
Therefore, analyzing review data and exploring the extracted knowledge is particularly appealing.
In [7] the authors try to find out what aspects of hotel experience are taken into consideration by
customers while rating a hotel. They analyze hotel reviews from Booking.com to by means of latent
semantic analysis to identify the main features referred to by customers and to determine their
correlation with customer ratings. A supervised approach to predicting review polarity is given by [8].
In [9] a similar approach, based on word co-occurrences, has been applied to hotel reviews from
TripAdvisor.com. Since hotel ratings can be specialized to different semantic categories (e.g., location,
cleanliness), customer judgements can be explained under various review aspects.
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2.2. Predict Hotel Rates and Recommend the Most Suitable Hotels

Predicting review ratings is an another remarkable research task. For example, one of the
most recently proposed approaches [10] have tried to capture user preferences comprehensively
by jointly analyzing hotel ratings and customer reviews. Specifically, the authors have proposed a
neural network-based approach to consider users’ opinions on specific aspects. The idea behind is
that different rating predictors share the same review encoder model in order to exploit the inner
dependencies, but tailor networks to different facets. A practical application of hotel rating predictors
is their tight integration into hotel recommender systems (e.g., [1,11–14]). Existing solutions rely
on text sentiment analysis [12,13], contextual information [14], reviewer reputation from the social
community [11], and opinions from friends external to the community [1].

2.3. Correlate Hotel Location With the Surrounding POIs

Parallel studies have deepened the analysis of the correlation between hotel location and Points
Of Interests (POIs). For example, in [15] the authors have investigated the correlation between
guest satisfaction (expressed by the hotel location rating) and three main location-related features, i.e.,
accessibility to points of interest, transport convenience, surrounding environment. The results confirm
that the presence of attractions, airports, universities, public transportation, and green spaces are
significant determinants. The reasons why hotel choose their locations are discussed in [16], whereas
an overview of the most popular hotel location models is given in [17].

Position of the present study in the related literature: This paper falls into category hotel review
explanation. Rating prediction and hotel recommendation are out of the scope of this work. The aim of
the present study is to explore the applicability of a unified latent vector representation of Wikipedia
POI descriptions and hotel reviews to analyze guest reviews at a city-wise aggregation level. To this
aim, we first enrich hotel reviews with general-purpose POI descriptions, model the underlying text
relationships in the latent space of sentence-based text embeddings, and then explain hotel reviews
according to both guest ratings and surrounding POIs. To the best of our knowledge, the use of Deep
NLP techniques to combine hotel reviews and ratings with POI descriptions is new.

3. Proposed Methodology

In this section we propose a method to explore reviews R and ratings W of hotels H in a
sentence-based embedding space. rij ∈ R denotes the i-th review of hotel hj ∈ H, whereas wj ∈ W
denotes the hotel rating. The geographical context of a hotel hj is described by the set of POIs Pj located
in its neighborhood. Each POI pk ∈ Pj is described by a set Dk,j of textual descriptors.

Figure 1 depicts the data analytics process, which entails the following steps: (i) Data enrichment:
review data were enriched with textual descriptions of the surrounding POIs, which were acquired
from open data repositories. (ii) Processing: reviews and POIs were transformed into a unified latent
space, which was produced by a state-of-the-art sentence embedding model [5]. The latent model
preserved the semantic relationships among textual words and phrases, thus allowing to correlate
the review content with the POIs located in the hotel neighborhood. (iii) Analysis: review and POI
embeddings were explored in order to gain insights into their possible semantic relationships.
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Figure 1. Data enrichment, data processing, and analysis steps.

3.1. Dataset Description

We considered the set of English-written reviews and ratings available in OpinRank dataset [18].
They were crawled from the TripAdvisor website (www.tripadvisor.com). It collected the reviews of
3096 hotels located in 10 popular cities spread all over the world, i.e., Bejing, Shangai, New Delhi, Dubai,
London, Montreal, New York City, Chicago, Las Vegas, and San Francisco. For each hotel, a discrete
rating (from 1 to 5) was provided, separately evaluating different aspects: value, location, cleanliness,
room, service, and the overall experience. Notice that TripAdvisor is a U.S.-based crowd-sourced
travel review service. Hence, it mainly collects travel experiences and hotel reviews submitted by
anglophone users.

