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Rational Polynomial Chaos Expansions for the
Stochastic Macromodeling of Network Responses

Paolo Manfredi, Senior Member, IEEE, Stefano Grivet-Talocia, Fellow, IEEE.

Abstract—This paper introduces rational polynomial chaos
expansions for the stochastic modeling of the frequency-domain
responses of linear electrical networks. The proposed method
models stochastic network responses as a ratio of polynomial
chaos expansions, rather than the standard single polynomial
expansion. This approach is motivated by the fact that network
responses are best represented by rational functions of both
frequency and parameters. In particular, it is proven that the ra-
tional stochastic model is exact for lumped networks. The model
coefficients are computed via an iterative re-weighted linear least-
square regression. Several application examples, concerning both
lumped and a distributed systems, illustrate and validate the
advocated methodology.

Index Terms—Multiport systems, polynomial chaos, rational
modeling, variability analysis, uncertainty quantification.

I. INTRODUCTION

FOR more than a decade, polynomial chaos received
a wide attention by the macromodeling community in

electrical engineering because of its superior efficiency and
accuracy over the Monte Carlo (MC) method in the variability
analysis of the performance of electronic systems [1]–[3].
Polynomial chaos represents stochastic quantities as an ex-
pansion into orthogonal polynomials. Several implementations
of polynomial chaos were proposed to study the stochastic
behavior of electrical circuits. As opposed to Galerkin-based
approaches [4]–[6], which convert a stochastic system of
equations into an augmented set of coupled deterministic
equations in the unknown polynomial chaos expansion (PCE)
coefficients, “black-box” or sampling-based strategies collect
suitable samples of the response and post-process them to to
obtain the coefficients by means of interpolation [7]–[9] or
regression [10]–[12]. Efficient tensor-based approaches were
also proposed [13], [14], but their implementation is more
cumbersome and, in some cases, limited to scalar outputs.

This paper focuses on modeling the frequency-domain
responses of linear networks that are subject to parameter
variability. Typically, a single PCE is used to model such
stochastic responses, and the expansion coefficients are ob-
tained by regression [10]. However, it is well-known that any
frequency-domain response of a lumped electrical network is a
rational function of both frequency and circuit element values,
whose dependence of numerator and denominator is multi-
linear. This representation is also well suited to approximate
the response of systems that include distributed elements,
albeit with higher-degree expansions. This follows from the
general consideration that rational approximations are usually
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much more accurate than polynomial approximations, a fact
that is routinely applied in moment-matching based model
order reduction algorithms [15].

In this paper, a new model is put forward, where the
stochastic network response is modeled as a ratio of PCEs,
rather than as a single PCE, leading to the new paradigm of
Rational Polynomial Chaos (RPC). For multivariate problems,
it is shown that a tensor degree truncation strategy is preferable
over the more popular total degree choice. A similar idea,
based on Padé approximants, was proposed in fluid [16] and
structural [17] dynamics, and used in [18] to model figures
of merit of antennas. However, as will be discussed later on,
our approach substantially differentiates from [16]–[18] in the
motivation, truncation strategy, calculation of the expansion
coefficients, and bias correction.

The remainder of the paper is organized as follows. Sec-
tion II summarizes the basic notions of conventional polyno-
mial chaos approaches. Section III shows that any response of
a linear lumped circuit is described by a rational multi-linear
function of the element values. Although this is well-known
background material, some minimal statements are included to
set notation and to provide a basis for further developments.
Based on this result, Section IV introduces the proposed
RPC, whereas Section V elaborates on the optimal truncation
strategy of the PCEs. The differences w.r.t. to similar ap-
proaches available in the literature are discussed in Section VI.
Applications and numerical results are provided in Section VII,
while the performance is discussed in Section VIII. Finally,
conclusions are drawn in Section IX.

