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A Hierarchical Approach to Dimensionality
Reduction and Nonparametric Problems in the
Polynomial Chaos Simulation of Transmission Lines

Paolo Manfredi, Senior Member, IEEE.

Abstract Polynomial chaos-based techniques recently became
popular alternatives for the stochastic analysis of electrical cir-
cuits, especially in the context of signal integrity and electromag-
netic compatibility investigations. Among the challenging issues
of polynomial chaos, there are two longstanding limitations:
curse of dimensionality (i.e., ef ciency decrease as the number
of random parameters is increased) and the inability to handle
nonparametric variations (i.e., random variables that cannot
be unambiguously parametrized upfront). This paper aims at
covering this gap by putting forward a suitable hierarchical
approach, with speci ¢ emphasis on transmission-line analysis.
First, the problem is characterized by estimating the distribution
of the transmission line per-unit-length parameters. Second, the
obtained distribution is tted using a multivariate mixture of
Gaussians. The mixture of Gaussians is a exible model that is
capable of taking into account the existing dependence between
inductance and capacitance entries in multiconductor lines. Next,
appropriate orthogonal basis functions are generated based on a
recent framework for non-Gaussian correlated random variables.
Finally, the technique is combined with a stochastic Galerkin
method to generate a deterministic and SPICE-compatible model
that can be simulated in time domain. The proposed approach
enables both dimensionality (hence, model order) reduction and
handling of nonparametric variations. Application examples con-
cerning cables with random cross-section illustrate and validate
the methodology.

Index Terms Cables, non-Gaussian correlation, polynomial
chaos, signal integrity, stochastic Galerkin method, transmission
lines, variability analysis, uncertainty quanti cation.

I. INTRODUCTION

OLYNOMIAL CHAQS (PC) [1] has emerged in recent

years as a robust approach for the uncertainty quanti ca-
tion in many domains, including electrical and electronic en-
gineering [2]. PC consists of representing stochastic responses
as suitable expansions of orthogonal polynomials that depend
on the random parameters and their distribution. Speci cally,
PC has been extensively applied to circuit and transmission
line analysis for signal integrity (SI) and electromagnetic com-
patibility (EMC) characterizations [3] [8]. Both intrusive and
non-intrusive approaches are available for the determination
of the PC expansion coef cients [7].

PC exhibits a substantial ef ciency improvement when
compared to the blind Monte Carlo (MC) method. However,
one of its main disadvantages is the generally poor scalability
w.r.t. the number of uncertain parameters (the so-called curse
of dimensionality ). Moreover, since the PC model seeks a
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model with explicit dependence on the random parameters
through the polynomial basis, a fundamental requirement of
PC is the preliminary parametrization of random inputs in
terms of a nite and unambiguously de ned set of independent
random variables (RVs) [9]. A relevant example in the context
of SI/EMC investigations for which this parametrization is not
possible is the case, illustrated in Fig. 1, of a random cable
cross-section that is generated by sequentially placing wires
in a 2D area, progressively Iling the remaining available
space. Unless overly restrictive assumptions are made on the
wire coordinates to a-priori avoid overlap, the position of
subsequent wires is dependent on the speci ¢ positions of
previously placed wires, and therefore it cannot be unambigu-
ously parametrized upfront. In the past, the modeling of cable
bundles with random wire placement received a wide attention
from the EMC community. Popular empirical approaches to
deal with this situation are to make restrictive assumptions on
the wire separation, e.g., [10], [11], or to apply random wire
permutations to a xed cross-section [12] [15].

Over the years, several techniques were proposed to alle-
viate the dimensionality issue. The approach in [16] allows
approximating a large set of correlated parameters in terms
of a reduced set of independent parameters, but it is valid
only when the covariance matrix is of Gaussian type. Tensor-
based approaches [17] work well for scalar outputs, but they
become cumbersome for the modeling of an entire response
(e.g., in frequency or time domain). In [18], [19], a hierarchical
approach was proposed, where selected mid-level parameters
that individually depend on many low-level uncertain param-
eters were represented each by a single synthetic uncertain
parameter, with corresponding (non-standard) distribution. To
this end, special basis functions were constructed that were
orthogonal based on the various distributions of the mid-level
parameters, and used to model high-level parameters (outputs)
in a hierarchical fashion, as depicted in Fig. 2. Nevertheless,
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Fig. 1. Sequential generation of a random cable cross-section. The position
of wire #1 is parametrized by the random coordinates spanning the available
area (indicated by the blue arrows). The position of wires #2 and #3 cannot
be parametrized upfront instead, as it is affected by previously placed wires.
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Fig. 2. Hierarchical PC: a set of mid-level variables