Table 1 summarizes the main data characteristics. Hotels and reviews were grouped by city. Cities
were sorted by geographical location, according to their longitude, from East (Shangai and Bejing) to
West (Las Vegas and San Francisco), with respect to the prime meridian in Greenwich. Cities with less
than 100 hotels (i.e., Montreal and New Delhi) were discarded to reduce the bias due to the presence of
possible outliers.

Table 1. Description of OpinRank Dataset

City Hotels (All) Hotels (Geo-located) Avg. Num. of Reviews per Hotel

Shanghai 280 114 34.6
Beijing 260 118 42.4

New Delhi 277 97 40.9
Dubai 275 204 49.5

London 988 644 103.4
Montreal 142 100 81.8

New York City 260 229 218.3
Chicago 157 110 151.8

Las Vegas 230 121 148.7
San Francisco 227 179 151.6

Total 3096 1916 103.1

3.2. Data Enrichment

To enrich review data with contextual information, we geo-localized the hotels using the
OpenStreetMap (OSM) (www.openstreetmap.org) and GeoNames (www.geonames.org) services.
Specifically, out of 3096 hotels, we detected the geographical coordinates of 1916 of them (around
62%). Hereafter, we exclusively analyzed the reviews of geo-localized hotels (197,473 reviews overall,
corresponding to approximately 103 reviews per hotel on average).

Cities located in different areas showed rather peculiar characteristics. Specifically, for Eastern
cities (i) the number of reviews per hotel was on average lower (35–50 vs. 100–200), and (ii) the number
of geo-located hotels was proportionally lower (less than 50% of hotels are geo-located in Eastern
cities vs. more than 60% in Western cities). The above trends are mainly due to the provenance of the

www.tripadvisor.com
www.openstreetmap.org
www.geonames.org
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TripAdvisor service (U.S.). Notice also that TripAdvisor was founded in February 2000 and has started
to operate abroad later, e.g., it launched its official site in China in April 2009. Overall, the enriched
dataset consisted of 1719 geo-located hotels located in eight cities and three different continents, along
with their textual reviews. The coverage of the hotels with respect to the city extension was higher for
Western countries.

Reviews were enriched also with a description of the context surrounding the hotel. Specifically,
the names and characteristics of the nearby POIs were given. POIs are locations that were deemed as
worthy by most of the citizens. They may represent tourist attractions (e.g., museums, city landmarks,
famous spots), key places for transports (bus stops, underground stations), or food services (e.g.,
restaurants, pubs). POIs are geo-localized and mapped to hotels using the API offered by GeoNames.
Specifically, for each hotel we got the 100 nearest POIs no farther than 1 km.

We retrieved a textual description of each POI from open Web sources. Specifically, from
the GeoNames geographical database we retrieved the description of each POI by following the
corresponding Wikipedia link.

Notice that the GeoNames geographical database covers all countries and contains over 11
million free place names, but the country coverage is not uniform. For instance, it provided over
2 million place names in the United States, with a density of 0.23 names/km2, while only 768,000
place names were available for China, with a density of 0.08 names/km2, at the time of writing
(www.geonames.org/statistics)lastaccess:December2019.

3.3. Data Processing

We explored the correlation between hotel reviews, ratings, and the nearest POIs by analyzing
review text and POI textual descriptions.

An embedding function f : R→ V′ mapped reviews to a high-dimensional vector space V′, where
vector vij ∈ V′ corresponds to an arbitrary review rij (hereafter denoted as review embedding).
Similarly, an embedding function g: D → V′′ mapped POI descriptions to a high-dimensional
vector space V′′ (hereafter denoted as POI embedding). Embedding functions were obtained using
DistilBERT [19], which is a recently proposed sentence-based embedding model [5].

