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Chained Compressed Sensing:
A Block-Chain-inspired Approach for Low-cost

Security in IoT Sensing
Mauro Mangia, Member, IEEE,, Alex Marchioni, Student Member, IEEE,, Fabio Pareschi, Member, IEEE,,

Riccardo Rovatti, Fellow, IEEE,, Gianluca Setti, Fellow, IEEE,

Abstract—Chaining, i.e., the mode of operation in which each
message is encrypted considering a digital summary of previous
ones, is here applied to block-cipher stages based on compressed
sensing. We show that this simple and parsimonious technique
may significantly harden the resulting system with respect to
common threats such that ciphertext-only, known-plaintext, and
man-in-the-middle attacks. Non-negligible robustness comes at
the price of not more than a 2% of energy overhead with respect
to the pure compression stage which represents a 24× reduction
with respect to straightforward implementation of a traditional
cryptography primitive like AES.

I. INTRODUCTION

The spreading adoption of the Internet of Things (IoT)
paradigm in areas like smart cities [1], healthcare systems
[2] and smart homes [3], and the consequent need to provide
network access to a vast multitude of sensing nodes with
minimal energy footprint, has resulted in an increasing atten-
tion to the need of guaranteeing the privacy of data gathered
and distributed by networked devices [4]–[9]. Security is even
of greater concern when the sensor nodes acquire sensitive
biometric information or biomedical signals, e.g. for authenti-
cation purposes or remote health monitoring applications. The
issue is also greatly complicated by the fact that IoT nodes are
of low-complexity and extremely low-power by design and
every resource, including those spent for security purposes,
must by carefully tailored to the actual requirements of each
application.

At the current state of the art, IoT security is also chal-
lenging due to lack of standardization in addressing the
problem to the point that a large part of off-the-shelf IoT
nodes lack fundamental considerations in terms of privacy
[10]. Furthermore, whenever addressed, security is commonly
granted via dedicated encryption stages with varying levels of
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complexity. These stages protect information after analog-to-
digital conversion of the signal of interest, and need consider-
able resources, especially in terms of power consumption and
implementation costs. Given the resource optimization needed
in IoT nodes, methods to match this expense with the actual
amount of security that is needed in each case are therefore
desirable.

Recent surveys [11]–[13] associate security problems to
different abstraction layers and, at each layer, address the
challenge of devising new cryptographic primitives able to
effectively address the security-energy trade-off.

Compressed Sensing (CS) [14], [15] is a signal acquisi-
tion technique embedding implicit compression in a so-called
analog-to-information conversion [16] [17], and has been
proposed as a method to also introduce security directly into
the acquisition process at the analog-to-information interface
or jointly with digital signal compression [18]–[20].

In rough terms, what happens in CS is that chunks of an
input waveform are represented with fewer scalars than the
number of samples indicated by the Nyquist-Shannon theorem,
which makes CS very appealing for low-resources IoT nodes.
Such a lower-resource acquisition is possible assuming that
the signal to process is sparse, i.e. a proper basis exists such
that the projection of any input waveform over that basis has
only few terms significantly different from zero. Acquisition
(encoding) is practically achieved via a random linear pro-
jection by means of a suitable sensing matrix, whose perfect
knowledge is fundamental to reconstruct the original signal
via a non-linear decoding algorithm [15]. Such a matrix can
therefore be considered a sort of key [18], [20], which, once
shared between the IoT node and the corresponding gateway,
guarantees a certain degree of secrecy without the need of
any additional cryptographic stage, as well as robustness
again Known-Plaintext Attacks (KPAs) [19]. Unfortunately,
due to its linearity, CS cannot provide perfect secrecy in the
Shannon sense, since the information about the power of the
acquired signal leaks into the compressed measurements that
are transmitted to the receiver.

Another recent direction in IoT security is the exploitation
of BlockChain (BC) techniques [21]–[25]. BC, which is, for
example, the cornerstone of Bitcoin (the first cryptocurrency
system launched in 2008 [26]), involves the creation of a
public and distributed ledger by appending (mining) blocks
to it when a transaction is performed. Each block contains
a digital summary of the previous block and, once linked to
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the chain, makes impossible to change the payload of any
single block without recomputing all subsequent blocks. This
chaining is one of the features that contributed to the overall
security of BC.

Yet, computing a block and linking it to the chain requires
the solution of a cryptographic challenge called Proof-Of-
Work (POW). As such, despite promising, a straightforward
application of BC to distributed IoT nodes is challenging
for the large resources and long delay associated to POW
operations. Solutions to this problem have been proposed in
[23], [24] which rely on the elimination of the concept of
POW by creating a local private BC between the IoT nodes
and the corresponding gateway.

The main contribution of this paper is to take inspiration
from the BC technology to improve the privacy level of CS
acquisition and therefore to create a solution for secure data
transmission between an IoT node and the corresponding
gateway. To do so, we introduce a suitable chainer block,
pair it with CS and exploit its properties to mask the power
signature of the signals, to increase resistance to KPAs, and to
grant robustness to Man-in-the-Middle Attacks (MiTMs), that
in some critical applications may be a key issue.

The aim of this work is to propose chained CS as a new
cryptography primitive that provides data privacy coping with
the strict energy constraints typical of IoT applications. Note
that CS processes successive signal chunks so we will compare
our CS based methods with standard block cipher approaches.