II. CLASSICAL POLYNOMIAL CHAOS EXPANSION

Consider an electrical system affected by d random param-
eters collected in vector ξ = [ξ1, . . . , ξd]. Any frequency-
domain network response depends on the parameters ξ and,
according to state-of-the-art PC approaches, can be represented
by a PCE [10]:

S(s; ξ) ≈ Ŝ(s; ξ) =

L∑
`=1

S`(s)ϕ`(ξ), (1)

where s is the Laplace variable, S denotes an arbitrary network
response (e.g, an S- or Y-parameter), Ŝ is the corresponding
PCE approximation, {ϕ`}L`=1 is a set of multivariate orthogo-
nal polynomials according to the inner product

〈f, g〉 =

∫
Rd
f(ξ)g(ξ)w(ξ)dξ, (2)

where w(ξ) is the joint probability distribution of ξ, and S`
are the pertinent expansion coefficients to be determined.
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If the random parameters are mutually independent, w(ξ) =∏d
i=1 w(ξi), where w(ξi) is the probability distribution of

the single random parameter ξi. In this common case, the
multivariate polynomials ϕ` are constructed as the product of
the univariate polynomials φ`i that are orthogonal based on
the one-dimensional inner product [19]

〈f, g〉i =

∫ +∞

−∞
f(ξi)g(ξi)w(ξi)dξi, i = 1, . . . , d. (3)

This choice provides the fastest convergence rate, when L is
increased, of the weighed error norm ‖S(s; ξ)− Ŝ(s; ξ)‖w,
defined as

‖f‖w =
√
〈f, f〉 (4)

based on the inner product (2).
It is possible to map the scalar index ` into a multi-index

` = [`1, . . . , `d], such that

ϕ`↔` =
∏d
i=1 φ`i(ξi). (5)

It should be noted that each φ`i is a polynomial of degree `i.
Typically, only the polynomials up to a given “total degree” p
are retained in the expansion (1), meaning that

‖`‖1 =
∑d
i=1 `i ≤ p (6)

and leading to a total number of terms in the expansion equal
to L = (p + d)!/(p!d!). For dependent/correlated random
parameters, numerical approaches exist for the calculation
of suitable multivariate orthogonal polynomials [20], and the
proposed RPC technique applies with minimal modifications.

The coefficients of (1) are usually calculated by least-square
regression. The response S(s, ξ) is calculated for a set of
K � L samples {ξ(k)}Kk=1 of the random parameters for
the regression problem to be overdetermined, and the results
are fitted to the model (1) in a least-square sense. As a rule of
thumb, it is often suggested to take K = 2L [10]. However,
more samples might be needed when the variability is high
and/or the system has significant delay, as illustrated later
on. Other approaches identify a special selection of K = L
random variable samples, resulting in an interpolation of the
corresponding responses [8], [9].

III. GENERAL FORM OF THE TRANSFER FUNCTION OF
LINEAR LUMPED CIRCUITS

In this section, we reveal in explicit form the functional
dependence on the individual stochastic parameters of any
transfer function that can be defined on a lumped linear
time-invariant (LTI) circuit. This will be the main guideline
to introduce and justify the proposed RPC form, which is
then extended to any general LTI system (either lumped or
distributed) with uncertain parameters.

Let us consider a P -port lumped LTI circuit block with the
objective of characterizing its P × P impedance matrix Z(s)
in the Laplace domain, and let us collect in vector θ its circuit
parameters that are subject to variations; these include resis-
tances, capacitances, self and mutual inductances, and possibly
linear controlled source gains. We define a nominal parameter
configuration θ = θ̄ for which the circuit is uniquely solvable.
For instance, this nominal configuration can be considered

as the set of expected values of the circuit element values,
assumed to be stochastic variables. We introduce the variable
transformation θ = θ̄ + ξ, where each element of vector ξ is
a zero-mean stochastic variable.

The Laplace-domain impedance matrix of the considered
P -port circuit block can be cast as

Z(s; ξ) =
N(s; ξ)

D(s; ξ)
. (7)

A symbolic analysis [21] (see also [22] and references therein)
can be performed in order to reveal the explicit dependence
of numerator and denominator in (7) on complex frequency s
and stochastic variables ξ. It is easy to show that the scalar
denominator can be written as

D(s; ξ) =
∑
i

di(s)
d∏
ν=1

ξαiνν , αiν ∈ {0, 1} ∀iν (8)

where, due to the lumped nature of the system under consid-
eration, the coefficients di(s) are polynomials in s of degree
up to the dynamic order N of the circuit. The same structural
dependence on frequency s and parameters ξν applies to the
individual elements of the P × P numerator matrix N(s; ξ)
in (7). Therefore, any element (i, j) of the impedance matrix
Z(s; ξ) has the following structure

