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ABSTRACT 

 

The paper presents a class of C0-continuous, flat shell elements based on the 

Refined Zigzag Theory (RZT) for the analysis of multilayered and curved composite 

and sandwich structures. The use of the interdependent interpolation strategy allows 

eliminating the shear-locking phenomenon and introducing the drilling rotation 

necessary to complete the set of classical nodal degrees of freedom (three displacements 

and three rotations). Additional kinematic variables are present in RZT, the zigzag 

rotations around the in-plane axes that measure the normal distortion typical of 

multilayered structures. An additional “drilling” zigzag rotation is therefore included 

among the nodal degrees of freedom in order to properly model curved and built-up 

structures. A stabilization procedure is adopted to suppress spurious zero-energy modes. 

A three-node triangular and a four-node quadrilateral flat shell element are formulated 
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with 9 degrees of freedom per node. Example problems involving flat and curved 

multilayered structures are presented and discussed in order to assess the accuracy and 

convergence properties of the presented elements. Both static response predictions and 

free vibrations analyses are considered and the comparison is made with analytic RZT 

solutions, high-fidelity 3D finite element models and FSDT-based flat shell elements. 
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Finite Elements, Shear Locking, Drilling Rotation 

 

1. INTRODUCTION 

 

Open literature presents a great number of papers dealing with the analysis of 

multilayered composite and sandwich structures and the topic is still nowadays 

investigated by many authors. On one hand, the interest in composite materials and 

layered structures is due to their excellent specific properties (stiffness-to-weight and 

strength-to-weight) and to the possibility to tailor the mechanical behavior of the 

component depending on the application. On the other hand, some peculiarities of 

multilayered composite structures (transverse shear deformability, through-the-

thickness anisotropy) require accurate approaches to reconstruct the structural response. 

The traditional approach for the analysis of multilayered structures is based on 

kinematic assumptions that lead to a displacements field. Strains and stresses are 

consistently derived and the governing equations are obtained using the Principle of 

Virtual Works (PVW) [1,2]. When the assumptions on the displacements field are valid 

along the whole thickness, Equivalent Single Layer (ESL) theories are obtained (refer to 

[3] for a review of ESL theories based on displacement unknowns). Among these, the 
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Classical Lamination Theory (CLT) based on Kirchhoff’s hypotheses [4] and the First-

order Shear Deformation Theory (FSDT) [5-7] have to be considered. These simple 

approaches provide good response predictions for thin plates with limited transverse 

anisotropy. The accuracy of FSDT can be improved and its range of applicability can be 

extended to moderately thick composite structures if ad hoc transverse shear correction 

factors are used [8]. Nevertheless, it has been shown that the correction is not always 

effective, especially for sandwich structures with high face-to-core stiffness and 

thickness ratios [9]. In order to take into account the transverse shear deformability 

effect (especially when moderately thick and thick shell structures are analyzed), high-

order theories have been developed [10-18]. Nevertheless, these theories are not able to 

guarantee the through-the-thickness continuity of transverse shear and normal stresses 

when obtained from the constitutive equations and the integration of Cauchy’s 

indefinite equilibrium equations is often invoked as a “corrector” procedure. A further 

enhancement can be achieved by formulating Layer-Wise (LW) theories where the 

displacements field is assumed in each layer [19,20]. This provides sufficient through-

the-thickness kinematic freedom and allows, in some cases, to enforce the transverse 

shear stresses to be continuous [20]. The drawback relies in the computational 

complexity that increases with the number of physical layers. A compromise between 

ESL and LW approaches is represented by the zigzag theories pioneered by Di Sciuva 

[21-24] and further developed by Cho [25], Averill [26,27] and Icardi [28,29]. The 

number of kinematic variables is fixed as in ESL theories and the transverse shear 

stresses are set to be through-the-thickness continuous as in LW theories, thus leading 

to accurate response predictions at an affordable computational cost. A recent 

development in the framework of zigzag theories is represented by the Refined Zigzag 

Theory that has been formulated for beams [30] and plates [31] and then assessed on a 



4 

wide spectrum of material systems, ranging from homogenous [32] to multilayered 

sandwich [9], functionally-graded plates [33,34] and functionally-graded carbon 

nanotube-reinforced sandwich plates [35]. 

An alternative approach is based on the a priori assumption of the through-the thickness 

distribution of displacements and transverse stresses and on the use of the Reissner’s 

Mixed Variational Theorem (RMVT) [36]. Transverse stresses can be therefore easily 

assumed to be continuous. Several papers have been presented within this framework 

[37], starting from the first ones by Murakami (ESL theory proposed in [38] and LW 

approach proposed in [39]). A recent mixed version of RZT (called RZT(m)) has been 

formulated for both beam [40] and plate [41] structures. 

For further discussions and for a broader review on theories for the analysis of 

multilayered composite and sandwich structures, in particular zigzag theories, refer to 

[1-3,10,11,37,42-44]. 

Since RZT and RZT(m) may be regarded as an enrichment of FSDT, they suffer 

from the same shear-locking phenomenon that affect FSDT-based finite elements in the 

thin regime, i.e., when very slender beams or thin plates are modeled with finite 

elements [45]. Among the several strategies proposed to overcome shear locking in 

FSDT finite elements, the so-called interdependent interpolation strategy is based on the 

approximation of the deflection with polynomials one order higher than polynomials 

used for bending rotations [46], thus obtaining internal nodes where only deflection 

degrees of freedom are defined. This approach has been first proposed for Timoshenko 

beam finite elements [46] and then extended to FSDT quadrilateral [47] and triangular 

[48] plate finite elements. The element topology can be simplified with appropriate 

constraining conditions [46]. Similarly, the interdependent interpolation strategy has 
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been applied (with an improved constraining condition) to beam elements based on 

RZT [45,49] and RZT(m) [50] and to plate elements based on RZT [51] and RZT(m) [52]. 