this approach is only applicable as long as the mid-level
parameters are mutually independent, i.e., they depend on
different sets of low-level parameters, and no dependence
exists between these sets.

In the framework of transmission-line analysis, random
geometrical and material properties could be in principle
regarded as low-level variables, per-unit-length (p.u.l.) param-
eters as mid-level variables, and line voltages and currents
as high-level output variables. However, the approach in [18]
is not applicable as is, since each matrix entry depends on
the same set of physical parameters, and the above method
would fail to track this dependence. Deliberately neglecting the
existing dependence would unavoidably lead to erroneous and
inconsistent results. As far as the handling of nonparametric
variables is concerned, to the author’s best knowledge no
solution is available in the framework of PC. It should be
noted that this limitation is common to both intrusive and non-
intrusive PC implementations.

This paper puts forward a novel strategy that allows coping
with both the above limitations simultaneously. The idea is
similar to the hierarchical approach in [18]. Per-unit-length
(p.u.l.) inductance and capacitance parameters are considered
as mid-level variables that depend on low-level cross-sectional
parameters (e.g., geometrical and material properties). As
noted before, all the p.u.l. inductance and capacitance matrix
entries are in principle related to each other, thus making the
use of [18] impossible for the above purpose. To overcome the
aforementioned dif culty, the p.u.l. inductance and capacitance
matrix entries are simultaneously modeled as a unique set of
correlated random parameters. For this purpose, a mixture
of Gaussians (MoG) distribution is tted to a given number
of stochastic samples thereof. The MoG is a powerful and

exible model that can approximate correlated distributions of
arbitrary shape. In this way, the dependency between matrix
entries is tracked through correlation. Next, suitable orthogonal
basis functions for the correlated MoG-variables are con-
structed using the recent approach in [20], which uses a Gram-
Schmidt orthogonalization (GSO) and generically applies to

non-Gaussian correlated distributions. Finally, a stochastic
Galerkin method (SGM) [9] is applied to build a deterministic
and SPICE-compatible circuit model that can be simulated in
time domain to obtain the coef cients of the PC model of
the line voltages and currents [7]. Two application examples,
concerning the analysis of wiring structures, illustrate and
validate the advocated technique.

The remainder of the paper is organized as follows. Sec-
tion 11 brie y recalls the main notions of the classical PC that
are necessary for the subsequent developments. Section Ill
de nes the problem and discusses current limitations. Sec-
tion 1V outlines the proposed hierarchical framework. Illustra-
tive applications example are discussed in Section V. Finally,
conclusions are drawn in Section V1.

Il. POLYNOMIAL CHAOS OVERVIEW

This section brie y recalls the necessary notions about the
classical PC for the stochastic analysis of multiconductor
transmission lines with independent RVs. This subject is
extensively covered in the available literature (e.g., [7]). The
extension to non-Gaussian correlated RVs, as needed for the
proposed hierarchical approach, is discussed in Section IV.

Assume a multiconductor transmission line with n signal
conductors be affected by a set of D random parameters =
[ 1 p] (typically, geometrical and/or material properties).
The pertinent stochastic transmission-line equations in time
domain read:

- @@Zv(t,z, ) L( )@@tl(t,z, ) @
- @7i(t;z; ) C( )@V(t;z; )

where t and z denote time and longitudinal position, respec-
tively. The n n p.u.l. inductance matrix L and capacitance
matrix C depend on the cross-sectional properties, and hence
also on the random parameters

which are in turn stochastic as a result of the uncertainty in
the transmission-line properties. Without loss of generality,
conductor and dielectric losses are neglected in the following
discussion. However, the proposed technique applies to lossy
transmission lines without modi cation.