More specifically, the paper is organized as follows. In
Section II we briefly review the essentials of CS and its
applicability as a block cipher stage. In Section III we identify
the actors in our secure transmission and the potential attacks
we deal with: Ciphertext-Only Attacks (COAs), KPAs and
MiTMs. In Section IV we define a chainer as a block that acts
on subsequent vectors of digital words with a mixture of hash-
ing and arithmetic processing. We also state two properties that
we leverage on in our manuscript, whose proof is sketched
in the Appendix. In Section V we apply a chainer at the
output of a CS stage and derive the security properties of the
resulting ensemble. In Section VI we apply a chainer before
a CS stage and derive the security properties of the resulting
ensemble. In Section VII we discuss the approaches introduced
in the previous two sections in terms of energy overhead with
respect to the standard CS and comparisons with standard
block cipher has been also provided. In Section VIII we
show an example of how a chainer before CS can be used
to improve robustness against MiTMs in a potentially life-
critical application in which Electro Cardio Graphics signals
(ECGs) are acquired and transmitted. Conclusions are drawn
at the end.

II. COMPRESSED SENSING AND BLOCK CIPHERS

We work in a discrete-time setting in which the signal
waveform is acquired as a sequence of time windows. We
assume that the t-th of them starts at discrete instant t, and
that in each window the signal is sampled n times, and
we also collect in a vector ξ[t] = (ξ[t]0, . . . , ξ[t]n−1) the
corresponding digital entries.

TABLE I
LIST OF ACRONYMS

Basis Pursuit BP

BlockChain BC

Ciphertext-Only Attack COA

Compressed Sensing CS

Electro Cardio Graphic Signal ECG

Internet of Things IoT

Known-Plaintext Attack KPA

Man-in-the-Middle Attack MiTM

Pseudo-Random Number Generator PRNG

Signal-to-Noise Ratio SNR

Subset Sum Problem SSP

To indicate the ranges of digital quantities, given a number
B of bits, it is useful to define the sets of integers Z(B) ={
−2B−1, . . . , 2B−1 − 1

}
and N(B) =

{
0, . . . , 2B − 1

}
. With

this, if Bξ bits are used to encode each signed sample, we have
ξ[t] ∈ Z (Bξ)

n.
CS works on sparse signals, i.e., it assumes that among the

n entries of ξ[t] at most κ � n are non-zero [14]. Under
this assumption, CS multiplies ξ[t] by an m × n matrix A[t]
to obtain a so-called measurement vector y[t] = A[t]ξ[t]. A
typical, very hardware-friendly option for the elements of A[t]
is a random choice of independent antipodal ±1 symbols
generated by a Pseudo-Random Number Generator (PRNG)
with a known seed [27].

Despite the fact the y[t] is only m-dimensional, a decoder
is able to recover the original signal ξ[t]. In fact, the recovery
procedure exploits the sparsity prior to select, among the
infinite number of n-dimensional vectors ξ[t] compatible with
the values in y[t], the sparsest one ξ̂[t]. More precisely, it can
be proved [14] that under suitable assumptions this may be
done by setting ξ̂[t] to the solution of the convex optimization
problem

ξ̂[t] = argmin
ξ
‖ξ‖1 s.t. A[t]ξ = y[t] (1)

where ‖ · ‖1 is the `1-norm, i.e., ‖ξ‖1 =
∑n−1
j=0 |ξj |. This

method is called Basis Pursuit (BP) and, though it is not by
far the unique proposed in the literature, it is the prototype
of most non-greedy recovery algorithms commonly employed
in CS based acquisition schemes (see f.i. [28] and references
therein).

It is worth noting that, (1) being convex (to the point that it
can be translated into a purely linear optimization), it admits
a unique solution so that, since ξ[t] has integer entries, then
y[t] = A[t]ξ[t] also has integer entries and theoretically allows
errorless recovery, that is ξ̂[t] = ξ[t].

Theory ensures that this happens when m is O (κ log (n/κ))
[14], [15]. In any practical case one usually has m � n
and thus, assuming that the data needed to recover the signal
must be transmitted or stored, the obvious advantage of CS
is that a simple linear transformation yields acquisition with
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Fig. 1. Links and some of the possible attacks in a distributed sensing
environment.

compression. Actually, literature abounds of methods [29]–
[33] to lower m and thus increase the achievable compression
and some of them [34], [35] are compatible with the antipodal
structure of A[t].

Further to that, one may note that, to be able to recover
the original signal, the decoder must know A[t], i.e., the seed
from which the PRNG generating it is run. Hence, that seed
plays the role of the private key of a block cipher that uses
it to encrypt the plaintext ξ[t] into the ciphertext y[t]. Such a
ciphertext is then passed to a decoder that uses the same key
to solve (1) and recover the plaintext.

From this point of view, CS has been proposed and analyzed
as a way of simultaneously providing compression and some
form of security [18]–[20], [36] at an extremely low-cost, thus
perfectly fitting in the design of low-resources subsystems
dedicated to sensing.

Characterization of the trade-off between security and re-
sources is classically carried out by analyzing cryptographic
attacks and quantifying the effort needed by the attacker to
have a non-negligible probability of success, as it will be
detailed in the following sections.

III. A PROTECTED COMMUNICATION SCHEME BETWEEN
SENSORS AND GATEWAYS

The conventional setting sees a legitimate transmitter (Al-
ice) who encodes a plaintext into a ciphertext and sends it to a
legitimate receiver (Bob). Various attackers try to exploit the
information that leaks from the encryption, possibly leveraging
additional side information that depends on the kind of attack.
In our setting, Alice may represent the sensing subsystem of
any IoT device and Bob is the gateway collecting readings and
dispatching them for further processing. An intuitive scheme
of the links and the possible attacks is reported in Figure 1.

By means, for example, of a Diffie-Hellman-Merkle proto-
col [37], Alice and Bob agree on two keys kAB and kBA that
control, respectively, the upstream communication between
Alice and Bob and the downstream from Bob to Alice. The
two links are used in a different way since Alice sends sensor
readings to Bob while Bob sends control words to Alice. We
analyze attacks on the upstream link that carry sensor readings.
In particular, we focus on three different classes of attacks:
• Ciphertext-Only Attack (COA): this is the most

straightforward attack to the data sent by Alice to Bob.