Zij(s; ξ) =

∑Nij
k=0 ak;ij(ξ)sk∑N
k=0 bk(ξ)sk

, (9)

where all numerator and denominator coefficients ak;ij(ξ)
and bk(ξ) have a multi-linear dependence on the stochastic
parameters, i.e., they are multivariate polynomials in which
each parameter ξν appears with up to order one in any of
these coefficients. Stated differently, any impedance element
is a rational function of any stochastic parameter ξν with
both numerator and denominator degrees that cannot exceed
one. We remark that the same structural form (9) applies to
any alternative definition of port inputs and outputs, including
any immittance (admittance and hybrid) as well as scattering
representations.

IV. RATIONAL POLYNOMIAL CHAOS EXPANSION

As shown in the previous section, any frequency-domain
response of a linear electrical network is a rational function
w.r.t. both frequency and parameters. Therefore, it is argued
that a rational approximation in the form

S(s, ξ) ≈ Ŝ(s; ξ) =
N(s; ξ)

D(s; ξ)
=

∑L
`=1N`(s)ϕ`(ξ)

1 +
∑L
`=2D`(s)ϕ`(ξ)

(10)

provides a better model1 in place of (1). In fact, the representa-
tion (10) coincides with (9) for lumped circuits parameterized
by their element values, provided that ϕ`(ξ) are multi-linear
basis functions. In the following, we will extend its scope
by showing applicability to more general structures (including
distributed circuits) by adopting higher-degree polynomials,
and demonstrating significantly better performance than stan-
dard PCE.

1The first expansion term in the denominator has been set to 1 to
remove indeterminacy. Otherwise, numerator and denominator could only be
determined up to an arbitrary scaling factor.



3

A. Iterative Re-Weighted Linear Least-Square Regression

The model (10) is nonlinear in the coefficients D`, hence
linear regression cannot be directly used for their calculation.
Nevertheless, it is possible to rearrange (10) as

L∑
`=1

N`(s)ϕ`(ξ)− S(s; ξ)

L∑
`=2

D`(s)ϕ`(ξ) ≈ S(s; ξ), (11)

which is now linear in the coefficients N` and D`. Such
coefficients can be estimated by solving the regression problem(

N∗

D∗

)
= arg min

∥∥∥∥(Ψ −Ψ′
)(N
D

)
−w

∥∥∥∥ (12)

over K samples, where

N =
(
N1, . . . , NL

)T
,

D =
(
D2, . . . , DL

)T
,

w =
(
S(s, ξ(1)), . . . , S(s, ξ(K))

)T
,

whereas Ψ ∈ RK×L has entries

Ψk,` = ϕ`(ξ
(k)),

for k = 1, . . . ,K and ` = 1, . . . , L, while Ψ′ ∈ RK×(L−1)
has entries

Ψ′k,` = S(s, ξ(k))ϕ`(ξ
(k)),

for k = 1, . . . ,K and ` = 2, . . . , L.
The regression samples {ξ(k)}Kk=1 are drawn according to

the distribution of ξ using a Latin hypercube sampling (LHS)
strategy. This makes sure that the coefficients that minimize
the residual norm in (12) are close to the “exact” coefficients
minimizing norm (4) of the PCE error. This is illustrated by
means of an analytic example in the next section. However, the
result of the linear regression problem (12) is biased w.r.t. the
nonlinear problem (10), since the former minimizes a different
residual norm, i.e., ‖D(s, ξ)R(s, ξ)‖ instead of ‖R(s, ξ)‖,
with R(s, ξ) = S(s, ξ) − N(s, ξ)/D(s, ξ). Therefore, an iter-
ative solution is put forward, where the common denominator
is not eliminated from (11), leading to the modified regression
problem(