Any voltage and current, denoted generically with g, is
expressed as a truncated PC expansion

g() 80)=  a’k() @)
k=1
where the dependence on t and z has been omitted for brevity
of notation. The functions ~ gL, form a complete basis of
orthonormal polynomialsZ based on the inner product
hFgi= F()g() ()d; 3
RD
with the weighting function () denoting the joint probability
density function (PDF) of the RVs . For the univariate case
(i.e., D = 1and scalar ) and some standard distributions ( ),
orthogonal polynomials are already available [1]. For example,
Hermite, Legendre, and Jacobi polynomials are orthogonal



when the weighting function () in (3) is the Gaussian,
uniform, or beta distribution, respectively. Orthonormality is
often useful and readily achieved by proper normalization [21].

For multiple independent RVs, suitable multivariate poly-
nomials are built as tensor-product combination of univariate
polynomials in each variable:

'
k()=
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where ’(kjj)( j) is a polynomial of degree k; that is orthog-
onal w.rt. the distribution of ;. In the Lhs. of (4), k is
the scalar index identifying a vectorial multi-index element

retain only polynomials up to a given total degree P, meaning
that the set of multi-indices is de ned as

K=fk : kkk;, Pg: (5)

In this case, the cardinality of K (i.e., the number of basis
functions) is K = (P +D)!=(P !D!). For practical applications
in the SI/EMC context, second-order expansions (P = 2)
in conjunction with the SGM typically provide satisfactory
accuracy [6]. The basis functions 7 g, are further assumed
to be sorted according to the graded lexicographic ordering
(GLO). The case of dependent RVs is much less trivial instead,
and subject of ongoing research [20], [22].

With the above de nitions, if g( ) is a square-integrable
function (i.e., it has nite variance), then the approximation
@ of g converges exponentially in L2-sense as the number of
basis functions K is increased, i.e.,

Jim kg 6k, . =0; ®)

where the norm is based on the inner product (3).

Moreover, thanks to orthogonality, the rst two statistical
moments of ¢ (an estimate of the actual mean and variance of
g) are readily computgd as

Efo( )g = - g() ()d  hg;li=g; (M

and
z X
varfe()g = (6() EfOD” () = g @®
k=2
respectively.
Several techniques are available for the determination of the
PC expansion coef cients gx. Spectral approaches compute the
coef cients by projection: .

Ok = hg; " = Rdg( )7k() ()d 9)

In particular, pseudo-spectral methods approximate the projec-
tion integral (9) by means of a multi-dimensional quadrature.
The SGM builds an augmented, deterministic and fully cou-
pled system of equations in all the unknown coef cients [3]:
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Fig. 3. Cable cross-section. The following geometrical and material param-
eters (indicated in blue) are assumed as RVs: conductor radius, dielectric
thickness and relative permittivity, wire horizontal and vertical displacement.

where v and T collect the PC coef cients of all voltages and
currents, respectively, and the Kn  Kn p.u.l. matrices E and
€ are constructed based on the inductance and capacitance
PC expansion coef cients, as discussed in Section IV-C. Other
strategies t the expansion (2) in a least-square sense [4] or
by interpolation [5], [16], [23].

I11. PROBLEM DEFINITION

In order to properly motivate the proposed hierarchical
framework, this section introduces two relevant examples in
transmission-line analysis that have dif cult or no solution in
the state-of-the-art PC framework.

A. Hierarchical Problem with Dependent Random Parameters

Consider a cable with the cross-section depicted in Fig. 3.
All the geometrical and material properties are considered to
be independent RVs. Namely, for each wire:

its radius;

the thickness of its dielectric coating;
the permittivity of its dielectric coating;
its vertical displacement;

its horizontal displacement.

All these uncertain parameters are indicated in blue in Fig. 3.
For the sake of simplicity, the maximum horizontal displace-
ment is suitably constrained to guarantee that overlap is
avoided for any realization of the RVs. This is of course an
overly restrictive assumption, but it is necessary to ensure each
RV can be parametrized upfront. The case of nonparametric
variations is discussed in the next section.