Here an eavesdropper (Eve) collects successive cipher-
texts to evaluate the statistics of transmitted symbols and
tries to guess pieces of information about the plaintext.
In this case, Eve embodies the gateway (Bob), i.e, she is
not able to access to the sensor readings in any case.

• Known-Plaintext Attack (KPA): this class of attacks is
more insidious with respect to COAs. In KPA the attacker,
Eve, possesses the ability to capture a certain number of
plaintext-ciphertext pairs and tries to use them to compute
the kAB which will allow her to decode the following
ciphertexts. In our IoT inspired scenario performs this
attack is easy. It is reasonable to suppose that Eve may
be able to temporarily deploy an identical node close to
the attacked one, i.e, she is able to acquire the signal
ξ[t] starting from a certain time t > 0. She is also
eavesdropping the transmitted ciphertexts, therefore Eve
embodies both Bob and she partially embodies Alice1.

• Man-in-the-Middle Attack (MiTM): A different at-
tacker (Mallory), interposes between Alice and Bob and
sends messages to the latter pretending to be the former.
This is called Man-in-the-Middle Attack. To be able to
communicate to Bob, Mallory knows the upstream key
kAB . The most threatening aspect of MiTM is that Bob
may receive counterfeited information and this can be
critical when dealing with sensors that produce sensitive
information.

Though in this paper we focus on the uplink, note that
MiTM attacks are critical also on the downlink from Bob to
Alice as this would allow Mallory either to set the internal
parameter of the encryption to values known to attackers, or
misconfigure the sensor nodes, or even give forged instructions
to the node that may, for example, host also actuators along
with sensors.

The most classical way of mapping CS onto a block cipher
is to use kAB as a seed for the PRNG that generates A[t] both
at the encoder and at the decoder. This is the scheme that most
of the current literature discusses [18]–[20], [36].

From those contributions we know that the trade-off be-
tween resources and security has consequences on the robust-
ness against COAs. In particular, in the large n limit, the
statistical distribution of the entries of y[t] becomes Gaussian
with a zero average and a variance that depends on the energy
of the encoded signal

∑n−1
j=0 ξ[t]

2
j [18], [20]. This means that

Eve may observe the measurement vector that is the ciphertext
and extract a small but non-negligible amount of information
on the signal that is the plaintext.

Robustness with respect to KPAs is also not complete. In
particular, given ξ[t] and y[t], the task of finding a matrix A[t]
made of antipodal symbols A[t]j,k = ±1 that is compatible
with y[t] = A[t]ξ[t] is quite easy. In this case, security stems
from the fact that the number of candidate solutions A[t] can
be made so large that pinpointing the true matrix is practically
impossible [19].

1In KPA the attacker accesses to the information to be encrypted but he does
not posses the ability to impose the current value of the data to be encrypted.
The case where Eve is also able to chose the ξ[t] values correspond to another
class of attacks, the Chosen Plaintext Attack
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Chainer®
l[t] é 3 ç  c[t −1]

c[t]

¤ kAB c[0]

Hα,β P[t] chain state

Fig. 2. Scheme of the chainer block.

The main contribution of this work is to introduce a chaining
technique that, by means of a small additional complexity,
allows to increase robustness against COAs and KPAs and
helps countering MiTM attempts.

These attacks are selected as they present themselves as
obvious threats in the IoT framework when nodes cannot
be tampered with but their immediate surrounding can be
physically accessed thus making them the weakest links in the
upstream chain. Clearly, other attacks like Chosen Plaintext
and Chosen Ciphertext attacks are possible and will be the
topic of future investigations.

IV. WINDOW CHAINING

Chaining is a classical mode of operation of block ciphers.
To apply it in a framework in which CS acts as the block
cipher primitive, it is convenient to define chaining on vectors
of digital words instead of blocks of bits.

Formally speaking, we assume that c[t] ∈ N(Bc)nc is the
nc-dimensional chain state vector at time t, and that l[t] ∈
Z(Bl)nc is the vector representing the link to be added to the
current chain with Bl ≤ Bc. The next chain state is computed
as

c[t] = P [kAB ] (Hα,β (c[t− 1] + l[t]))

In that formula, Hα,β : N(Bc)nc 7→ N(Bc)nc is a
component-wise linear congruential hashing function such
that, if c′′ = Hα,β(c

′) then

c′′j =
(
αc′j + β

)
mod 2Bc

for j = 0, . . . , nc−1, where the modulus is defined to always
yield values in N(Bc) and we set β = 1 and α = 2Bc − 3 to
keep implementation as simple as possible but still guarantee
that the congruential mapping preserves maximum length
cycles [38].

Moreover, P [kAB ] : Z(Bc)nc 7→ Z(Bc)nc is a permutation
network that swaps the entries of its argument according to a
permutation that is pseudo-randomly generated spreading from
kAB .

Figure 2 reports a scheme of a chainer block. Such a block
features two properties that we will exploit in the following,
i.e.,

1) If P [kAB ] and the sequence and c[t] are known then one
can infer the sequence l[t];

2) Under mild conditions on the statistics of l[t], the entries
of c[t] tend to be uniformly distributed in N(Bc) for
t→∞.

1
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Fig. 3. Using a chainer to improve CS security: (a) chaining measurements;
(b) chaining sparse inputs; (c) chaining after sparsification.

A sketch of the proof of the two properties, along with the
required conditions, is reported in the Appendix.

By exploiting the chaining block, we extend the use of CS
as a block cipher in two ways that are sketched in Figure 3-(a)
and -(b) (Figure 3-(c) is a variation on Figure 3-(b) needed to
cope with some real-world signal that will be explained and
exploited in Section VIII).

As a final comment, it is interesting to evaluate what is the
overhead in terms of complexity due to the introduction of a
window chaining in a encryption/compression scheme based
on the CS paradigm. According to the applications proposed
in the next two sections, the nc value is at maximum equal
to n. Given that, the computational cost for the chainer block
can be approximated with a number of arithmetic operations
running in O(n) and P [kAB ].