Nµ

Dµ

)
= arg min

∥∥∥∥(ΛµΨ −ΛµΨ′
)(N
D

)
−Λµw

∥∥∥∥ ,
(13)

where µ denotes the iteration index, and Λµ ∈ RK×K is a
diagonal matrix with entries λµk,k = [Dµ−1(s, ξ(k))]−1. This
matrix is fully known from the previous iteration step, and it
can be initialized as the identity matrix (corresponding to a
unitary denominator). This iteratively re-weighted regression
problem is readily recognized as a stochastic reformulation
of the well-known Sanathanan-Koerner (S-K) iteration [23],
which is widely used in deterministic (parameterized) macro-
modeling schemes [24]. It can be shown that the bias is
reduced as the iterations increase, and is removed at conver-
gence [23], [25]. It should be noted that such iterations do not
require additional evaluations of the transfer function. In this
paper, the above iterative regression problem is solved at each
frequency point separately.

B. Distribution of the Regression Samples

This section shows the importance of drawing the regression
samples in (12) according to the distribution of the random
parameters ξ. We consider the univariate analytical function

f(ξ) = cosh(1 + ξ),

with ξ being a standard normal random variable with zero
mean and unitary variance. The example is deliberately de-
signed to exhibit large variability. Figure 1 shows with a blue
line the actual value of f(ξ) in the range [−3, 3], i.e., the
interval wherein there is a 99.7% probability to find values
of ξ. The second column of Table I provides the mean and
standard deviation of f(ξ) estimated with MC sampling.

-3 -2 -1 0 1 2 3
0

5

10

15

20

25

30

Fig. 1. Approximation of the stochastic function f(ξ) = cosh(1+ ξ). Solid
blue line: true function; dashed green line: third-order Hermite PCE with
exact coefficients computed by numerical projection; dotted orange and red
lines: third-order Hermite PCEs with coefficients computed by regression with
normally- and uniformly-distributed samples, respectively.

For the modeling via polynomial chaos, we use a third-order
single PCE (i.e., with D = 1) with orthonormal Hermite basis
functions:

ϕ1(ξ) = 1

ϕ2(ξ) = ξ

ϕ3(ξ) = (ξ2 − 1)/
√

2

ϕ4(ξ) = (ξ3 − 3ξ)/
√

6.

The “exact” PCE, computed by numerically projecting the
function f(ξ) onto the above basis polynomials with the inner
product (3), has the coefficients N1,2,3,4 reported in the third
column of Table I. The error norm and statistical estimates are
also provided, and the corresponding approximation is shown
in Fig. 1 with a dashed green line.

Next, the coefficients of the same PCE are estimated by
means of linear regressions with either normally- or uniformly-
distributed samples. The respective results are provided in
the fourth and fifth columns of Table I, and shown by the
dotted orange and red curves in Fig. 1. It is observed that the
PCE computed with Gaussian-distributed regression samples
matches the exact PCE, and the error norm is very close
to the actual minimum. Conversely, the PCE computed with
uniformly-distributed regression samples exhibits a large error,
especially for |ξ| > 2, and this results in an inaccurate estima-
tion of the statistics. In general, exact model coefficients can
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be computed regardless of the samples distribution only when
the form of the function and of the model entirely match. We
emphasize that this example does not support the conclusion
that linear regression does not work in deterministic approx-
imation problems for which uniform samples are chosen. It
rather shows that a significant bias in statistical estimates
is to be expected when regression samples are drawn based
on incorrect distributions. When the approximation problem
at hand is deterministic, different choices of the samples
used for regression will inevitably induce differences in the
approximation error, which will be reduced in the regions that
are more densely sampled with respect to coarsely sampled
regions.

TABLE I
STATISTICS AND PCE APPROXIMATIONS FOR f(ξ) = cosh(1 + ξ).