Thanks to the notable properties of the recently proposed vector representations of text [4],
vectors in the latent space could be conveniently combined by performing basic vector operations.
Specifically, review embeddings could be averaged by computing a pointwise average [20] over the
vector dimensions in order to generate the vector representations of hotels hr

j = avgiv
′
ij. Notice that

averaging the vector components separately for each dimension allows us to generate an aggregated
embedding vector with the same dimension.

Hotel-review embeddings hr
j described hotel hj by reflecting the corresponding review content.

Hereafter we will denote as H′r the resulting hotel-review embedding space. Likewise, we generated
a complementary vector representation pd,j = avgiv

′′
kj of each hotel hj reflecting the surrounding POI

descriptions. The resulting hotel–POI embedding space will be denoted as H′p.
Since hotel reviews were annotated with ratings describing different hotel aspects, we first

mapped ratings to discrete bins (i.e., Low, Medium, High) and then generated the corresponding
vector hotel–review and hotel–POI sub-spaces (respectively denoted as HL

r , HM
r , HH

r , and HL
p , HM

p , HH
p ).

We propose to map reviews R and POI descriptions D to a unified latent space, i.e., f = g, V′ = V′′,
to investigate textual data correlations between hotel reviews and POIs descriptions. Thanks to the
vector operations made available in the latent space, data could be analyzed at different aggregation
levels: review, hotel, city, or larger geographical aggregations.

Figure 2 graphically shows an example of the process used to embed each review (or POI
description) as well as an example of multiple vector aggregation using the point-wise average.

www.geonames.org/statistics) last access: December 2019
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7 2 6 6 ... 8 4 6

5 3 4 8 ... 0 8 3

3 1 6 7 ... 4 8 8

The hotel was clean and...

The position was great...

Hotel's restaurant served...

768

Pointwise
Average

5 2 7 ... 45.33 6.66 5.66

768

Figure 2. Illustration of the embedding and aggregation steps.

The unified model enables the following analyses.
Review–POI similarity. The presence of POIs in the hotel neighborhood is likely to influence

hotel reviews. To investigate to what extent review-POIs relationships hold, for each hotel hi ∈ H
we identified the POIs whose description was mostly related to the hotel reviews, i.e., argpj∈P
max(sim(v′ij,v

′′
ij). Embedding similarity was computed using the established cosine similarity

measure [20].
The review–POI similarity could be also explored at an aggregated view in the hotel–review

embedding space. The hotels whose reviews were most correlated to the surrounding POIs were those
identified by the following objective function: arghj∈H max sim(hr,j,pd,j). Further aggregated views
could be conveniently generated by aggregating hotels, based on their geographical location, into
districts, cities, countries, and continents.

Rating-POI similarity. The presence of POIs in the hotel neighborhood is likely to influence hotel
ratings as well. To investigate the correlation between review-POI relationships and ratings, we drilled
down the review-POI similarity analyses to the hotel–review and hotel–POI sub-spaces. Specifically,
for each hotel we identified the POIs that positively influenced hotel reviews by optimizing argpj∈P
max(sim(v′ij,v

′′
ij) |v′ij ∈ HH

r , v′kj ∈ HH
p . Similarly, we derived negative influences by jointly exploring

sub-spaces HL
r and HL

p . The hotels that were most influenced by the surrounding POIs in a positive
way could be identified by specializing the hotel embeddings to the sub-spaces related to high ratings
i.e., arghj∈H max sim(hH

r,j,p
H
d,j).

Similarities among geographical areas: hotels located in different areas could be compared with
each other in terms of the similarity between the corresponding reviews and surrounding POIs.
Without any loss of generality, hereafter we present a method for comparing hotels in different cities.
However, the same approach can be trivially extended to other types of geographical areas (e.g.,
districts, regions, continents).