In engineering applications involving thick and thin multilayered structures, it is 

highly desirable to have efficient finite elements able to yield accurate solutions when 

curved surfaces are modeled or coupling between shell and beam elements is required. 

While curved degenerated shell elements based on the Naghdi displacement field [53], 

although very effective, introduce additional complexity to the finite element 

formulation that leads to an increased computational cost, flat shell elements offer a 

good balance between performances, formulation simplicity and computational cost. 

When a general purpose FSDT-based shell finite element is developed, it is necessary to 

equip each node with six mechanical degrees of freedom: three displacements and three 

rotations. Since FSDT defines only the rotations around the two in-plane axes, it is not 

possible to associate a stiffness to the rotation around the normal axis (also known as 

drilling rotation). In literature several strategies that address this issue have been 

proposed and these methods may be classified in four classes according to the fact that 

are based on (1) adding a fictitious stiffness to the drilling rotation [54-56], (2) 

enhancing the strain field with non-conforming modes [57,58], (3) modifying the 

variational statement by bringing in an additional term related to the rotation around the 

element’s normal [59-62] (4) introducing the drilling rotation at the shape-function level 

[63-69]. 

In particular, in [67,68], the elimination of shear locking and the introduction of the 

drilling rotation are addressed together for plate elements based on FSDT [67] and on 

his {1,2} theory by Tessler [68]. The approach consists of considering any plate 

element’s edge as a Timoshenko beam in a 3D space and deriving the shape functions 

starting from quadratic and linear polynomials that interpolate the displacements and 
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rotations, respectively. Consequently to this particular choice, three issues are solved at 

the same time: 1) according to the interdependent interpolation scheme [46-48], the 

shear locking is relieved since the deflection interpolation is one order higher than the 

rotation interpolation 2) the quadratic displacement field allows for full displacement 

compatibility between non co-planar adjacent elements [68] 3) a drilling rotation is 

introduced at the shape-function level obtaining a formulation that is very similar to the 

Allman-type shape functions [63,64]. 

This paper is concerned with the development of RZT-based triangular and 

quadrilateral flat shell elements with drilling degree of freedom formulation, suitable for 

linear static analysis and modal analysis of multilayered composite and sandwich 

structures. The dynamic version of the virtual work principle is employed to obtain a 

variationally consistent formulation. A full-integration scheme is employed since the 

shear locking has been removed with the interdependent interpolation and a stabilization 

matrix is adopted to remove the zero energy modes introduced with the drilling degree 

of freedom. Furthermore, a “drilling” component of the zigzag rotation is introduced as 

nodal degree of freedom. Convergence and accuracy of the proposed shell elements are 

preliminarily assessed considering the static response of flat multilayered plates and, 

subsequently, through numerical experiments involving linear static response and free 

vibrations of curved sandwich structures. 

 

2. REFINED ZIGZAG THEORY 

 

In this section, the Refined Zigzag Theory is briefly described in order to set the 

framework for the flat shell finite elements development. For a complete and detailed 

discussion on RZT for plates, refer to [31]. 
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2.1 Displacements, strains and stresses 

In a global three-dimensional Cartesian coordinate system defined by the 

coordinate axis ( , , )X Y Z , a flat linear elastic multilayered shell is considered. The shell 

is equipped with a local orthonormal reference frame 1 2( , , )x x z  where the orthogonal 

axes 1 2( , )x x
 
define the shell’s mid-plane, S , and z  is the thickness coordinate ranging 

from h  to + h . The total laminate thickness is 2h  and 0z   denotes the mid-plane of 

the shell (Figure 1). The laminate is made of N perfectly bonded orthotropic layers; the 

k th  layer is denoted with the superscript ( )k . 

The displacement field of RZT referred to the 1 2( , , )x x z  coordinate system, 

( ) ( )

1 2

T
k k

zu u u   s , can be thus written as follows [31] 

 

 

( ) ( )

1 1 2 1 2 1 1 2 1 1 1 2

( ) ( )

2 1 2 1 2 2 1 2 2 2 1 2

1 2 1 2

( , , ) ( , ) ( , ) ( ) ( , )

( , , ) ( , ) ( , ) ( ) ( , )

( , , ) ( , )

k k

k k

z

u x x z u x x z x x z x x

u x x z v x x z x x z x x

u x x z w x x

  

  

  

  



 (1) 

 

with the following definition of the seven kinematic variables, 

 1 2 1 2

T
u v w    u  (Figure 1): u , v , and w  are the uniform 

displacement components along the 1x  , 2x  , and z  axis respectively ( u  and v  are 

the in-plane displacements while w  is the transverse deflection); 1  and 2  are the 

bending rotations of the transverse normal around the positive 2x  axis and the negative 

1x  axis, respectively; 1  and 2 are the zigzag rotations around the positive 2x   and 

negative 1x  direction, respectively, and measure the magnitude of the zigzag effect, 

i.e., the distortion of the normal typical of multilayered structures. The through-the-

thickness pattern of the normal distortion is modeled by the zigzag functions (
   

21 ,
k k

  ) 

which depend on the thickness and on the transverse shear modulus of each layer. For a 



8 

complete discussion of the zigzag rotations and a detailed derivation of the zigzag 

functions, refer to [31]. 

 

 

Figure 1. Plate geometry and notation for Refined Zigzag Theory. 