MC exact PCE Gaussian-distributed uniformly-distributed
regression samples regression samples

N1 – 2.5441 2.5443 2.3647
N2 – 1.9376 1.9430 1.7940
N3 – 1.7990 1.7934 1.1699
N4 – 0.7910 0.8012 0.5074
error – 0.3109 0.3110 0.8399
mean 2.5474 2.5441 2.5443 2.3647
std 2.8327 2.7597 2.7629 2.2010

V. TRUNCATION STRATEGY

The derivations of Section III also allow concluding that the
conventional total degree truncation expressed by (6) is not
convenient for RPC expansions. For a lumped network, this
can be understood by recalling that random parameters never
appear with degree higher than one, as both the numerator
and the denominator of any rational circuit response are multi-
linear functions of the network parameters. However, setting
p = 1 in (6), would cause the expansion to include only
terms that are linear in a single variable, but not in more than
one variable simultaneously. To remedy this issue, a “tensor
degree” truncation, including all multivariate polynomials with
multi-indices such that

‖`‖∞ = max
i
{`i} ≤ p (14)

is adopted. Indeed, with this strategy and with p = 1, the basis
functions ϕ(ξ) turn out to be multi-linear and hence the PCE
includes all the mixed terms that are expected to appear at
the numerator and denominator, thus resulting to be exact for
lumped circuits.

For structures that include distributed elements instead,
the representation is no longer exact. Nonetheless, a tensor-
product truncation is still a reasonable choice, but a higher
order p may be required. With this truncation, the total number
of terms in the expansion (14) becomes 2L−1 = 2(p+1)d−1.
A detailed investigation on the optimal truncation strategies in
RPC expansions is deferred to a future report.

VI. COMPARISON WITH AVAILABLE PADÉ FORMULATIONS

At this stage, it is important to remark the differences with
the available Padé-approximant formulations [16]–[18].
• First of all, the proposed approach is motivated by the

precise structure of the transfer function of any linear
electrical system, outlined in Section III, and not just by
the fact that the modeled function is possibly discontin-
uous, as is the case for example in [16];

• the proposed implementation uses a linear-regression
approach to calculate the model coefficients, and this for-
mulation readily scales to an arbitrary parameter dimen-
sion d. Conversely, the techniques in [16]–[18] rely on a
multidimensional quadrature rule, whose generalization
to high dimensions is not straightforward [16];

• the proposed implementation uses a straightforward S-K
iteration to systematically remove the bias introduced by
the elimination of the denominator in (12), instead of
the denominator-dependent filtering procedure proposed
in [16]. The bias issue is not addressed in [17] and [18].

VII. NUMERICAL RESULTS

This section validates the proposed RPC modeling based on
several electrical networks, both lumped and distributed. For
each test case, reference results are generated based on 10000
MC runs for as many samples of the random parameters ξ.
This number allows obtaining a sufficiently accurate reference
for all considered test cases. Plain random sampling is used
(LHS was also tested but turned out not to provide significant
advantages). For a fair comparison, both the conventional PCE
and the RPC model are evaluated for the very same samples,
and the statistics of the obtained responses are compared
against the reference MC estimates. This avoids introducing
further errors due to the finite precision of the MC estimate
itself.

A. Chebyshev Low-Pass Filter

The first application example considers a seventh-order
Chebyshev low-pass filter. The filter has the schematic illus-
trated in Fig. 2 and is designed to exhibit a cut-off frequency
of 2 GHz and a passband ripple of 0.5 dB. For the synthesis
of Fig. 2, we considered components available on the market
(cfr. Murata GRM capacitor series and LQW15A inductor
series) and the indicated tolerances are taken from the actual
datasheets provided by the vendor. The tolerance is considered
as the standard deviation of a Gaussian random variable. This
example has therefore d = 7 independent Gaussian random
variables, which describe the uncertainty of the component
values.

P1 P2

2.7± 0.1 pF

0.12 Ω 5.1± 0.2 nH

4.3± 0.25 pF

0.12 Ω 5.8± 0.2 nH

4.3± 0.25 pF

0.12 Ω 5.1± 0.2 nH

2.7± 0.1 pF

Fig. 2. Schematic of the seventh-order Chebyshev low-pass filter.
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Fig. 3 shows the resulting variability of the magnitude of the
Y-parameters. The mean and standard deviation obtained from
the MC samples are compared with the results obtained from
the conventional PCE with total degree p = 4 and the proposed
RPC with tensor degree p = 1. The number of samples for
the linear regression is taken as twice the number of the
expansion coefficients to be computed, i.e., K = 2L = 660
(with L = 11!/(4! · 7!) = 330) for the fourth-order single
PCE, and K = 2(2L − 1) = 510 (with L = 27 = 128) for
the RPC model. It is observed that the MC and RPC results
are coincident, whereas the standard deviation of the PCE
result exhibits a large error, especially around resonances and
notwithstanding the high order. This is expected because this
circuit is lumped, and the RPC model is therefore exact as
opposed to the conventional PCE.