First, we generated city-review and city-POI embeddings (denoted as cr,j and cp,j, respectively)
by combining the embeddings of the corresponding hotels. More specifically, let cq be an arbitrary city
and let hj be a hotel located in cq. Hotel-review embeddings hr

j are computed as the pointwise average

of all the review embeddings of hj. Likewise, hotel-POI embeddings hp
j are defined as the pointwise

average of all the POI embeddings in the neighborhood of hj.
Next, given a list of cities and the corresponding hotels per city, we estimated pairwise city

similarities. To this aim, we computed a city similarity matrixM, where each cell myz denotes the
similarity between a given pair of cities in terms of hotel reviews/POIs. Given an arbitrary cell
myz in the matrix (corresponding to the city pair 〈cy, cz〉), its value depends on the similarity (in the
embedding space) between the hotels in cy and those in cz. Specifically, for each hotel h∗i in cy we find
the neighbor-weighted k-nearest neighbor hotels h∗j in terms of cosine similarity in the embedding
space (We set k to 100 in the experiments reported in the paper.). Each neighbor hotel (either located
in cz or not) is weighted by its inverse rank 1

Rij
(i.e., the nearest hotel takes rank 1, the second 1

2 , and

so on). Hence, myz takes as value ∑h∗i ,h∗jincz
1

Rij
. The rationale was to smooth the contribution of

farther hotels while giving more importance to the nearest ones.
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3.4. Descriptive Analysis of The Unified Model

To explore and interpret the results of the review-POI and rating-POI similarity analyses, we
applied two established data mining techniques on top of processing results: clustering and frequent
itemset mining [20].

Clustering

Hotel-review embeddings were clustered in order to identify groups of similar hotels. Clustering
aims at generating groups of data samples such as samples within the same group are highly similar
(i.e., high intra-cluster similarity), whereas samples in different groups are rather different (i.e., low
inter-cluster similarity).

The goal of the clustering analysis is manifold. For example, clustering review embeddings
is aimed at grouping similar reviews together (indipendently of the hotel and location), whereas
clustering hotel embeddings aims at identifying groups of similar hotels in terms of text reviews
(independently of the location). In the experiments reported in Section 4, we have applied the
well-known K-means clustering algorithm [20].

Frequent Itemset Mining

Frequent itemset mining is an established unsupervised data mining technique to analyze
co-occurrences among multiple data items [21]. It has been successfully applied in many contexts
to extract recurrent association rules, even from high-dimensional [22], multiple-level [23], and
weighted [24] transactional data.

In our context, itemsets represented recurrent co-occurrences among multiple words in the hotel
review. To our purposes, words represented items, whereas each review was modeled as a transaction
consisting of a set of words. During this phase, we removed domain-specific stopwords, the ones
occurring in more than 10% of reviews, as long as the least frequent words, i.e., those occurring in
less than 0.01% of the reviews. Frequent itemsets were extracted by using the popular FP-growth
algorithm [25]. To reduce the number of potentially redundant patterns, a representative subset of the
frequent itemsets, i.e., the closed itemsets, is extracted. Closed itemsets are frequent itemsets such that
there exists no superset that has the same support count as the original itemset [20]. Itemsets provide
an interpretable description of the most recurrent trends in hotel reviews. Hence, they can be used,
in combination with the aforesaid techniques, to support domain experts in the process of extracting
interpretable models.

4. Results and Discussion

In this section we present the most salient results achieved on the real dataset. The main goal of
the empirical analysis was to identify relevant patterns, correlations and insights on hotel reviews, their
contribution to the overall city-wide experience, and the influence of the geographical information
carried by the POIs.

The experiments were run on a machine equipped with an Intel R© Xeon R© X5650, 32 GB of RAM
and running Ubuntu 18.04 LTS.

For the sake of readability, we separately present the results related to different analytics goals.
Specifically, Section 4.1 addresses the study of the similarities among different cities. Section 4.2
and 4.3 separately discuss the outcomes of the POI-review and POI-rating similarity analyses. Finally,
Section 4.4 and 4.5 report the results of a city characterization based on single words and word sets,
respectively.