 

Using the linear strain-displacement relations, the in-plane and transverse shear 

strains become 

 

  

( ) ( )

11 ,1 1,1 1 1,1

( ) ( )

22 ,2 2,2 2 2,2

( ) ( ) ( )

12 ,2 ,1 1,2 2,1 1 1,2 2 2,1

( ) ( )

1 1 1 1

( ) ( )

2 2 2 2

k k

k k

k k k

k k

z

k k

z

u z

v z

u v z

   

   

      

   

   

  

  

     

 

 

 (2) 

 

where 
,w      and ( ) ( )

,

k k

z  
 
( =1,2). The in-plane and transverse shear 

components of the strain field can be represented using the vectors 

( ) ( ) ( )

11 22 12

T
k k k     ε  and ( ) ( )

1 2

T
k k

z z    γ , respectively. The corresponding in-plane 
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and transverse shear stress components, ( ) ( ) ( )

11 22 12

T
k k k     σ  and ( ) ( )

1 2

T
k k

z z    τ , 

can be calculated through the constitutive equations 

 

 




σ Cε

τ Qγ
 (3) 

 

where ( )[ ]k

ijCC  ( , 1, 2,6i j  ) and ( )[ ]kQQ  ( , 1,2   ) are the matrices of 

transformed reduced elastic stiffness coefficients in the 1 2( , , )x x z  coordinate system, 

and relative to the plane-stress condition that ignores the transverse-normal stress. 

 

2.2 Governing equations 

The governing equations for RZT can be obtained from the D’Alembert’s 

Principle 

 

  T T T

e
V V

dV dV W        ε σ γ τ s s  (4) 

 

where V  is the volume of the plate, eW  is the work of external loads and   is the mass 

density. Substituting Eqs. (1)-(3) into Eq. (4) and then integrating over the thickness 

coordinate, yields 

 

   e

T T T T T T T

S S
WdS dS            m m m b b m b b s se A e e B e e B e e De ue G u Γe (5) 

 

where: m
e , b

e , s
e  are the RZT strain measures; A , B , D , G  are the corresponding 

RZT stiffness coefficients matrices; Γ  is the RZT inertia coefficients matrix (refer to 

the Appendix A for the complete definition). 
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The Euler-Lagrange equations of motion for RZT and the related set of consistent 

boundary conditions can be derived from Eq. (5) by performing integration by parts 

(refer to [9] for the details of the derivation). 

It is now possible to formulate variationally consistent flat shell finite elements 

starting from Eq. (5) and employing C0-continuous shape functions for the interpolation 

of the kinematic variables since their maximum differentiation order with respect to the 

spatial variables is one in the strain components, Eqs. (2). 

 

3. RZT FLAT SHELL ELEMENTS FORMULATION 

 

Starting from Eq. (5), the equations of motion can be derived at the element level 

in terms of the element mass matrix, stiffness matrix and load vector by introducing the 

appropriate approximation of the kinematic variables. The shape functions choice is a 

key point for the development of computationally efficient RZT-based finite elements 

since this class of finite elements is proven to be affected by shear locking [45,51] and it 

is hence necessary to resort to appropriate strategies to relieve the element formulation 

of this phenomenon. 

Within the spirit of what has been done in [51,52], the shear locking is removed 

employing an enhanced version of the interdependent interpolation strategy formulated 

by Tessler in [67]. In [67] Tessler developed a triangular shell element based on FSDT, 

employing the interdependent interpolation strategy to overcome the shear locking; 

quadratic shape functions were used for the deflection as well as for the in-plane 

displacements whereas linear shape functions were used for the bending rotations. 

Besides solving the shear locking issue, this approach allows to introduce the drilling 

degrees of freedom, to obtain a fully compatible displacement field at the interface 

between two adjacent elements while improving the element performances in 
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membrane-dominated problems. In order to minimize the number of nodal unknowns, 

two different constraining strategies were employed to condense-out the additional 

degrees of freedom introduced with the quadratic approximation. The aforementioned 

constraints are enforced locally on each edge of the triangular element considered as a 

Timoshenko beam [67]. The triangular shell element is finally assembled by joining the 

three beams thus resulting in a beam-frame in a three-dimensional Cartesian coordinate 

system. 

In order to adapt this procedure to RZT, before introducing the triangular and 

quadrilateral shell finite element formulation, it is thus necessary to develop, in a three-

dimensional reference frame, an RZT-based beam finite element with quadratic 

displacements and eventually, by means of the appropriate constraining strategies, 

reduce the number of nodal unknowns. 

 

3.1 3D deformation of RZT-based beam element 

A local orthonormal reference frame ( , , )r s n  is built up on a straight, linear 

elastic, multilayered composite beam of length L such as the r  axis is normal to the 

cross section and runs from the node 1 to the node 2, the n  axis is directed along the 

through-the-thickness layered direction and the s  axis completes the right-handed 

orthogonal reference frame (Figure 2). The beam’s displacement field based on RZT 

can hence be expressed, with respect to the local coordinate system, in terms of six 

independent kinematic variables 

 

 

( ) ( )( ) ( ) ( ) (( , , )

( , , )

( ,

) ( )

( )

, ) ( )

r s s

s

k k

r n

s

n n

r s n u n r r n ru r s

u r

u

r s n u

s rr n u

      





 (6) 
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where ru ,
 su

 
and nu

 
are the uniform displacements components along the three 

coordinate axes; s and s
 
are the bending and zigzag rotations around the positive 

s  axis; n  
is the bending rotation around the positive n  axis; ( )k  is the zigzag 

function of the k th  layer (Figure 2). 

 

 

Figure 2. RZT-based beam finite element: topology and kinematic variables.  