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3

-80

-60

-40

-20

0

20

Fig. 3. Magnitude of Y11 (top panel) and Y21 (bottom panel) for the
Chebyshev filter of Fig. 2. Gray lines: subset of MC samples; blue, red, and
green lines: mean and standard deviation obtained from the MC samples, the
conventional PCE, and the proposed RPC, respectively.

In principle, it is possible to improve the accuracy of the
single PCE model by increasing the expansion order. Figure 4
shows with a dashed red line the standard deviation of Y11
and Y21 obtained with a sixth-order single PCE (p = 6)
with coefficients estimated using K = 2L = 3432 regression
samples. It is observed that such a PCE actually exhibits a
larger error (detailed information in this regard is provided in
Section VIII). This is explained by the fact that the estimation
of a larger number of model coefficients in turn requires
an even larger number of regression samples to be accurate.
Indeed, by increasing the number of regression samples to as
many as eight times the number of model coefficients (i.e.,
K = 8L = 13728) yields the dotted red curve in Fig. 4,
showing an accuracy improvement compared to the fourth-
order expansion of Fig. 3. This example shows that it is non-
trivial to improve the accuracy of single PCEs, since increasing
the expansion order may lead to an exorbitant requirement
in terms of regression samples (note that the dotted curve in
Fig. 4 is obtained using a larger number of samples than the

MC reference!).

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3

-80

-60

-40

-20

0

20

Fig. 4. Standard deviation of Y11 (top panel) and Y21 (bottom panel) obtained
from a sixth-order single PCE with coefficients computed using K = 3432
(dashed red lines) and K = 13728 (dotted red lines) regression samples. The
blue lines are the reference MC curves as in Fig. 3.

B. Network with Coupled Microstrip Lines

The second example deals with the distributed network of
Fig. 5. The circuit includes delay elements, i.e., three coupled
microstrip lines having the cross-section depicted in the top-
left corner of Fig. 5. Two different scenarios are considered.

1pF

25Ω

25Ω

2pF

50Ω

10nH

1pF

length=3 cm

length=3 cm

length=3 cm

P1

P2

P3

P4

P5

P6

P7

P8P9

εr = 3.7

tan δ = 0.02
50 µm 60 µm

40 µm

10 µm

Fig. 5. Schematic of the distributed network with coupled transmission lines.

First, the uncertainty is assumed to be on lumped elements,
namely the capacitors and the inductor, leading to d = 4
random parameters. These are assumed to be independent and
Gaussian distributed, with a relative standard deviation of 20%
w.r.t. to the (nominal) values indicated in Fig. 5. Being the
uncertainty on lumped parameters only, the RPC model is still
expected to be exact for a first-order tensor degree expansion,
even though the system is distributed.

Figure 6, reporting the variability of the magnitudes of S-
parameters S11, S21, S31, and S41, confirms this statement.
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The plots show that a single PCE of order p = 3 is in this case
very accurate as well. Nevertheless, a more rigorous analysis
shows that, over the considered frequency sweep, the largest
root-mean square (RMS) error of the conventional PCE on
the standard deviation is 1.909×10−4, whereas the maximum
absolute error is 9.803×10−4. The corresponding accuracy of
the RPC model, for the same two error measures, is 4.686×
10−9 and 1.606 × 10−8. For the regression, K = 2L = 70
samples are used for the classical PCE, and K = 2(2L−1) =
62 samples for the RPC model.

-70

-60

-50

-40

-30

-20

-10

0

0 5 10 15 20
-70

-60

-50

-40

-30

-20

-10

0

0 5 10 15 20

Fig. 6. Variability of some of the S-parameters for the distributed network
of Fig. 5 with uncertainty in lumped components (inductors and capacitors).
Curve identification is as in Fig. 3. Upper and lower colored curves are mean
and standard deviation, respectively.