In the above scenario, a cable with N wires has D = 5N
RVs in total. The p.u.l. inductance matrix L and capacitance
matrix C depend on the above parameters [24], [25]. If one
of the wires is taken as the reference conductor, the resulting
matrices are of size n  n, withn =N 1 being the humber
of signal wires. These matrices are symmetric by virtue of
reciprocity. Therefore, the number of distinct RVs is n(n +
1)=2 for each of the two matrices, leading to a total number
of d = n(n + 1) parameters.

By analogy with the hierarchical strategy of Fig. 2, the D
geometrical and material parameters are regarded as low-level
variables, and the d p.u.l. inductance and capacitance matrix
entries as mid-level variables, as illustrated in Fig. 4. Assuming
that the rst and second half of the -variables correspond to
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Fig. 4. Proposed hierarchical framework: the mid-level p.u.l. parameters
depend on a larger set of low-level random cross-sectional parameters . High-
level outputs (line voltages and currents) are modeled w.r.t. the smaller set of
mid-level RVs through suitable polynomials.
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the entries of the triangular part of L and C, respectively,
leads to the following de nition of the mid-level variables:
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The main difference with the scenario of Fig. 2 is that the
mid-level variables now depend on the same set of low-level
ones, thereby violating the assumption of mutual indepen-
dence. Therefore, despite the inherent hierarchy in the outlined
scenario, the technique in [18] cannot be applied.

Table | indicates the number of low- and mid-level variables
for the example of Fig. 3 and increasing wire number N. The
corresponding number K of PC basis functions, as required
to model such a number of RVs with a second-order PC
expansion (P = 2), is also indicated. Clearly, as long as
d < D, ie., for a moderate number of conductors N, a
substantial dimensionality compression can be achieved by
expanding high-level variables w.r.t. to the mid-level RVs
rather than the low-level RVs. The compression is even larger
if higher order expansions are considered.

It is important to note that, because of the hierarchical
dependence, high-level variables are typically a smoother func-
tion of the mid-level variables than of the low-level variables,
thus implying that, with the proposed technique, an accurate
expansion could be obtained with a lower order P. A similar
approach is in general applicable whenever the number of
p.u.l. matrix entries is smaller than the number of geometrical
and material parameters.

TABLE |
NUMBER OF LOW- AND MID-LEVEL PARAMETERS, AND CORRESPONDING
SECOND-ORDER PC EXPANSION TERMS, FOR THE SCENARIO OF FIG. 2.

low-level mid-level
wires parameters expansion terms parameters expansion terms
N |D=5N k=& 1qg=nN 1) k=CD
2 10 66 2 6
3 15 136 6 28
4 20 231 12 91
5 25 351 20 231

B. Nonparametric Variations: Randomized Cross-Section

In order to relax the constraint on the horizontal dis-
placement of the wires, leading to a more realistic scenario
while still avoiding overlaps, a sequential approach has to be
implemented. Wires are placed one after another, instead of
drawing their positions simultaneously as a single realization.

In particular, the strategy illustrated in Fig. 5 is adopted in
this paper. A given cross-sectional area, in which the wires
are allowed to be located, is subdivided into a ne grid. The
coordinates of the rst wire are then drawn randomly (with
uniform distribution) within the entire available area. Next, one
of the grid elements (shown in azure in Fig. 5) is randomly
selected to accommodate the center of the second wire. To
avoid overlap, the grid elements containing points that are
closer to the rst wire than twice the wire radius are excluded
from the candidates, resulting in the blank space around the

rst wire. Therefore, azure elements in Fig. 5 indicate allowed
locations. Once an allowed grid element is randomly selected,
the wire center is further drawn randomly within the area of
that grid element. Brie y speaking, the grid subdivision allows
enforcing the non-overlap condition over a discrete, rather than
a continuous set of elements. The size of the grid elements
determines the discretization of the boundary between overlap
and non-overlap regions.

The procedure is iterated by properly excluding each time
the area around the newly placed wires, thereby gradually
reducing the number of available locations, as shown in
Fig. 5b and Fig. 5c. It should be noted that the proposed
approach is more ef cient than randomly drawing all the wire
positions as a single realization, and checking for possible
overlaps a-posteriori, as this may lead to a large number of
instances being rejected. With the proposed procedure instead,
unavailable positions are discarded beforehand.