4.1. City Similarity

In this section, we evaluate the similarity among different cities according to both the review- and
POI embeddings.
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The heat-map charts depicted in Figure 3 show the city-to-city similarities computed on (i) the
review embeddings (see Figure 3a) and (ii) the POI embeddings (see Figure 3b).

(a) Review-based natural language
processing (NLP) similarity

(b) Point of interest (POI)-based NLP
similarity

(c) Clustering of review vectors (d) Geographical proximity

Figure 3. City similarity heat maps.

Both maps follow a similar trend, with a higher similarity among cities nearer in longitude. For
instance, Beijing and Shanghai, two Chinese cities, have very high similarity scores between them, and
they are also more similar to Dubai (still in Asia) than any other Western cities. A second group of
similar cities are New York, Chicago, Las Vegas, and San Francisco, all from US. The trends between
the two maps, even if with different intensity, are similar in quality. If the POI-based embedding
similarity was expected due to their physical presence in the same place as the hotels of the same city,
the similarity in reviews triggers the question of the influence of the POIs on the experience of the
hotel customers: how much is the presence of nearby points of interests correlated with the reviews
and their ratings? We further investigate this issue in the following sections.

To confirm the city-to-city review similarity, we ran an unsupervised clustering of the review
embeddings. Being the clustering unaware of the actual city of the hotels, the goal was to measure the
match between each resulting cluster and each city. We run the K-means algorithm on the deep-NLP
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representation of each hotel review, using the cosine distance, and setting the number of clusters equal
to 8, since this was the number of cities. In Figure 3c we report the cluster assignments (in percentage),
normalizing the number of items on each cluster per row, i.e., for each city we reported the portion of
hotel reviews of that city assigned to each cluster. For instance, the first cell indicates that 89% of the
hotel review vectors of Shanghai have been assigned to Cluster 0.

Results confirm that Shanghai and Beijing were very similar, as their hotel reviews were assigned
predominantly (89%) to the same Cluster 0. In Cluster 0 no other city had assignments, apart from 6%
of Dubai hotel reviews. Hence, Cluster 0 confirmed that both Chinese cities were very similar, they
shared a very limited similarity with Dubai, another Asian city, and they were dissimilar with respect
to all other cities. Dubai was on a Cluster of its own, i.e., Cluster 2, where almost 80% of its reviews
were assigned. The majority of London reviews were assigned to Cluster 3 (58%), and a minority to
Cluster 1 (27%): London was probably a multi-faceted city from a review perspective. All US cities
had reviews assigned to Clusters 4, 5, and 6, with New York City predominantly on Cluster 4 (64%),
Chicago was split over Clusters 4 and 5 (40% each), Las Vegas predominant on Cluster 5, and finally
San Francisco predominant on Cluster 5. To sum up, we can describe the clusters as follows: Cluster 0
for Chinese cities (Beijing and Shanghai), Cluster 2 for Dubai, Cluster 3 and 1 for London, Cluster 4 for
New York City, Cluster 5 for San Francisco, Cluster 6 for Las Vegas. Chicago was similar to both New
York and San Francisco Clusters. Cluster 7 was an outsider, collecting outlier reviews from all cities.

For the city clustering results, we computed the Rand index [26] with respect to the true city
assignment, obtaining 0.44. We note that cities belonging to the same continent are typically similar.
This trend was confirmed from the continent-based clustering (Asia, Europe, America), whose Rand
Index was higher, and equal to 0.88.

We also note that, taking into account only the geographical-distance city-to-city matrix, we
obtained a completely different grouping from a magnitude perspective, as reported in Figure 3d, even
if qualitatively the continent trend was still evident.

4.2. Review–POI Similarity

Given the latent-space representation and the location coordinates for both hotels and POIs, we
computed the hotel–review and hotel–POI embeddings, respectively representing, on the one hand, the
hotel from the reviewers’ perspective and, on the other hand, hotel from the viewpoint of the nearest
POI descriptions. Both embeddings were separately averaged for each city. Finally, we computed
the cosine similarity measure between the average city-wide review vector and the corresponding
POI vector, thanks to the unified latent space. Such a metric aims at capturing the possible influence
of the POIs in the review evaluation, i.e., if the reviews take into consideration aspects linked to the
surrounding POIs.