Conversely, the computational of a CS encoder is pro-
portional to nm. The evaluation of the measurement vector
requires nm sums as well as the number of random bits to be
generated for one antipodal sensing matrix is nm. Knowing
that m ≈ O(αn log(1/α)) with α = κ/n, the CS encoder cost
is O(αn2 log(1/α)).

Thus, it is reasonable to affirm that the introduced overhead
is limited, i.e., the whole computational cost for the proposed
encryption/compression scheme does not drastically increase
with respect to the case where only a CS encoder is devoted
to such task.

V. CHAINING OF MEASUREMENTS

As a first option, we may apply chaining to the sequence
of measurement vectors by setting l[t] = y[t] and using the
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chain state as the ciphertext sent to Bob by setting transmitted
signal z[t] equal to the chainer output c[t]. This is sketched in
Figure 3-(a).

The initial condition c[0] is set by Bob and sent to Alice
through the downstream link encrypted with kBA. Initializa-
tion can be a regular process associated to all other forms
of periodic synchronization that normally take place between
gateways and sensor nodes.

The transfer of information from Alice to Bob depends
on property 1 in Section IV. In fact, at each t > 0, Bob
observes c[t] and remembers c[t − 1] from the previous time
step. Knowing P [kAB ], it is possible to compute y[t] that is
fed into a BP reconstruction block along with A[t] that is also
known starting from kAB . Providing m is properly decided,
this allows errorless recovery of ˆξ[t] = ξ[t].

Eve may also observe z[t] = c[t] and remember z[t− 1] =
c[t−1], but cannot reconstruct P [kAB ] and thus cannot decide
which entry in c[t] must be matched with which entry in c[t−
1] to compute the corresponding entry of l[t]. With no other
information, Eve would need to guess the permutation P [kAB ],
i.e., choose one out of m! equally probable options. Since
m is commonly in the order of many tens if not hundreds,
this is feasible only with a substantial computational effort.
Moreover, whenever l[t] = y[t] could be retrieved, Eve would
still need to break CS-based encoding to gain information on
ξ[t].

Even more interesting than adding a further layer of com-
plexity to the encryption, chaining of measurements prevents
the leakage of information about the energy of the signal ξ[t]
that affects classical CS-based schemes, i.e., COA immunity is
strongly reinforced. In fact, thanks to property 2 in Section IV,
the distribution of z[t] = c[t] is asymptotically uniform.

Though the proof of that property does not give hints on
the speed of convergence to the uniform behavior (technically
speaking, it ensures convergence by proving that the trend is
faster than the slowest possible one), we may obtain an idea of
the typical speed by performing some simulation. Our test sys-
tem encodes each measurement y[t]j with 10 bits, thus setting
Bc = 10. We know that y[t]j is distributed as discrete version
of a Gaussian distribution and to consider different levels of
energy we scale it by constraining y[t]j ∈ {−r, . . . , r}.

A thorough Montecarlo simulation allows to accumulate
samples of the chained measurements form which we calcu-
late empirical distributions at subsequent time steps t. Each
empirical distribution is matched against the uniform one by
computing its Kolmogorov-Smirnov statistic [39, Chapter 15].
The result is reported in Figure 4 along with the value of the
Kolmogorov-Smirnov statistic of a set of samples generated
by a truly uniform distribution (dashed line). Notice how
convergence is so fast that after 10 time steps the ciphertext
distribution is practically indistinguishable from a uniform
one.

VI. CHAINING OF SPARSE SIGNALS

As a second option, we may apply chaining to the sequence
of sparse signals by setting l[t] = ξ[t]. Then, we may use the
chain state to perturb ξ[t] before it enters the CS stage. The
ciphertext is then z[t] = A[t](ξ[t]+c[t−1]) = y[t]+A[t]c[t−1].
This is sketched in Figure 3-(b).

The transfer of information from Alice to Bob relies on
the fact that Bob is continuously receiving data from Alice
and thus is able to update its local copy of the chain state,
starting from the initial condition c[0]. As in the previous case,
the value of c[0] is to be considered a message sent to Alice
through the downstream link encrypted with kBA.

Chaining of sparse signals increases the robustness of CS-
based encryption with respect to KPAs and grants some
immunity to MiTM attacks.

In KPAs, Eve knows both ξ[t] and z[t] at T time
steps t0, . . . , tT−1. To compute the corresponding
A[t0], . . . , A[tT−1] and hope to identify the kAB that
regulates their generation, Eve should solve

z[t] = A[t] (ξ[t] + c[t− 1]) (2)

for t = t0, . . . , tT−1.
If Eve knew c[tj ], then the result in [19], [40] would imply

that solving (2) is extremely easy but generates such a deluge
of indistinguishable candidates A[tj ] to completely spoil the
effectiveness of the attack. When chaining on the sparse signal
enters into play, c[tj − 1] is hidden, and the right-hand side
of (2) contains two unknowns, A[tj ] and c[tj − 1]. Since by
property 2 in Section IV, we have no prior on c[tj − 1], all
possible 2nBc candidates are feasible and for each of them, the
resulting equation in A[tj ] would yield an enormous number
of indistinguishable solutions.

This considered, and using the result in [19] to esti-
mate the number of equivalent solutions to (2) when c[tj −
1] is known, we obtain that on the average, the num-
ber of equivalent solutions to the complete version of (2)
is 2n−max{Bξ,Bc}−1+nBc

√
3/πn. The security level offered

against KPA can, thus, be roughly estimated as the minimum
between 2-logarithm of that number, and the number of
bits used to encode kAB and kBA (that protects c[0]), i.e.,
min {(n− 1)(Bc + 1), BkAB +BkBA}-bits, which is equal to
BkAB +BkBA for n large enough.