In this second scenario, the wire coordinates cannot be
explicitly expressed as a RV, and therefore the set of low-level
parameters is not even identi able! This in turn implies that
no state-of-the-art PC-based technique is applicable, and an
MC analysis was so far the only viable solution for variability
analysis.

IV. PROPOSED HIERARCHICAL STRATEGY

In this section, a new hierarchical strategy is put forward,
which aims at expressing the problem in terms of the mid-level



Fig. 5. Illustration of the proposed nonparametric wire positioning strategy. Wire #1 is randomly placed within the initial available area (left panel). Azure
rectangles indicate the remaining allowed grid elements after placing the rst wire. The center of wire #2 is randomly placed in one of the azure grid elements,
causing more grid elements to become unavailable (central panel). The procedure is repeated for wire #3 (right panel).

variables  (p.u.l. inductance and capacitance matrix entries)
in place of the low-level variables (geometrical and material
parameters, when explicitly available). As already pointed out,
when the number of mid-level variables d is smaller than the
number of low-level variables D, the PC model complexity
is substantially reduced. Moreover, the hierarchical approach
allows dealing with nonparametric problems, for which the
low-level variables cannot be explicitly de ned.

A. Mixture of Gaussians Fit

The starting point is the estimation of the distribution of the
mid-level variables. To this end, a suf ciently large humber
of samples of the p.u.l inductance and capacitance matrices is
computed. This can be done in an MC fashion, after generating
random instances of the cable cross-section (as described
for example in Section 1ll) and using the method in [24],
[25]. For a parametric problem like the one of Section IlI-A,
the PC-based technique in [26] can be alternatively used.
It is important to remark that the calculation of samples
of the inductance and capacitance matrices usually requires
a negligible computational time when compared, e.g., to a
transient analysis in SPICE.

Next, the distribution ( ) of the inductance and capaci-
tance matrix entries is tted using a MoG, i.e., a weighted
sum of multivariate Gaussian components:

3

() = WmNCJ mi m)

Wm B LI G, |
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m—1 det2 )
(12)
where the weights of each component satisfy

gwm>0
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= Wm =1
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8m
(13)

The function Fitgmdist, available in MATLAB, is used
for this purpose. The function provides weights wy,, means

m 2 RY, and correlation matrices ., 2 RY 9, given the
number of desired MoG components M.

B. Orthogonal Basis for the Mixture of Gaussian Distribution
via Gram-Schmidt Orthogonalization

For joint distributions of dependent variables, like (12),
suitable orthogonal basis functions needs to be computed.
A recent approach based on GSO [20] is adopted for this
purpose.

The starting point of the GSO is a set of linearly independent
multivariate polynomials. The set of multivariate monomials
f ()=t kagK is used, with multi-indices k 2 K
de ned as in (5), i.e., with total degree truncation and sorted
in the GLO. The rst basis function is simply taken to be
”1( ) = 1. The remaining basis functions ”, for k > 1, are
recursively computed as

8

ji=1

% ()
()
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P
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(14)

The expectations in (14) are mere scalar coef cients. For
small dimensions, they can be computed by numerically
integrating (7). It should be noted that the weighting function
in the integral is in this case the MoG distribution (12).! For
higher dimensions, a tensor-train decomposition can be used,
as suggested in [22]. A reasonable approximation, however, is
obtained via MC integration. This is computationally tractable,
since only closed-form functions need to be evaluated, namely
the monomials £ ( )gk,, the progressively generated basis
functions £ ( )gk,, and the MoG PDF (12).

C. Stochastic Galerkin Method

Once the basis functions are available, an SGM is used to
calculate the expansion coef cients of the high-level variables,
i.e.,, the voltages and currents at the line terminals. The
approach involves the calculation of deterministic and K-times
augmented p.u.l. inductance and capacitance matrices that
de ne the equivalent transmission-line equation (10), whose
voltage and current unknowns are the sought-for PC expansion
coef cients of the actual voltages and currents.

1In MATLAB, a function for the evaluation of a MoG distribution is
available as a method of the corresponding class.