 

Although, by analogy with the rotation n , the zigzag rotation n  around the 

n  axis may be expected to exist as well, it has to be observed that n
 
would not have 

any physical meaning since the beam is laminated along the n  axis only. From the 

Green-Cauchy definitions, the in-plane shear strain, rs , is derived as follows 

 

 
( )( )

,
s

kk

rs
r

n s r

uu
u

s r
 


    

 
 (7) 

 

whereas, for the transverse shear strain, the RZT measure [30,45], rn , is considered 

 

 ,rn n srs u      (8) 
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3.2 Three-node 15-dofs unconstrained beam element 

A three-node beam finite element is presented first. According to the 

interdependent interpolation strategy, the displacement variables have to be 

approximated with a polynomial one order higher than the rotation kinematic variables; 

therefore, the displacements ru ,
 su

 
and nu

 
are approximated with parabolic shape 

functions while for the bending and zigzag rotations, ,,s n s   , linear shape functions 

are employed 

 

 ( ) ( ) ( ) ( ) ( ) ( )r s s nr nu r u P r u u P r u r u Pr r      (9) 

 

 ( ) ( ) ( ) ( ) ( ) ( )si i n nis si si i

i i i

r L r r L r r L r           (10) 

 

with 1,2i  , 1, , 2m  and with the interpolation polynomials given by 

 

 

 

 

1 2

2

1 2

1 1
, (1 ), (1 )

2 2

1 1
, , ( 1) , (1 ), (1 )

2 2

i

m

L

P

L L

P P P

 

    

 
    

 

 
    
 

 (11) 

 

where the non-dimensional longitudinal coordinate 2 L [ 1,1]r     has been 

introduced. The unconstrained beam element has a total of 15 nodal degrees of freedom, 

three for each displacement and two for each rotation (Figure 3). 

 

 

Figure 3. Unconstrained RZT-based beam finite element: topology and nodal degrees of freedom. 
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3.3 Two-node 12-dofs constrained beam element 

In order to condense-out the mid-node displacement degrees of freedom, three 

assumptions on the displacements and strains are made. The first constraint is obtained 

by imposing that the axial displacement ru
 
is linear with respect to the axial direction 

[63,64,67,68] 

 

 
2

2
0ru

r





 (12) 

 

The other two conditions are derived by applying the interdependent interpolation 

strategy, i.e., enforcing the constancy of the in-plane shear strain, Eq. (7), and RZT 

transverse shear strain measure, Eq. (8), with respect to the axial coordinate r  

 

 

0

0

rs

rn

r

r















 (13)
 

 

It should be noted that the second condition of Eq. (13) has been proven to be 

very effective [45,51] and to produce more accurate results for thick and thin laminates 

with respect to other constraining conditions.  

After introducing the kinematic variables interpolation, Eqs. (9) and (10), into Eqs. (7) 

and (8) and then using Eqs. (12) and (13), the displacements of the mid-node m are 

written as 
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1 2

1 2 2 1

1 2 2 1 2 1

1
( )

2

1
( ) ( )

2 8

1
( ) ( ) ( )

2 8 8

rm r r

sm s s n n

nm n n s s s s

u u u

L
u u u

L L
u u u

 

   

 

   

     

 (14) 

 

Substituting Eqs. (14) into Eqs. (9) results in an interpolation scheme that is 

different from the original one (Eqs. (9) and (10)) only for the displacements  

 

  

   

2 1

2 1 2 1

( ) ( )

( ) ( ) ( )
8

( ) ( ) ( ) ( )
8 8

ri i

i

s si i n n

i

n ni i s s s s

r

m

m

i

m

u r u L r

L
u u L r P r

L L
u r u L r P r P r

r  

   



 

   











 (15) 

 

Finally, the constrained beam element has a total of twelve nodal degrees of 

freedom, two for each displacement and rotation (Figure 4). 

 

 

Figure 4. Constrained RZT-based beam finite element: topology and nodal degrees of freedom. 

 

 

3.4 Three-node 24-dofs triangular and four-node 32-dofs quadrilateral flat shell 

elements 

Employing the procedure adopted in the previous section to pass from the 

unconstrained beam element to the constrained, it is now possible to formulate a three-

node 24-dofs triangular and a four-node 32-dofs quadrilateral flat shell element. As a 

matter of fact, the triangular and quadrilateral elements may be considered as frame 
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structures constituted, respectively, by three and four co-planar beams (Figure 5). The 

reference axes of the beams define the 1 2( , )x x
 
plane and the shell’s mid-surface. 

Moreover, the beams are oriented such as the positive direction of their through-the-

thickness n  axis coincides with the positive direction of the z  axis, orthogonal to the 

1 2( , )x x
 
plane (the coarse drilling rotation is therefore denoted by z  and is equivalent to 

the n  bending rotation used for the beam case). 

 

 

Figure 5. RZT-based flat shell elements: topology and kinematic variables. 

 

The initial approximation for the kinematic variables is again quadratic for the 

displacements 

 

 
1 2 1 2 1 2 1 2 1 2 1 2, ) ( , ) ( , ) ( , ) ( , ) (( , )x P x x v x x Pu x u v x x xww x x P x      (16) 

 

and linear for the rotations 
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1 1 2 1 1 2 2 1 2 2 1 2 1 2 1 2

1 1 2 1 1 2 2 1 2 2 1 2

, ) ( , ) ( , ) (( , ) ( , ) ( , )

, ) ( , ) ( , )( ( , )

i i i i zi i

i i i

i i i i

i i

zx L x x x x L x x x x L x x

x L x x L x

x

x x x x

     

   

  

 

  

 

 (17) 

 

where 1,2,...,i n  ranges over the n  corner nodes ( 3n   for triangular elements, 4n   

for Quad elements), 12 23 11, ,2, ,..., , nm m n m  ranges over the corner and the mid-edge 

nodes. Moreover, iL  are the area-parametric coordinates for triangular element and the 

isoparametric bi-linear shape functions for quadrilateral element [54]. Similarly, P  

represent the quadratic shape functions for triangular element and serendipity quadratic 

shape functions for quadrilateral element [54] (refer also to the Appendix B). 

Unconstrained shell elements are obtained (Figure 6) that are analogous to the 

unconstrained beam element previously discussed (Figure 3). 

 

 

Figure 6. Unconstrained RZT-based flat shell elements: topology and nodal degrees of freedom. 