In the second scenario, the uncertainty is considered to be
on the gap between the microstrip traces (Gaussian with a 10%
relative standard deviation) and on the line length (Gaussian
with a 5% relative standard deviation), leading to d = 2
random parameters. Being the uncertainty in the distributed
elements, the RPC is no longer expected to be exact.

Figure 7 shows the resulting variability on the same S-
parameters as considered in the first scenario. The uncertainty
on the microstrip parameters causes a much larger variability
on the network response, especially on S11. In particular,
the effect of the length uncertainty, leading to a shift in
the resonances, is evident. For this scenario, a third-order
expansion is used for the RPC, leading to a very high accuracy.
On the other hand, a sixth-order single PCE still exhibits large
errors, especially at higher frequencies.

The far superior accuracy of the RPC model can be further
appreciated in Fig. 8, which shows the probability density
function (PDF) of |S11| at 15 GHz, i.e., a frequency of very
high variability according to Fig. 7. It is clear that the RPC
curve is in much better agreement with the reference MC
distribution.

The regression samples used for computing the model
coefficients were K = 8L = 224 for the single PCE, and
K = 8(2L − 1) = 248 for the RPC model. In this case, we
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Fig. 7. Variability of some of the S-parameters for the distributed network
of Fig. 5 with uncertainty in the distributed components (microstrip trace gap
and length).
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0.12

Fig. 8. PDF of |S11| at 15 GHz. Gray bars: MC result; dashed red line:
single PCE; dotted green line: RPC model.

used as many samples as eight times the number of unknowns
because the larger variability turns out to strongly affect the
accuracy of the calculation.

As in the previous case, we try to improve the accuracy of
the standard PCE by increasing the expansion order to p = 8.
Figure 9 shows the standard deviation of the S-parameters
obtained by calculating the expansion coefficients using K =
8L = 360 and K = 32L = 1440 regression samples (dashed
and dotted red lines, respectively). This experiment confirms
that increasing the expansion order also requires increasing
the ratio between the number of regression samples and model
coefficients to really achieve an improvement in the accuracy.

To further investigate the impact of the number of regres-
sion samples, Fig. 10 shows the evolution of the RMS and
maximum error for different expansion orders and regression
sample sizes. Specifically, we took a number of regression
samples equal to 2, 4, and 8 times the number of RPC model
coefficients for a given expansion order. Next, the coefficients
of single PCEs of different orders are computed using the
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Fig. 9. Standard deviation of S11, S21, S31, and S41. Results obtained with a
eigth-order single PCE computed using K = 360 and K = 1440 regression
samples (dashed and dotted red lines, respectively) are compared against the
reference MC result (blue line).

same set of regression samples. It is observed that the RPC
model is generally more accurate than the single PCE for a
given sample size. For some S-parameters, the best achieved
maximum error is similar for the single PCE and the RPC
model, but the latter has always a much lower RMS error,
meaning that it is globally more accurate over frequency.

It is also observed that the error does not always mono-
tonically decrease with the regression sample size, although
the asymptotic trend is decreasing. This is an inherent feature
of stochastic techniques that use random sampling (including
MC), as nothing prevents a local accuracy reduction when
using a new set of random samples. Moreover, it is noticed that
for single PCEs a lower order often provides better accuracy.
As already mentioned, this is readily explained by the fact
that the coefficients of a higher-order expansion, being larger
in number, are estimated with lower accuracy with a given set
of regression samples.

C. High-Speed Electronic Link

The third application example deals with the high-speed
electronic link that was investigated in [12] (see Fig. 3
therein). The link represents a node-to-node bus consisting
of interconnections, transmission lines, and vias. We refer to
[12] for a detailed description of the network. The uncertain
parameters are assumed to be the gap of the coupled microstrip
lines (Gaussian with a relative standard deviation of 20%),
and the length of each of the two sections (Gaussian with an
absolute standard deviation of 5 mm), leading to a total of
d = 3 parameters.

Figure 11 shows the variability of the far-end voltage (top
panel) and far-end crosstalk (bottom panel) transfer functions.
Expansion orders of p = 6 and p = 3 are used for the
single PCE and the RPC model, respectively. The superior
accuracy of the proposed RPC model is again confirmed by
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Fig. 10. Behavior of the RMS and maximum error for different expansion
orders as a function of the regression sample size (network of Fig. 5).