The average similarity value for each city is reported in Figure 4a. For the sake of the analysis, we
also evaluated the average number of POIs nearby each hotel, reported in Figure 4a.

Even if the two figures were different in magnitude, they shared some qualitative patterns. We
note that the top three cities with the highest average number of POIs nearby their hotels, i.e., San
Francisco, New York City, and London, were also the top three cities for review–POI similarity: the
more POIs were available, the more the experience was related to those POIs. The difference in
magnitude, instead, is probably due to the missing POI coverage of the Eastern cities with respect
to the Western ones. To address the POI coverage imbalance, in Section 4.3 we correlated the review
ratings of each city with respect to the POIs of the same city. Notice also that the similarity between
hotel reviews and POI descriptions not only depended on the number of POIs, but also on the in-text
POI references contained in the text of the reviews. This motivated the presence of exceptions, such as
Las Vegas and Denver, where the number of POIs was rather low but the similarity was high.
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(a) Average similarity with respect to
nearest POIs

(b) Number of POIs within 1 km

Figure 4. Average distances analysis.

4.3. Rating–POI Correlations

We now analyze the correlation between the latent-space similarity values (described in
Section 4.2) and the rating scores of the reviewers, with the aim of explaining the influence of the POIs
not only on the review text, but also on the overall rating and specifically on the location rating.

For each hotel we computed (i) the similarity between its POI-based representation (i.e., the
hotel-POI embedding) and the review-based one (i.e., the hotel–review embedding), (ii) the average
overall and location score for the hotel itself, across all of its reviews.

On top of the evaluation of the above-mentioned scores, for each city we can compute the
Spearman correlation coefficient (ρs) [27] among the metrics (i) and (ii), as reported in Table 2. We
chose the Spearman correlation since it evaluates the monotonic relationship between two ordinal
variables. In our case we want to correlate whether an increasing similarity value in the latent space
matches an increasing overall/location score by the reviewers (or vice versa).

Table 2. Spearman correlation analysis between latent-space similarity and overall/location ratings.

City ρs (Overall) ρs (Location) Area

Shanghai 0.01 0.25 6.340 km2

Beijing −0.02 0.36 16.808 km2

Dubai 0.05 0.11 4.114 km2

London 0.33 0.52 1.572 km2

New York City 0.15 −0.01 7838 km2

Chicago 0.24 0.36 6061 km2

Las Vegas 0.07 0.25 352 km2

San Francisco 0.13 0.05 1214 km2

From Table 2 we note that the correlation was stronger with the location score, as expected, than
with the overall score, since the latter also included indoor services of the hotel. Both Eastern and
Western cities shared the same correlation values on the location score (e.g., Shanghai, Bejing, Las
Vegas, and Chicago). London and New York City (NYC) were exceptions, with the former being highly
correlated and the latter not correlated at all. The stronger correlation of London with the location
score (0.52) is probably due to the large extension of the city with respect to the other Western cities (it
has the widest area): this means that being near a POI is a key feature of hotels. New York City hotel
reviews appeared to be not correlated with the location ratings. Such exception might be motivated
by the following facts: (i) Iconic places in NYC (e.g., the Empire State Building) were cited also when
they were relatively far away (low similarity with nearby POIs but high location scores). (ii) NYC has
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a good transportation network so geographical distances were not so meaningful in that particular
context. (iii) NYC has a relatively high average number of reviews per hotel, hence more sparse terms
and citations to different, possibly far, POIs emerged. (iv) NYC has the highest number of hotels and
the largest extension among the U.S. cities in our dataset.

4.4. City Characterization

To confirm trends and extract human-readable insights on the reviews, at a city-wide aggregation
level, we considered two aspects: (i) the word clouds of the hotel reviews of each city, and (ii) the k
nearest POIs in the embedding space for all the hotels of each city. We expected to be able to capture
the mention of POIs in some cities and to characterize the key features of the cities as reviewed by their
hotel customers.