 

Constraining conditions, Eqs. (14), are now applied to each of the 3 edges for the 

triangular element and to each of the 4 edges for the quadrilateral element after 

performing the appropriate coordinate transformation. These transformations, although 

straightforward, require several passages that are omitted here; the resulting expression 

for the plate displacements is thus given as 
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  

 (18) 

 

where 1iQ  and 2iQ  are particular quadratic shape functions (see Appendix B for a 

complete definition). Eqs. (18), and (17) can be written in the compact form 

 

 eu Nu  (19) 

 

with u  collecting the original RZT kinematic variables (u ) and the additional coarse 

drilling rotation ( z ),  1 2 1 2

T

zu u w     u , and with the following 

definition for the matrix N  and the vector e
u  
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N  (20) 

                1 2 1 2

e

i i i i i z

T

i i iu v w        u  (21) 

 

The resulting constrained shell elements (analogous to the beam constrained 

element of Figure 4) have eight nodal degrees of freedom defined on each corner node: 

three displacements ,u v  and w  (directed along the 1 2,x x 
 
and z  axis, 

respectively), two bending rotations 1  
and

 2  
(around the 2x 

 
and

 1x  axis, 



19 

respectively), the coarse drilling rotation z , and two zigzag rotations 1
 
and 2  

(around the 2x 
 
and 1x  axis, respectively) (Figure 7). 

 

 

Figure 7. Constrained RZT-based flat shell elements: topology and nodal degrees of freedom. 

 

3.5 Element mass and stiffness matrix and nodal load vector 

Substituting Eq. (19) into the definition of the strain measures (Appendix A) 

yields 

 

 

e

e

e







m m

b b

s s

e B u

e B u

e B u

 (22) 

 

where ,
m b

B B
 
and s

B  are, respectively, the membrane, bending and transverse shear 

strain-displacement matrices which contain the derivatives of the shape functions with 

respect to the in-plane coordinates 1x
 
and 2x . 

Introducing the finite element approximation (Eqs. (19) and (22)) into the 

variational statement Eq. (5)  

 

   0
T ee e e e e   u M u K fu  (23) 
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Eq. (23) yields the equation of motion of the finite element in its local coordinate 

system 1 2( , , )x x z  

 

 
e e e e e M u K u f 0  (24) 

where: 

 e
M  is the element mass matrix of the element 

 

 
S

e T dS M N ΓN  (25) 

  

where N  is obtained from matrix N  (Eq. (20)) by removing its sixth row. 

 e
K  denotes the stiffness matrix of the element and is given by the sum of the 

membrane, bending, coupling, and transverse shear contributions, defined as 

follows 
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



m m m

b b b

c m b b m

s s s

K B A B

K B D B

K B B B B B B

K B G B

 (26) 

  

 e
f  is the nodal forces vector of the element. 

 

3.6 Stabilization 

The procedure discussed in Sections 3.1 to 3.4 does not bring into the formulation 

of the triangular and quadrilateral elements a dependence on the “drilling” component 

of the zigzag rotation, z . In order to model built-up or curved shell structures, it is 

necessary to connect elements that are not co-planar. As a consequence, the z  nodal 
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degree of freedom has to be introduced and the vector of nodal degrees of freedom is 

expanded 

 

                  1 2 1 2

e

i i i i i zi i i zi

T

u v w         q  (27) 

 

The mass matrix and stiffness matrix (Eqs. (25) and (26)) as well as the force 

vector are correspondingly expanded with zero coefficients, thus obtaining e
M , e

K  and 

e
f . Analogously to the interpolation used for the rotational degrees of freedom, linear 

shape functions are used for the approximation of z   

 

   1 2 1 2 1 2( , ) ( , ) ( , )zi i i zi

i

z x x L x x L x x     (28) 

 

Following one of the approaches proposed in [54] where a penalty formulation 

was employed to account for the coarse drilling rotation z  within FSDT-based shell 

finite elements, the artificial stiffness coefficients corresponding to z  are introduced 

by means of an additional penalty term. Accordingly, the total potential energy of each 

element,  , becomes 

 

  
2*

1 2( , )
2

z z
S

C
x x dS



       (29) 

 

where   is a penalty parameter, C  is a constant (units of force per unit length) 

introduced for dimensional consistency and 
z  is the element-level average value for 

z  
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1 2

1
( , )z z

S
x x dS

S
    (30) 

 

By introducing Eq. (28) into Eq. (30), we obtain 
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a

















  (31) 

 

Eq. (29) can now be rewritten by using Eqs. (28) and (31) 

 

    * 1

2

T

zi ziKC         (32) 

 

where 

 

         1 2 1 2( , ) ( , )
T T

i i
S

i i dSK L x x L x x a a
       (33) 

 

Following [70], a suitable choice for the penalty parameter   is 
510
. Moreover, 

owing to the fact that the stiffness being represented by the matrix defined in Eq. (33) is 

related to the drilling zigzag rotation, the dimensional coefficient is calculated as  

 

 
2 2

22 44C G G    (34) 

 

where 22G  and 44G  are defined in Appendix A. Refer also to Appendix C for further 

details on matrix K
    for triangular elements. 

The matrix C K      is expanded (
eC 
ψ

K ) and summed to the element 

stiffness matrix 



23 

 
e eC 

ψ
K K  (35) 

 

As demonstrated by Tessler [67,68], after applying the interdependent 

interpolation scheme to the in-plane displacements, the Allman shape functions can be 

obtained [63,64]. The Allman-type shape functions, besides providing a drilling-degree-

of-freedom formulation, introduce into the finite element zero-energy modes [54,58-

60,71]. When all the coarse drilling rotations z  assume the same value, the 

deformation energy associated to this rotation is zero and a spurious mode arises. Zero 

energy modes have to be eliminated in order to guarantee the convergence of the finite 

element. 