In MiTM attacks, Mallory is interested in sending messages
to Bob pretending to be Alice, exploiting the fact that she
knows the upstream key kAB . At any time step t, Bob expects
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a ciphertext that depends not only on the plaintext (that
Mallory wants to counterfeit) but also on a chain state that
Mallory does not know.

Hence, to fool Bob into accepting her message at time t,
Mallory must first reconstruct the chain state c[t−1] and thus
must solve (2) where z[t] is observed and A[t] is computed
from kAB . The attack must go through two steps. It must first
compute c[t − 1] + ξ[t] starting from (2), and then separate
c[t− 1] + ξ[t] into c[t− 1] and ξ[t]. Both steps generate a lot
of indistinguishable candidates whose number is a quantitative
evaluation of the offered security.

By dropping the fixed t we may concentrate on solving
q = Ap with q = y[t]+2BξA[t]u and p = c[t−1]+ξ[t]+2Bξu,
where u is the n-dimensional unit vector. The unknown vector
p is made of non-negative entries and thus there is a set of
n × Bp binary variables bk,l such that pk =

∑Bp−1
l=0 bk,l2

l

with Bp = max{Bc, Bξ} + 1. By substituting this into the
expression for the j-th component of q we get

qj =
n−1∑
k=0

Aj,kpk =
n−1∑
k=0

Bp−1∑
l=0

Aj,k2
kbk,l (3)

for j = 0, . . . ,m− 1.
This shows that the first step of MiTM attacks is equivalent

to a m simultaneous Subset Sum Problems (SSPs) with
variables bk,l and coefficients Aj,k2k.

SSP is known to be an NP-complete class of problems
potentially very hard to solve [41]. Yet, the reason why
Mallory has little chance of being successful in the first step
lies in the same phenomenon that regulates KPAs [19], [40].
SSPs are characterized by a parameter δ called density that is
the ratio between the number of variables and the number of
bits needed to encode the corresponding coefficients. In our
case

δ =
nBp

log2 (2
Bp)

= n� 1

so that (3) is a so-called high-density SSP. It is known that
high-density SSPs are likely to admit many solutions [42].
Regrettably, due to the fact that the coefficients Aj,k2k do not
obey the statistical assumptions on which classical theoretical
quantification of the number of solutions is based, we may
only resort to simulation.

Since counting solutions is a potentially hard problem by
itself, we test only very small instances and observe how the
number of solutions behaves when n, m and Bc = Bξ change.
Our reference configuration features n = 8, m = 6, κ = 3 and
Bc = Bξ = 5. Starting from that we consider configurations
in which either n, m, or Bc = Bξ decreases or increases. For
each configuration we generate 1000 instances of an MiTM
attack and enumerate all possible solutions to the first step
needed by Mallory. The results are reported in Table II.

As expected, the number of solutions of an MiTM attack
increases when either n or Bc and Bξ increase. This is
because in both cases the overall number of binary variables
in the equivalent simultaneous SSP increases. On the contrary,
increasing m reduces the number of solutions as the matrix
A[t] is m×n and increasing m makes it closer to a square one

TABLE II
AVERAGE NUMBER OF SOLUTIONS TO THE FIRST STEP OF AN MITM

ATTACK FOR SOME SMALL-SIZE SYSTEMS TESTED TO ASSESS THE
SENSITIVITY TO EACH PARAMETER. THE FIRST BOLD ROW REFERS TO A
REFERENCE CASE WHOSE NEIGHBORHOOD IS EXPLORED BY THE OTHER

ROWS. ARROWS HIGHLIGHT THE TREND WITH RESPECT TO THE
REFERENCE CASE.

n m Bc=Bξ average # of solutions

8 6 5 65584
7 ↓ 6 5 ↓ 6198
9 ↑ 6 5 ↑ 408117
8 5 ↓ 5 ↑ 630472
8 7 ↑ 5 ↓ 7536
8 6 4 ↓ ↓ 4992
8 6 6 ↑ ↑ 150041 1
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Fig. 5. Average of the number of solutions of an MiTM attack for small-
size problems in which m ' 70%n and κ ' 30%n (integer approximations
apply). The very small number of bits Bc = Bξ = 3 allows exhaustive
enumeration of the solutions for each Montecarlo trial. The line is the least-
square fitting of the trend.

for which z = Ap would be a one-to-one relationship. Note
how, in every case, sensitivity to configuration parameters is
extremely high.

Further to that, to be able to reasonably estimate the number
of solutions for values of the system parameters in typical
ranges, we simulate configurations with 4 ≤ n ≤ 20 and
m ' 70%n and κ ' 30%n that are ratios close to what
commonly appears in real-world applications. Exhaustive enu-
meration of all solutions is possible if we adopt Bc = Bξ = 3,
that keeps the number of binary variables in the corresponding
SSP reasonably low. A semilogarithmic plot of the results
is in Figure 5, that also reports a linear interpolation of
the increasing trend. The least-square fitting of the logarithm
of the data yields that the average number of solutions is
approximately 20.416n+5.847.

Hence, assuming that the trends we observe for these small-
size cases are maintained, when Mallory attacks a typical
system in which n is of the order of few hundreds, the first
step of the attack generates a number of indistinguishable
candidates p and thus c[t−1]+ξ[t] whose order of magnitude
is of few tens.

Once the first step is over, splitting each of these candidates
into a guess for c[t− 1] and the corresponding guess for ξ[t]
entails deciding which of the n components of ξ[t] are non-
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null. This can be done in
(
n
κ

)
' 2nG(κ/n) ways, where G(ε) =

−ε log2(ε)− (1− ε) log2(ε). With n in the hundreds, this adds
another several tens to the order of magnitude of the number
of equally plausible decisions.