In Figure 5 we report four representative word-clouds. Those illustrations are created taking into
account the most frequent unigrams and bigrams in the hotel reviews. Such visual representations
provide an at-a-glance overview of the main characteristics that visitors (or better, English-speaking
reviewers) consider relevant of their experience.

We note that Eastern cities (Figure 5a,b) were predominantly characterized by emerging terms
related to the hotel itself and its services, meaning that a comfortable experience provided by the hotel
was deemed worthy to be shared as it might not be so likely to happen. On the contrary, Western cities
Figure 5c,d) also included important city-specific features such as landmarks and special attractions,
such as “casino” and “tube station”. For this reason, we confirmed the experience in Western cities to
be more related with the surrounding POIs, as reported in Figure 4a.

The second analysis on the POIs was performed as follows. For each hotel, in the embedding
space the 50 nearest POIs were selected. A majority voting approach was applied to identify the
most similar POIs for the whole city across all its hotels. Finally, the top three POIs for each city were
selected, as those related the most, in the embedding space, with the hotel reviews of the given city.
Results are reported in Table 3. We note that most POIs were peculiar landmarks, tourist attractions,
or public services that actually characterize each city. For instance, Shanghai was characterized by (i)
Xinzhuang, a town located in Minhang District, (ii) the Rockbund Art Museum in central Shanghai,
and (iii) the Waibaidu Bridge, called the Garden Bridge in English, being the first all-steel bridge, and
the only surviving example of a camelback truss bridge in China. Beijing was characterized by POIs
located in the Dongcheng District, such as (i) the Jiaodoukou Subdistrict, (ii) Nanluoguxiang, a narrow
alley, that gives its name to an old part of the Beijing city centre, with traditional architecture, and (iii)
the Great Leap Brewing, which operates three popular brewpubs in Beijing, two of which are located
in the Dongcheng District. Dubai’s top landmarks were (i) Al Muraqqabat, a locality in the heart of
eastern Dubai in Deira, (ii) the Union station of Dubai Metro on both the Green and Red Lines, known
as the busiest metro station of Dubai, and (iii) Dubai Municipality. Western cities highlighted avenues,
churches, casinos, and theatres as special POIs. This approach allowed us to automatically extract
peculiar attractions in the cities from the point of view of hotel customers, which is of paramount
importance for the tourism industry.
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(a) Beijing Word Cloud (b) Shanghai Word Cloud

(c) Las Vegas Word Cloud (d) London Word Cloud

Figure 5. Word Clouds.

Table 3. Most influencing POIs for each city.

City Most influencing POIs % of hotels

Shanghai
Xinzhuang 6.52%

Rockbund Art Museum 3.11%
Waibaidu Bridge 2.8%

Beijing
Jiaodoukou Subdistrict 4.69%

Nanluoguxiang 4.43%
Great Leap Brewing 4.43%

Dubai
Al Muraqqabat 12.6%

Union (Dubai Metro) 11.02%
Dubai Municipality 9.45%

London
Holy Trinity, Paddington 1.91%

Cleveland Square 1.91%
Leinster Gardens 1.86%

New York City
450 Lexington Avenue 1.18%

Black Chamber 1.04%
St. Agnes Church 1.0%

Chicago
Medinah Temple 5.75%

Millennium Centre 5.41%
55 East Erie Street 5.08%

Las Vegas
Main Street Station Hotel and Casino and Brewery 4.17%

Mob Museum 4.17%
Las Vegas Fire & Rescue Department 4.17%

San Francisco
Curran Theatre 11.6%

Ruby Skye 11.45%
City of Paris Dry Goods Co. 11.45%
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4.5. Frequent Itemsets

Besides the straightforward word cloud approach, we applied also the exploratory itemset mining
technique to gain more insights into the main review topics separately for each country. In Table 4
we report the top three word sets per city as well as their relative frequency count (i.e., the support
index [21]) in the set of review related to that city.