According to Allman [63], this goal may be achieved by assigning a constant 

value to at least one drilling rotation of the model; this numerical expedient allows the 

stiffness matrix to become positive definite thus improving the convergence properties 

of the method. Although effective, this technique is highly unfit for large scale models. 

Hughes and Brezzi [59] proposed a method that allows to remove the spurious 

modes by modifying the energy functional and penalizing the zero-energy modes. This 

strategy has been used for the development of several membrane finite elements [60,72] 

and has been extended to cope with curved shells as well [71].  

When the interdependent interpolation strategy is used to formulate a finite 

element with parabolic displacements, it is also possible to inhibit the spurious modes 

by employing a stabilization matrix based on the finite element’s edge reinforcement 

proposed by Tessler [70]. The energy functional is modified by introducing a term that 

penalizes the zero-energy modes, similarly to the Brezzi and Hughes’s approach [59], 

and is derived enforcing, in a weak sense, the Kirchhoff constraints for slender beams. 

These slender beams are superimposed to the element’s edges thus providing a local 1D 



24 

reinforcement. Recalling the beam-frame representation (Figure 2), it can be observed 

that for a very thin beam the Kirchhoff condition holds: the in-plane shear strain 

evaluated at the midpoint is imposed to be zero thus yielding (refer to definition in Eq. 

(7)) 

 

          /2 /2, 1 2 2 1

1 1
0

2 L
rs rs n s rm r L nr n s sL

u u u    
 

        (36) 

 

Considering the beam to be superimposed to the edge of the triangular or 

quadrilateral element between nodes i and j, using the z  notation for the coarse drilling 

rotation and by means of the appropriate coordinate transformation, Eq. (36) is modified 

as follows  

 

      1 1 2 22
( )( ) ( )( )

1 1
0

2ij
j i j i j i j irs zi zjm

ij

x x v v x x u u           (37) 

 

where ij  is the length of the edge between nodes i and j, ( 1 2,i ix x ) are the local in-plane 

coordinates of the node i, the indices i and j follow the usual cyclic permutation 

( 1,2,3i   and 2,3,1j   for the triangular element, 1,2,3,4i   and 2,3,4,1j   for the 

quadrilateral element). Eq. (37) can be written in matrix form by expressing  
ij

rs m
  in 

terms of the nodal degrees of freedom 

 

     0
ijms j

e

r

e

i
  γB q  (38) 

 

Eq. (38) can be enforced at the element level by considering the sum of the 

contributions coming from the edges 
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      
2

0
T

T T

ij

e e e

m ij ij

e e e e

rs   
  

 
   γ γ

q B B q q K q  (39) 

 

The spurious modes are hence suppressed by way of a penalty formulation that 

enforces weakly the condition derived from Eq. (39), i.e., by further updating the 

element stiffness matrix as follows 

 

 
e ee C C      
ψ

K K K  (40) 

 

where   is a penalty parameter set to 
510
 and C  is a constant (units of Joule) 

introduced for dimensional consistency and set to be 

 

 
2 2

11 33C S G G    (41) 

 

with 
11G  and 33G  defined in Appendix A. 

 

4. NUMERICAL RESULTS 

 

The first set of numerical results is related to the linear bending of a flat 

multilayered structure and aims at showing the convergence properties of the proposed 

elements with respect to the analytic RZT solution. The same example problem is used 

to investigate the elements’ performance when distorted meshes are used and to verify 

that the shear-locking problem is eliminated for a realistic range of edge length-to-

thickness ratios. 

In the second part of this section, a hemispherical sandwich structure is 

considered to assess the RZT-based elements for the linear static response and the 

modal analysis of doubly-curved multilayered shells. 
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4.1. Convergence, distorted mesh effect and shear-locking 

In order to investigate the convergence properties, the effect of distorted and 

irregular meshes and the absence of shear-locking for the proposed RZT-based shell 

elements, an analytic RZT solution should be available as reference result. This solution 

exists in the Navier’s form for simply supported rectangular plates subjected to a bi-

sinusoidal transverse load [31]. 

A square plate is considered with edge length a and thickness 2h. The plate is 

simply supported on all the edges and subjected to a bi-sinusoidal transverse load with 

maximum amplitude q0. Table 1 shows the stacking sequence and Table 2 reports the 

material properties of the plate. 

 

Table 1. Stacking sequence of the simply supported square plate (layer sequence is in the positive z-

direction).  

Thicknesses 

( ( )kh h ) 
Materials 

Orientations 

(degrees) 

[ 1
30

/ 1
30

/ 1
30

/ 21
30

/ 2
30

/ 2
30

/ 2
30

] [ C / C / C / R / C / C / C ] [ 0 / 90 / 0 / 0 / 0 / 90 / 0 ] 

 

Table 2. Materials’ mechanical properties. 

Material code 1
E  

(MPa) 

2
E  

(MPa) 

3
E  

(MPa) 

12
  

 

13
  

 

23
  

 

12
G  

(MPa) 

13
G  

(MPa) 

23
G  

(MPa) 

C 

(Carbon-Epoxy UD) 
110000 7857 7857 0.33 0.33 0.49 3292 3292 1292 

R 

(Rohacell® foam) 
40.3 0.3 12.4 

 

The plate is a non symmetric sandwich with multilayered composite facesheets 

and a foam core. Table 3 reports the exact non-dimensional maximum deflection of the 

plate according to RZT for different 2a h  ratios. 
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Table 3. Exact non-dimensional maximum deflection of the square plate according to RZT, 

   4

11 0maxRZT RZTw w D q a  , where 
11D  is the bending stiffness of the plate along the 

1x  direction. 