Overall, in this particular case (m = 70%n and κ = 30%n)
and very small (Bc = Bξ = 3) case, the security level against
an MiTM attack can be estimated as the minimum of the
2-logarithm of the number of equivalent candidates and the
number of bits used to encode kAB and kBA (that protects
c[0]), i.e., min {(0.416 +G(0.3))n,BkAB +BkBA} which is
equal to BkAB +BkBA for n large enough.

Note that, though these estimations may be very rough. The
linear trend in n of the number of equivalent bits quantifying
the security level is a structural property of the encryption
scheme that, for sufficiently large n, should be enough to
discourage any low-resource MiTM attack.

VII. ENERGY OVERHEADS IN NODE-ORIENTED
IMPLEMENTATIONS

With the aim of providing an example of the possible energy
costs, we report here some results on the implementation of
the proposed approaches on a commercial microcontroller. A
standard CS stage followed by a 128 bit Advanced Encryption
Standard block (AES) [43] has been considered for compari-
son. We refer to the implementation proposed in [44].

Our setting uses sparse signals ξ with n = 128, κ = 8 and
Bξ = 9. The antipodal matrices A devoted to the compression
task feature m = 64 and entries generated by a Linear
Feedback Shift Register (LFSR). As a result, each element
of y requires By = Bξ + log2(n) = 16bit. To be comparable
with the AES that uses a 128 bit block size with a 128 bit key
length, we implement a 128 bit LFSR in Galois configuration,
i.e., kAB represents both the initial state of the LFSR and the
AES key.

To emulate the node implementation we use a resource-
constrained TI EK-TM4C123GXL evaluation board [45],
embedding a low-power low-cost ARM Cortex-M4F
TM4C123GH6PMI microcontroller. With no peripherals
enabled and for a fixed working frequency fclk, the energy
required to execute a task on this device can be estimated as
E = VddIavgNclk/fclk where Vdd = 3.3V, fclk = 16MHz,
Nclk is the number of clock cycles, while, experimentally,
we measure Iavg = 11.3mA. Even if this approach has
some drawbacks (i.e., we are measuring the whole ARM
consumption, including that for the clock generation and
distribution), it is a good proxy of the energy required by
different tasks.

As already discussed, the introduction of a window chaining
increases the ability of a CS block to prevent KPA in an
IoT framework. Nevertheless, the main contribution of this
work is twofold: the hardening with respect to COA (see
Section V) and the resistance to MiTM attacks (see Sec-
tion VI). Energy requirements along with the corresponding
encryption schemes using standard AES blocks are discussed
in the following two subsections.

A. Energy requirements of COA-hardened schemes
In the proposed framework, COA is countered by adopt-

ing the configuration in Figure 3-(a) (indicated as CS +
Chaining(a)). The same capability can be obtained by applying
an AES block in Electronic Codebook mode (ECB) to the
measurement vector y, i.e., the CS stage output is divided into
128 bit length blocks, and each of them is encrypted separately
using the same encryption key (indicated as CS + AES(ECB)).

For each plaintext (the vector ξ), the two approaches share
the cost associated to the measurement computation, i.e.,
mn multiply-and-accumulate operations, and the generation
of mn random bits. The overhead for Chaining(a) consists in
2m sums, m multiplications2 and m assignments due to the
permutation.

For AES(ECB), the associated overhead is mBy/128 = 8
times the energy required for the encryption of a single block.

Results are shown in the first two rows of Table III. Note
first that the energy required for the computation of mea-
surements, and thus for compression, dominates the chaining
overhead that is just about 2% of the total, while AES in ECB
mode is not negligible as it needs 37% of the compression
energy. The improvement ratio between AES(ECB) overhead
and Chaining(a) overhead is 63×.

B. Energy requirements of MiTM-hardened schemes
The robustness against MiTM attacks is given by the

configuration in Figure 3-(b) (indicated as CS + Chaining(b))
while for the AES block that encrypts the CS measurements
we consider the Cipher Block Chaining (addressed as CS +
AES(CBC)). As discussed in Section VI, for each plaintext,
before the CS stage, we evaluate an intermediate vector as
the sum of the plaintext itself and the output of the window
chaining. In a similar fashion, with the CBC mode, incoming
data is XORed with the previous ciphertext before the AES
block. The main difference between these approaches is that
CS + Chaining(b) computes the matrix multiplication after the
chaining stage, while CS + AES(CBC) applies the chaining to
the measurement vector y. This case compared to ECB mode
requires an additional 128 bit initialization vector to compute
the XOR with the first vector y.

These approaches share the energy cost for matrix multipli-
cation and thus compression, while the overheads differ from
the previous case. For CS + Chaining(b) n additional sums are
needed with respect to the previous case. Similarly the energy
required by CS + AES(CBC) differs form CS + AES(ECB)

only in the additional XOR operations.
In the last two rows of Table III we report the measured

energy costs for both CS + Chaining(b) and CS + AES(CBC).
As in the previous case the CS stage dominates the overall
energy consumption. Observed overheads are 1.58% for the
former and 37.8% for the latter. The improvement ratio is
24×.

C. Qualitative energy-security trade-off
As anticipated at the end of Section IV, energy overheads

for both Chaining(a) and Chaining(b) are almost negligible

2energy cost for the module operation is negligible in the proposed setting.
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TABLE III
ENERGY CONSUMPTION [µJ] FOR CS ONLY AND FOR THE OVERHEAD DUE

TO CHAINING OR TO AES.