The equivalent p.u.l. inductance and capacitance matrices
in (10) are obtained as
x
E= Ak
k=1

X
@ = Ak
k=1

L; Ck; (19
where  denotes the Kronecker product, Ax 2 RX K is a
matrix with entries

[Alij =h7k 75 7l (16)

whereas Ly and Cy are the PC expansion coef cients of the
p.u.l. inductance and capacitance matrices computed w.r.t. the
basis (14). Recalling that the RVs  correspond to the p.u.l.
matrix entries themselves, see (11), the coef cients are readily
computed azs the projection (9) of these variables:

[Lk]ij = g (n i+ i+1)+1)=2+j iv1 k() ()d

ZRe
[Cklij = L4 (0 D )+ i+1 k() ()d
" (17)

where the integral can be computed again by either numerical
or MC integration. The augmented transmission line described
by (10) is simulated in SPICE to obtain the transient PC
expansion coef cients.

V. APPLICATION EXAMPLES

In this section, the proposed hierarchical approach for
dependent RVs is applied to the variability analysis of two
cable lines.

A. Two Wires with Random Geometric and Material Proper-
ties

This rst application example considers the case of N =
2 wires with random geometrical and material properties, as
described in Section I11-A. Speci cally, their nominal values
are as follows:

wire radius ry, = 0:75 mm;

thickness of dielectric coating ty = 0:4 mm;

relative permittivity of dielectric coating "', = 2:6;

distance between the wires d =1 cm.
The wire radius, as well as the thickness and permittivity of
the dielectric coating, are assumed to be independent Gaussian
RVs with a 10% relative standard deviation. The horizontal
and vertical coordinates of each wire are ascribed a Gaussian
distribution with a standard deviation of 1 mm. Although a
Gaussian RVs can in principle take values in nitely away
from the mean, overlap is extremely unlikely with the above
parameters. The total number of RVs is D = 10.

One of the wires is taken as reference conductor, thus the
corresponding transmission line is described by scalar p.u.l.
inductance L and capacitance C. These are associated to mid-
level variables ; = L and , = C. Figure 6 visualizes their
statistical distribution. In particular, Fig. 6(a) is a scatter plot of
the computed inductance and capacitance samples, exhibiting
nonlinear dependence. Indeed, there is an inverse relationship
between the p.u.l. inductance and capacitance [25]. The marker
color indicates the empirical probability of the corresponding

sample, with warmer colors denoting higher probability. Fur-
thermore, Fig. 6(b) is a color plot of the MoG distribution
with M = 8 components that is tted to the inductance and
capacitance samples. The number of MoG components has
been selected based on a convergence analysis of the difference
between the empirical and tted distribution, resulting in a
good agreement between the two.

Next, orthogonal basis functions are built w.r.t. to the MoG
distribution of these mid-level variables. By choosing order
P = 2, and with d = 2, the starting set of (bivariate)
monomials for the GSO is f1; 1; 2; 2; 1 2; 3g. Table Il
reports the six orthonormal polynomials resulting from the
GSO, and the PC expansion coef cients of the p.u.l. induc-
tance and capacitance. These are just the projection of the
linear functions 1 and > onto the basis in Table Il. Therefore,
the coef cients of degree higher than one are zero.

A transient SPICE simulation is performed, in which the
line is considered to be 20-cm long, fed with a voltage pulse
source having an internal resistance of 100 , and terminated
by a capacitance of 1 pF, as illustrated in Fig. 7. The pulse
source has an amplitude of 1 V, rise/fall times of 200 ps, and
a duration of 2.8 ns at half amplitude. The output quantities of
interest are the voltages at the near- and far-end terminations
of the line, denoted as vne and Ve g, respectively.

To obtain reference results, an MC analysis is performed
using the available 10000 samples of the p.u.l. inductance
and capacitance. For the PC-based simulation instead, two
scenarios are considered. The rst one follows the rationale
of the classical PC, in which the line voltages and currents
(high-level variables) are expanded in terms of the actual (low-
level) RVs, i.e., the 10 geometrical and material parameters.
Hermite basis functions are adopted because of the Gaussian
distribution of the underlying parameters, and the approach in
[26] is used to calculate the pertinent PC expansion coef cients
of the p.u.l. inductance and capacitance. In this case, higher-
order coef cients are non-null owing to the nonlinear relation-
ship between p.u.l. and uncertain parameters. In the second
scenario, the line voltages and currents are expanded in terms
of the two p.u.l. parameters (inductance and capacitance),
using the new basis functions in Table II. In both cases,
the augmented p.u.l. inductance and capacitance matrices are
constructed via (15) and the Branin’s method [27] is used to
implement the corresponding equivalent lines in SPICE.