2a h  101 5101 102 5102 103 5103 104 5104 105 5105 106 

1000
RZTw  119.8 12.63 7.890 6.303 6.253 6.237 6.237 6.237 6.237 6.237 6.236 

 

At first, the convergence of the proposed FEM solution to the exact RZT 

deflection is investigated for a moderately thick case, 2 10a h  , and when using 

regular mesh patterns. The symmetry of the problem is taken into account and ¼ of the 

plate is discretized according to the schemes represented in Figure 8. 

 

  

(a) (b) 

  

(c) (d) 

Figure 8. Regular mesh schemes for ¼ of the square plate characterized by Ne = number of 

subdivisions per edge and Nn = total number of nodes: (a) Quad mesh (Ne =3, Nn = 16), (b) Tria(1) 

mesh (Ne =3, Nn = 16), (c) Tria(2) mesh (Ne =3, Nn = 16), (a) Tria(3) mesh (Ne =3, Nn = 25). 
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Figure 9 shows the percent error of the RZT FEM maximum deflection with 

respect the RZT exact one, E%(w), as a function of the number of nodes, Nn, for the 

considered regular mesh schemes. 

 

 

Figure 9. Square plate problem: convergence of the RZT FEM maximum deflection to the RZT 

exact one for regular mesh patterns. 

 

When the number of nodes is at least 100, all of the regular mesh patters show 

similar performances and guarantee that the maximum deflection is evaluated with an 

error that is lower than 1%. For coarser mesh schemes, the use of Quad elements or Tria 

elements arranged according to the pattern (3) (Figure 8), provides slightly more 

accurate predictions. 

The effect of using irregular and distorted mesh patters has also been investigated. 

Figure 10 shows the considered irregular discretization schemes and reports the 

corresponding number of nodes. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 10. Irregular mesh schemes for ¼ of the square plate: (a) mesh D1 (Nn = 82), (b) mesh D2 

(Nn = 82), (c) mesh D3 (Nn = 81), (d) mesh D4 (Nn = 82), (e) mesh D5 (Nn = 24), (f) mesh D6 (Nn = 

25). 

 

Figure 11 allows to compare the performances of the regular and irregular mesh 

schemes being considered.  
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Figure 11. Square plate problem: comparison between the performances of the irregular and 

regular mesh schemes. 

 

When the discretization is based on an adequate number of elements and nodes 

(irregular mesh schemes D1–D4, Nn = 81,82), the percent errors on the maximum 

deflection are very similar to those obtained with regular mesh patterns (scheme D1 is 

slightly better than the best regular scheme due to a smooth transition between smaller 

elements – where higher strain gradients are present – and bigger elements). For coarser 

irregular meshes (schemes D5,D6, Nn = 24,25), the performances are comparable to 

those of the less accurate regular discretizations. These results demonstrate that the 

proposed shell elements based on RZT are adequately robust with respect to the mesh 

irregularity. 

A further investigation has been performed to verify if the interdependent 

interpolation strategy adopted to develop the proposed shell elements is able to 

eliminate the shear locking phenomenon. The same square plate problem is considered 

with 2a h  ratio ranging from 10 to 106. The exact RZT maximum deflection for the 

different cases is reported in Table 3. The RZT FEM results are obtained with regular 
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mesh patterns (Figure 8) and a number of elements and nodes that guarantee 

convergence (Ne = 50 and Nn = 2601 for mesh patterns Quad, Tria(1) and Tria(2), Ne = 

35 and Nn = 2521 for mesh pattern Tria(3)). Figure 12 shows the ratio of the FEM to the 

exact RZT maximum deflection as a function of the 2a h  ratio. 

 

 

Figure 12. Square plate problem: performance of the RZT-shell finite elements for thinner and 

thinner plates. 

 

All of the FEM solutions are accurate within a range of realistic edge length-to-

thickness ratios (from 10 to 104). In particular, up to 2a h  =103, the FEM deflections 

are in excellent agreement with the exact deflections. When reaching 2a h  =104, some 

mesh patterns lead to errors that do not exceed 2%. For thinner plates, shear locking 

occurs with different levels of severity for the different mesh schemes. The Tria(3) 

mesh solution is the only one able to provide accurate response predictions also for 

extremely thin plates.  
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4.2. Doubly-curved sandwich structure 

A benchmark problem similar to the pinched cap described in [73] is considered, 

with changes in the material lay-up (in order to introduce the zigzag effect in the 

structural response) and boundary conditions. A hemispherical cap with mean radius R 

= 10 m and a 12° hole cutout on the top is considered (Figure 13). Symmetry of the 

problem is taken into account and ¼ of the structure is analyzed. 

 

 

Figure 13. Pinched cap geometry (¼ of the structure is represented). 

 

The structure has a sandwich-like stacking sequence (Table 4) with thick 

Aluminum facesheets and a weak and lightweight core (Table 5). 
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Table 4. Pinched cap stacking sequence. 

Thickness 

(m) 
Material 

[ 0.2 / 0.2 / 0.2] [ A / C / A ] 

 

Table 5. Materials’ mechanical properties. 

Material 
E 

(MPa) 
ν 

ρ 

(Kg/m3) 

A 73000 0.33 2800 

C 73 0.33 2.80 

 

A high-fidelity 3D model of the structure has been obtained using MSC/Nastran. 

The model is made up of 60000 HEXA8 elements, 100 along each edge of the structure 

and 6 along the thickness, for a total of 180000 nodal degrees of freedom (Figure 14). 

 

  

(a) (b) 

Figure 14. MSC/NASTRAN 3D model of the pinched cap: (a) overview, (b) zoomed view around 

the hole cutout. 

 

The RZT shell model is obtained using regular mesh patterns, with 8, 16, 32, 64 

subdivisions on each side (Figure 15). 
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(a) (b) 

Figure 15. RZT shell model of the pinched cap with 8 x 8 subdivisions and regular mesh schemes: 

(a) triangular mesh (128 elements), (b) quadrilateral mesh (64 elements). 