CS Overhead Improvement
w.r.t. AES

[µJ] [µJ] percent

CS + Chaining(a) 345 2.01 0.58%
63×

CS + AES(ECB) 128 37.0%

CS + Chaining(b) 345 5.44 1.58%
24×

CS + AES(CBC) 131 37.8%

TABLE IV
A QUALITATIVE VIEW OF THE SECURITY-ENERGY TRADE-OFF (THE

LARGER THE NUMBER OF FILLED CIRCLES, THE BETTER)

Immunity
to COA

Immunity
to KPA

Immunity
to MiTM

Energy
saving

CS + Chaining(a) ○○+ ○○+ +++ ○○○

CS + AES(ECB) ○○○ ○○○ +++ ○++

CS + Chaining(b) ○++ ○○+ ○○+ ○○○

CS + AES(CBC) ○○○ ○○○ ○○○ ○++

with respect to cost for the standard CS encoders. This
advantage comes at the price of a potentially reduced security
with respect to the perfect secrecy obtained with AES blocks.
Qualitative comparisons are in Table IV which proposes a
high-level outline of the corner cases we analyzed.
• Chaining(a) in Section V increases COA robustness with

respect to straightforward CS, making it closer to standard
AES. Conversely, Chaining(b) in Section VI possesses the
same robustness to COA of standard CS.

• For both Chaining(a) and Chaining(b), immunity to KPA,
discussed in Section VI, is based on the same working
principle of standard CS that grants non-negligible ro-
bustness though less than that of AES.

• Chaining(b) in Section VI grants MiTM immunity that
standard CS does not provide.

VIII. MITM-RESISTANT COMPRESSION OF ECGS

Real-world signals posses a sparse representation when
expressed through a proper sparsity basis. In this case, the
block scheme of Figure 3-(b) should be replaced with that in
Figure 3-(c). The input signal, split into a sequence of time
windows x[t], needs to be processed by a sparsification block
in order to generate a sequence of sparse vectors ξ[t] to be
processed as described in Section VI.

Being x[t] composed of N samples, the sparsification block
makes a first compression of x[t] by projecting it on its N -size
sparsity basis D′ and considering only n < N elements. This
can be simply achieved by statistically estimating the energy
associated, for the considered class of input signal, to the
different projections along the columns of D′. By collecting
the associated columns of D′ in a matrix D, this operation
can be simply described as multiplying x[t] by the n × N
matrix D> as shown Figure 3-(c). A further block Qκ provides

Fig. 6. Performance of the sparsification block in the ECG example as a
function of n and κ.

TABLE V
PERFORMANCE OF THE PROPOSED SYSTEM FOR ECG COMPRESSION IN

DIFFERENT CONFIGURATIONS. FOR ALL CASES, D′ IS THE SYMLET-6
BASIS WITH N = 512.

Compression ratio
Target
SNR n κ m

Sparsification
block CS overall

36 dB 245 70 182 2.09 1.35 2.81
34 dB 240 65 175 2.13 1.37 2.93
32 dB 230 60 164 2.23 1.40 3.12

quantization and allows to ensure that the sequence of vectors
ξ[t] has digital entries.

The Qκ also forces sparsity in ξ[t] by zeroing all elements
except the κ with the largest magnitude. This step is necessary
since real world signals commonly present at most κ � n
elements that are significant while all others are negligible but
non-zero, thus not matching the exact mathematical definition
of sparsity we leverage on. By forcing sparsity, the considered
Qκ ensures that the above schemes work properly.

Removal of the less energetic components in the D′ expan-
sion, sparsification, and quantization of ξ[t], however, intro-
duce an error in the signal chain, as Dξ[t] only approximates
x[t]. Performance in terms of signal-to-noise ratio (SNR) when
considering x[t] as composed by windows of a synthetic ECG
generated accordingly to [46] has been plotted in Figure 6
as a function of n and κ. We set N = 512 and D′ to
the orthonormal Symlet-6 wavelet basis [47], with Qκ a 10-
bit quantization function. The sampling rate of the ECG is
256 Sa/s. Figure 6 focuses on values around 34 dB that are
commonly considered enough for a medical-grade ECG signal
[48]. The compression ratio introduced can be quantified by
N/n, since the number of coefficients required to represent
the signal decreases from N to n.

The ξ[t] obtained are further processed according to the
block scheme in Figure 3-(c). The CS chain introduces a fur-
ther signal compression quantified by n/m. Differently from
the case of the sparsification, this is a lossless compression,
being the ξ[t] composed by digital quantities that are exactly
recovered by the reconstruction algorithm, i.e., ξ̂[t] = ξ[t].

Three cases are pinpointed in Figure 6, corresponding
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Fig. 7. Reconstruction of ECG signals in the examples of Section VIII. The obtained SNR is (a): 36.2 dB; (b): 34.7 dB; (b): 32.6 dB.

to three target qualities of 36 dB, 34 dB and 32 dB. The
corresponding parameters are summarized in Table V, along
with the value of m ensuring that the CS reconstruction
stage is always capable of perfectly recovering ξ[t], that has
been experimentally identified by looking for the minimum
value ensuring perfect reconstruction in 10000 subsequent
time windows in a Montecarlo simulation. An example of
the waveforms obtained by the reconstruction algorithm is
depicted in Figure 7.

Note that in an application like this, rejection of MiTM
attacks is a major issue. In fact, were she successful, Mal-
lory could alter what is received by the health monitoring
system Bob, causing it to believe that a patient Alice is in
normal conditions while she is experiencing, for example,
severe arrhythmia. Luckily enough, following the estimations
of Section VI we may anticipate that any MiTM attack will
produce a number of indistinguishable candidate chain states
c[t − 1] in excess of 21.3n, that is 1.02 × 1090 for the less
accurate system in Table V and 7.56 × 1095 for the most
accurate one.