Figure 8 shows the results for the near-end terminal voltage.
The solid gray lines in the top panel are a subset of 100 MC
samples, giving a visual idea of the spread of the voltage due
to the variability of the wire parameters. The solid blue line is
the voltage mean obtained from the MC samples. The dashed
red and dotted green lines are the means obtained with the
classical and hierarchical PC implementations, respectively.
The proposed hierarchical implementation is in very good
agreement with the classical one. The high accuracy can be
further appreciated from the bottom panel, which displays the
voltage standard deviation with the same color code. A close-
up on a time frame of high standard deviation shows that the
new approach is even more accurate. This can be understood
by the fact that the mid-level variables are represented exactly
by the new basis functions, as opposed to the traditional im-
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Fig. 6. Distribution of the p.u.l. inductance and capacitance for the two-wire example of Section V-A: (a) scatter plot of the computed samples, with marker
colors indicating empirical probability (the warmer the color, the higher the probability); (b) color plot of the probability distribution of the MoG t.

TABLE I
ORTHONORMAL POLYNOMIALS FOR THE MID-LEVEL VARIABLES OF THE TWO-WIRE EXAMPLE OBTAINED FROM THE GSO, AND PC EXPANSIONS
COEFFICIENTS FOR THE P.U.L. INDUCTANCE AND CAPACITANCE.

Basis functions

PCE coef cients

Lk [nH/m]  Cg [pF/m]

1( 13 2)=1 1035.7 12.04

*2(1; 2)=154 10 2 ; 15:93 65.02 -0.846

*3(1; 2)=784 10 2 ;1 +6:03 » 1:54 10?2 0 0.166

"4(1; 2)=2:06 10 4 2 4:84 10 ' 1 477 +3:37 10? 0 0

"s(1; 2)=871 10 4 24647 10 2 1 , 257 1 6524 ,+1:70 108 0 0

"6( 1; 2)=4:02 10 3 2+588 10 1 ; »+20:92 2 1541 1 111 10% , +1:47 10* 0 0
100 20 cm the numerical integration of the expectations in (14), takes
D) >—o0—— 22.6 s. These onetime model-building steps are however not
to be repeated when running simulations for different settings

, \ VNE VEE —=— 1pF and/or loading conditions.
) ) B. Three Wires Above Ground with Randomized Cross-Section
Fig. 7. Transmission line con guration for the application test case in The second example deals with a cable consisting of three
Section V-A.

plementation, resulting in the PC expansion of the high-level
variables being more accurate for a given order. Fig. 9 reports
similar results for the far-end voltage, thus corroborating the
above conclusions.

As far as the computational times are concerned, the MC
analysis takes 3490 s, whereas the classical and hierarchical
PC simulation take 357 s and 0.48 s, respectively. Therefore,
the proposed approach achieves an impressive speed-up of
740 in transient simulation w.r.t. the traditional PC imple-
mentation, and of over 7200 w.r.t. MC. For the sake of com-
pleteness, the time required by the preliminary evaluation of
the p.u.l. parameter samples is 48.9 s, whereas the calculation
of the new basis functions for the hierarchical PC, based on

wires, which lie above a perfect ground plane and are ran-
domly placed according to the algorithm in Section I1I-B.
The conductor radius is ry, = 7:5 mil. The thickness of the
dielectric coating is ty = 10 mil, and its relative permittivity
is "y = 3:5. The area in which the wires are allowed to be
placed is a box of 3 2 mm centered 3 cm above the ground
plane. The cable con guration is illustrated in Fig. 10. The
wires are 30-cm long and they are terminated by capacitances
of 2 pF at the far end. At the near end, one of the wires
is excited by a Gaussian-modulated sinusoidal voltage source
with a frequency of 250 MHz, an amplitude of 1 V, a root-
mean-square width of 10 ns, and an internal resistance of 50
The remaining wires are terminated by 50- resistors.