It is worth noting that in our analysis we set a minimum support threshold equal to 1% in order
to extract all the closed frequent word combinations (independently of the size). Therefore, the mined
itemsets were potentially more expressive than simple word clouds as they represented not only single
words but also larger word combinations.

The results are reported in Table 4. They show that the itemset-based descriptions of the most
relevant topics differed in Western and Eastern cities. Specifically, the reviews in Beijing and Shanghai
clearly shows that the topic of spoken English language was a frequent issue for English-speaking
visitors because of the low percentage of local English-speaking people [28] in hotels. Not surprisingly,
in the English-spoken cities, the reviews focus more on the nearby points of interest. Remarkably, in
Dubai, the emerging concepts were also related to the nearby POIs. This pattern could be due to the
high percentage of English-speaking people [29] in this country.

Table 4. Top three closed word-sets for each city.

City Frequent Words Set Support

Shanghai
nanjing, road 8.1%
bund, nanjing 5.9%

chinese, english 5.52%

Beijing
chinese, english 10.7%

chinese, taxi 8%
forbidden, shopping 7.8%

Dubai
beach, taxi 7.13%

beach, jumeirah 6.76%
beach, fantastic 6.64%

London
road, tube 4.01%

minute, tube 3.99%
easy, tube 3.82%

New York City
empire, state 7.62%

building, empire 5.94%
building, state 5.93%

Chicago
avenue, michigan 7.99%

navy, pier 6.93%
magnificent, mile 6.87%

Las Vegas
casino, strip 19%
buffet, strip 8.24%
shuttle, strip 7.79%

San Francisco
cable, car 9.85%

fisherman, wharf 6.96%
car, parking 6.62%

5. Conclusions and Future Research Agenda

This work has addressed the research issue of identifying effective strategies to correlate hotel
reviews and ratings with the surrounding geo-referenced open data. Specifically, this paper has
explored the use of sentence-based embedding models on public sources of points of interest, reviews
and ratings, including thousands of hotels in eight popular cities in three continents, with a total of
almost 200 thousands reviews and ratings. The proposed methodology has allowed us to project all
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textual data from both reviews and POI descriptions into a unified latent space, thus enabling the
investigation of the influence of surrounding POIs on customer reviews at a city-wise aggregation level.

Experimental results addressed many facets of such correlations, from city similarities, to
review-POI influence, to insights on the specific words characterizing each city. To explore the content
of the unified latent space, unsupervised data mining techniques such as clustering and frequent
itemset mining have been applied with the goal of automatically extract correlations among words
and data-driven hotel similarities. Different trends have been identified, such as similarities in the
latent-space for cities in the same continent, correlation between reviews and POIs, and explanations
thanks to frequent word occurrence extraction.

The proposed approach can be useful for different stakeholders, from local authorities to policy
makers aiming at improving the tourism ecosystem, to hotel chains targeting new openings, to provide
better insights to both hotel owners and users besides the specific rating score. Being able to explain
the correlation of POIs with hotel reviews opens up various exploitation possibilities related to the
importance of the POI distance witto the hotels, the local mobility patterns, the urban transport vh
respect ectors, and the interest of the visitors towards nearby POIs or far away landmarks. As an
example, cities with iconic landmarks and an efficient and pervasive public transport system tend to
present reviews referring to far away POIs (i.e., the iconic landmarks) with high location ratings, hence
(i) new hotels do not need to be opened in downtown to reach high location scores and (ii) customers
can save money by booking hotels far from the city centre, without affecting their experience.

The preliminary results achieved on real hotel review data leave room for further extensions of
the current research. In the future research agenda, we plan to extend the current method to cope
with multi-lingual reviews and POI descriptions. In fact, since hotel reviewers come from all over
the world, the review text is, necessarily, multi-lingual. Likewise, POI descriptions can be retrieved
from Web sources written in different languages. However, analyzing cross-lingual text is potentially
challenging. This poses the question of how to integrate hotel reviews and POI description in a a
unified cross-lingual vector space. We plan to overcome this issue by applying ad hoc embedding
alignment strategy (e.g., [30,31]).
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