IX. CONCLUSION

The adoption of a chainer as defined in Section IV after or
before a CS stage increases security of the resulting two-stages
system. In fact, further to low-resources compression, the
resulting ensemble is able to secure transmitted against COAs,
KPAs and MiTM attacks. As far as COAs are concerned,
chaining is able to mask the power signature of the signals
that is known to leak when only CS is employed as a block
cipher. KPAs also become more difficult as a chainer increases
the number of equally probable candidates for the key that the
attacker wants to infer from each plaintext-ciphertext pair. This
may be important as sensing systems are intrinsically prone
to KPAs, being the plaintext potentially available to anyone
deploying a sensor on the same physical phenomenon. With
respect to a standard AES block the proposed approach guar-
antees a 63× overhead improvement with an energy increase
of just 0.58% of the total for the compression/encryption
block. A chainer before CS is also able to harden the system
against MiTM attacks in which an attacker knows the key used
to secure communications from the transmitter to the receiver
and wants to send fake messages to the latter. This may be
a key issue in systems dealing with critical data like the one
acquiring ECGs that is used as a practical example. In this

case, we observe a 24× reduction of energy overhead that is
limited to 1.58% of the total energy cost.

APPENDIX - PROPERTIES OF THE CHAINING BLOCK

As far as property 1 in Section IV is concerned, note that
we may exploit the fact that P [kAB ] is known to write

P [kAB ]
−1 (c[t]) = α (c[t− 1] + l[t]) + β mod 2Bc

where the whole left-hand side is known. Referring to the
generic j-th component of the above vector equality, assume
that c∗ ∈ N(Bc) is the solution to the linear congruential
equation

[
P [kAB ]

−1 (c[t])
]
j
= αc∗+β mod 2Bc . Then, one

may set

l[t]j = c∗ + k2Bc − c[t− 1]j

for the value of the integer k that makes l[t]j ∈ Z(Bl), which
is unique since Bl ≤ Bc.

For what concern property 2 in Section IV, notice first that,
despite the permutation applied at each step, one may choose
any entry of c[0] and follow its evolution as it is processed by
Hα,β and then mapped into a possibly different entry of c[1]
and to a different entry of c[2] and so on. From this point of
view, the evolution of c[t] is the parallel of nc evolutions of
single entries, intertwined by the subsequent permutations.

If we indicate with s[t] the evolving scalar (contained in
a different entry of c[t] at each time) and with w[t] the
value of the entry of l[t] that is combined with s[t], each of
the intertwined trajectories is modelled by the discrete-time
dynamical system

s[t+ 1] = Hα,β (s[t] + w[t]) (4)

in which we may interpret s[t] ∈ N(Bc) as the system state
and w[t] ∈ Z(Bl) as a perturbation applied at each time step.

We know from [38] that α and β make the unperturbed
system periodic and we indicate the corresponding cycle with
σ0, . . . , σ2Bc−1, that is nothing but a specified ordering of the
digital Bc-bits words.

To analyze the statistical properties of (4), we assume that
at each instant, the state s[t] can be any of the possible values
in N(Bc), each with probability p[t]j = Pr {s[t] = σj}. State
probabilities p[t] evolve according to a matrix of transition
probabilities Kj,k = Pr{s[t+ 1] = σj |s[t] = σk} that defines
a finite Markov chain p[t+ 1] = Kp[t].
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Such a Markov chain is ergodic if the transition matrix K
is irreducible, i.e., if for any pair j, k there is an integer τ
such that Kτ

j,k > 0. If there is an integer τ such that Kτ >
0 simultaneously in all its entries, then the matrix is called
primitive and the Markov chain is mixing. We may prove that
the Markov chain corresponding to (4) is mixing. To do so,
note first that with no perturbation the system would follow
its cycle so that K would mainly have null entries with the
exception of K(j+1)

mod 2Bc
,j = 1 for all j to model the fact

that σj+1 = Hα,β (σj). Such a matrix is irreducible but not
primitive.

We will assume that our perturbation is such that the proba-
bility Pr{σj′′ = Hα,β (σj′ + w[t])} is non-null in at least two
cases. The first is for all j′′ = (j′ +1) mod 2Bc , that together
with the definition of the unperturbed period σ(j+1)

mod 2Bc
=

Hα,β (σj), is equivalent to ask that Pr{w[t] = 0} > 0 for any
t, i.e., that there is always a non-negligible chance that the
input signal w[t] is null. The second is that for at least one
pair of indexes one has that j′ − j′′ is even.

From the first assumption, we have that, in the true transition
matrix we have K(j+1)

mod 2Bc
,j > 0 for all j. From the

second assumption, we have that Pr{s[t + 1] = σj′′ |s[t] =
σj′} > 0, for at least one pair of indexes with an even
difference and thus that, for those indexes, Kj′′,j′ > 0.

Hence, we may build a matrix J that is almost everywhere
null with the exception of the indexes j′, j′′ implied by the
above assumptions in which Jj′′,j′ = Kj′′,j′ . With this we
know that K ≥ J entry by entry.

Yet, from K ≥ J ≥ 0 we get that Kτ ≥ Jτ for any integer
τ . Moreover, due to the very simple structure of J it is easy
to verify that Jτ tends to be a full matrix when τ → ∞ and
thus that also Kτ tends to be a full matrix. This guarantees
that (4) is a mixing dynamical system for which it is known
that the evolution of state probabilities p[t+1] = Kp[t] tends
towards the unique invariant probability assignment such that
p̃ = Kp̃.

Yet, it is easy to verify that such an invariant probability is
the uniform one. In fact, note first that s[t+1] = Hα,β(s[t] +
w[t]) = Hα,β

(
(s[t] + w[t]) mod 2Bc

)
and that, if s[t] is

distributed according to the uniform p̃, then the probability
distribution of (s[t] + w[t]) mod 2Bc is also distributed ac-
cording to the uniform p̃. From the fact that Hα,β(·) produces
a maximum-length cycle and thus is a bijection, we finally
know that when its input is uniformly distributed, its output
is also uniformly distributed, confirming that p̃ is invariant.

All together we know that, providing that l[t] and this
w[t] satisfy some mild conditions, (4) is a mixing dynamical
systems that tends to output uniformly distributed digital
words.
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