A set of 10000 randomized cross-section instances are
generated. The corresponding distribution of the d = 12
entries of the triangular parts of the pertinent 3 3 p.u.l.



Fig. 8. Near-end voltage for the two-wire line. Top panel: MC samples and
average voltage obtained from MC, classical PC and new hierarchical PC;
bottom panel: standard deviation obtained with the same three approaches.

Fig. 9. Far-end voltage for the two-wire line. Curve indenti cation is as in
Fig. 8.

inductance and capacitance matrices is tted using a MoG
with M = 20 components. Suitable orthonormal basis func-
tions are constructed via the GSO. It should be noted that,
given the nonparametric nature of the variation of the wire
coordinates, the traditional PC framework cannot be applied
to this example.

Figure 11 shows the spread and the corresponding mean (top
panel) of the far-end crosstalk on one of the two victim wires,
as well as its standard deviation (bottom panel). The statistical
estimates are computed with both MC (solid blue line) and the
proposed hierarchical PC with order P = 1 (dotted green line).
A very good agreement is obtained with just a rst-order PC
expansion. Similar results are obtained for the other victim
wire and for the near-end crosstalk (results not shown here).
The accuracy is further con rmed in Fig. 12 by a comparison

Fig. 10. Cable con guration for the application test case in Section V-B.

on the PDF of the far-end crosstalk, calculated at the time
point of largest amplitude, i.e., about 31.1 ns, from both the
MC samples (gray bars) and the PC expansion (green line).

Fig. 11. Far-end crosstalk for the three wires above ground. Top panel: MC
samples and average voltage obtained from MC and hierarchical PC; bottom
panel: standard deviation obtained with the same two approaches.

As far as the computational times are concerned, the pre-
liminary calculation of the samples of the p.u.l. inductance
and capacitance matrices takes 226 s. The transient MC
analysis based on these samples requires 4253 s. The proposed
approach takes 4.8 s for the calculation of the basis functions,
based on the MC integration of the expectations in (14), and
23 s for the transient SGM-based simulation. The proposed
method achieves therefore a speed-up of over 150

V1. CONCLUSIONS

This paper presented a hierarchical PC-based approach for
the variability analysis of transmission lines. According to
the proposed method, high-level stochastic output variables
(line voltages and currents) are modeled as PC expansions
of correlated mid-level variables (the p.u.l. parameters), rather
than of low-level RVs (geometrical and material parameters).
To this end, the distribution of the p.u.l. parameters is tted
using a MoG. Suitable orthonormal polynomials for the PC
expansion are then computed via a GSO. Finally, an SGM is
used to obtain transient results of the line voltages and currents
in SPICE.



Fig. 12. PDF of the far-end crosstalk computed from the MC samples and
hierarchical PC expansion.

This approach allows extending the applicability of PC-
based variability analysis to scenarios in which the low-level
variables cannot be unambiguously parameterized or de ned,
which was an unresolved limitation of any PC-based approach.
Moreover, it enables a compression of the PC-problem size
whenever the number of the mid-level variables is smaller than
the number of low-level RVs, thus helping mitigate the curse
of dimensionality issue. It is also noted that more accurate
PC expansions can be obtained for a given order.

The bene ts of the proposed technique were demonstrated
by means of two application examples concerning wiring
structures with random geometrical and/or material parame-
ters. Further envisaged applications include transmission lines
whose geometrical and/or material properties are described
by continuous stochastic processes, like conductor surface
roughness or inhomogeneous dielectrics with random local
variations in the relative permittivity [28]. Continuous stochas-
tic processes can be represented as a truncated expansion
of a nite, yet large, number of random variables [29]. The
uncertainty in these structures would therefore be described by
a number of low-level RVs that is much larger than the number
of mid-level p.u.l. parameters. Moreover, although here specif-
ically conceived for transmission lines, it is expected that the
advocated approach be applicable to problems with similar
features in other engineering domains, including scenarios in
which the distribution of the RVs is not assumed a priori, but
rather estimated from measured data.
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