-80

-70

-60

-50

-40

-30

-20

-10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-60

-50

-40

-30

-20

-10

0

Fig. 11. Magnitude of the far-end voltage (top panel) and far-end crosstalk
(bottom panel) transfer function for the high-speed link in [12]. Gray lines:
subset of MC samples; blue, red, and green lines: mean and standard deviation
obtained from the MC samples, the conventional PCE, and the proposed RPC,
respectively.

the PDFs shown in Fig. 12. These PDFs are computed at the
frequency of 4.29 GHz, for which both the far-end voltage and
crosstalk exhibit very large variability (cfr. Fig. 11). Indeed,
the RPC results are in far better agreement with the reference
MC distributions.

The number of regression samples used to calculate the
model coefficients were K = 8L = 672 for the single PCE
and K = 8(2L − 1) = 1016 for the RPC. Figure 13 shows
the behavior of the RMS and maximum error as a function of
the regression sample size. As in the previous test case, for a
given sample size a third-order RPC model tends to be more
accurate than a single PCE of similar or even higher order.
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Fig. 12. PDFs of the far-end voltage and crosstalk magnitudes at 4.29 GHz.
Gray bars: MC result; dashed red line: single PCE; dotted green line: RPC
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Fig. 13. Behavior of the RMS and maximum error for different expansion
orders as a function of the regression sample size (high-speed link in [12]).

VIII. PERFORMANCE ASSESSMENT

From the computational viewpoint, the main drawback of
the proposed RPC compared to the standard PCE is that the
regression matrix Ψ′ in (12) is frequency dependent. There-
fore, the regression problem needs to be solved frequency by
frequency. Moreover, the solution includes additional iterations
to remove bias in the estimation of the model coefficients, as
explained in Section IV. Because of this, compared to the
conventional PCE, the performance of the RPC does not scale
much favorably with the number of frequency points and PCE
size L.

Table II collects all relevant information regarding the
considered test cases, including model accuracy and compu-
tational time. The accuracy is defined as the largest RMS
error and absolute error on the standard deviation over all
the responses considered in the plots of Section VII. The
processing time comprises:

1) The evaluation of the samples for the regression. This
is the main contribution to the time of standard PCE.

2) The calculation of the model coefficients. This has
negligible impact on the conventional PCE time, but it

is the bottleneck for the RPC due to the frequency-by-
frequency solution of the regression problem.

3) The estimation of the mean and standard deviation,
which is negligible for both the standard PCE and RPC
models.

All simulations were performed on a Dell Precision 5820
workstation with an Intel(R) Core(TM) i9-7900X, CPU run-
ning at 3.30 GHz and 32 GB of RAM.

It is noted that, for a similar number of regression samples,
the processing time of the RPC is much higher compared to
the standard PCE, especially when the number of random
parameters d is large. This is offset, however, by the much
better accuracy achieved. Indeed, even by increasing the order
of the single PCE, the accuracy remains well below the one
obtained with the RPC model, while the processing times
becomes larger because of the exorbitant requirement in terms
of regression samples. Hence, the superior accuracy motivates
the use of the RPC model in place of the single PCE despite
its lower computational efficiency.

IX. CONCLUSIONS

This paper presented a novel RPC paradigm for modeling
the stochastic responses of linear electrical networks. The new
approach uses a ratio of PCEs with tensor degree truncation,
rather than the conventional single PCE with total degree
truncation. The model coefficients are computed with an itera-
tive re-weighted linear least-square regression, whose samples
are determined based on the distribution of the uncertain
parameters. The proposed model is motivated by the precise
form of the transfer function of linear lumped networks and,
by extension, it is suitable for distributed systems as well.
As a notable result, a first-order RPC model was shown to
be exact for lumped networks. Several application test cases,
including both lumped and distributed networks, were used for
validation, demonstrating that the novel RPC model provides
far superior accuracy w.r.t. the conventional single PCE. As
a drawback, the calculation of the RPC model coefficients
requires a larger processing time compared to the standard
single PCE.
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