 

For comparison purposes, a shell FE model based on 64 x 64 subdivisions and 

FSDT-based flat shell elements is also considered. Both triangular (Tria) and 

quadrilateral (Quad) FSDT elements have been implemented following the same 

formulation presented for the RZT elements. Moreover, a transverse-shear strain-energy 

based consistent shear correction factor has been applied according to the procedure 

proposed in [8]. Table 6 summarizes the properties of the shell and 3D FE models 

considered. 

 

Table 6. Properties of the FE models used for the static and modal analysis of the pinched cap. 

 

FSDT 

Quad 

(Tria) 

RZT 

Quad 

(Tria) 

MSC/NASTRAN 

HEXA8 

Number of subdivisions along the 

edges 
64 8 16 32 64 100 

Number of subdivisions along the 

thickness 
1 1 1 1 1 6 

Number of elements 
4096 

(8192) 

64 

(128) 

256 

(512) 

1024 

(2048) 

4096 

(8192) 
60000 

Number of dofs 25350 729 2601 9801 38025 180000 

 

The structure is loaded by alternating pinching loads with magnitude F = 1000 N, 

acting along the radial direction and applied in points p1 and p2 (Figure 16(a)). 
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Symmetry boundary conditions are applied on the two meridian edges. Figure 16(b) 

shows that the loads are equally divided among the two facesheets of the 

MSC/NASTRAN 3D model in order to avoid thickness-stretching effects that are not 

taken into account in the current RZT formulation. 

 

 

 

(a) (b) 

Figure 16. Pinched cap static problem: (a) RZT regular Quad shell model (64 x 64) with applied 

loads, (b) MSC/NASTRAN 3D model with applied loads. 

 

The reference solution is represented by the x and zmean displacements of the 7 

nodes of the 3D mesh that correspond to the point p1 on the 2D mesh: Ux = 9.151E-05, 

Uz = 4.249E-05. Tables 7 and 8 report the percent errors of the FSDT and RZT shell 

models with respect to the reference solution. 

 

Table 7. Pinched cap static response: percent errors of the FSDT and RZT triangular shell models 

with respect to the MSC/NASTRAN 3D reference solution. 

 

FSDT 

Tria 

RZT 

Tria 

Number of subdivisions 

along the edges 
64 8 16 32 64 

E%(Ux) 96.72% -11.32% -3.92% -1.52% -0.52% 

E%(Uz) 25.37% -5.67% -1.91% -0.93% -0.47% 
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Table 8. Pinched cap static response: percent errors of the FSDT and RZT quadrilateral shell 

models with respect to the MSC/NASTRAN 3D reference solution. 

 

FSDT 

Quad 

RZT 

Quad 

Number of subdivisions 

along the edges 
64 8 16 32 64 

E%(Ux) 111.09% -7.13% -2.09% -0.65% -0.07% 

E%(Uz) 26.02% -2.11% -0.75% -0.39% -0.13% 

 

Results show a rapid convergence to the reference results for the RZT-based 

elements, in particular for the Quad elements that exhibit errors lower than 1% for a 32 

x 32 mesh. The FSDT-based shell model leads to unacceptable errors even adopting a 

consistent shear correction factor and a refined mesh. This is due to the poor description 

of the through-the-thickness normal distortion (zigzag effect) that plays a key role in the 

structural deformation of the considered sandwich pinched cap. 

The same structure is now assumed to be clamped along the base edge and the 

first ten vibration frequencies are evaluated. The MSC/NASTRAN reference results are 

reported in Table 9 and Tables 10 and 11 show the performances of the FSDT and RZT 

shell models. 

 

Table 9. Pinched cap natural frequencies obtained with the MSC/NASTRAN 3D model. 

Mode order 1 2 3 4 5 6 7 8 9 10 

Natural frequency 

(Hz) 
6.55 8.40 18.72 19.82 32.93 33.87 47.38 51.03 66.56 71.12 
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Table 10. Pinched cap natural frequencies: percent errors of the FSDT and RZT triangular shell 

models with respect to the MSC/NASTRAN 3D reference solution.  

 

FSDT 

Tria 

RZT 

Tria 

Number of 

subdivisions 

along the edges 

64 8 16 32 64 

E%(1) -17.48% 12.91% 2.78% 1.00% 0.60% 

E%(2) -17.52% 10.70% 2.60% 0.60% 0.13% 

E%(3) -27.21% 14.14% 2.82% 0.67% 0.20% 

E%(4) -25.61% 11.12% 2.50% 0.74% 0.29% 

E%(5) -35.85% 11.77% 2.99% 0.79% 0.26% 

E%(6) -36.20% 20.32% 3.69% 0.95% 0.31% 

E%(7) -42.94% 19.34% 4.19% 1.06% 0.35% 

E%(8) -44.69% 29.39% 5.35% 1.29% 0.42% 

E%(9) -50.21% 18.43% 5.66% 1.41% 0.47% 

E%(10) -51.56% 19.26% 5.88% 1.47% 0.48% 

 

Table 11. Pinched cap natural frequencies: percent errors of the FSDT and RZT quadrilateral shell 

models with respect to the MSC/NASTRAN 3D reference solution.  

 

FSDT 

Quad 

RZT 

Quad 

Number of 

subdivisions 

along the edges 

64 8 16 32 64 

E%(1) -17.64% 7.01% 1.71% 0.76% 0.52% 

E%(2) -17.66% 5.52% 1.25% 0.28% 0.03% 

E%(3) -27.40% 7.01% 1.36% 0.35% 0.10% 

E%(4) -25.79% 4.86% 1.13% 0.36% 0.15% 

E%(5) -36.08% 5.41% 1.25% 0.36% 0.13% 

E%(6) -36.43% 8.92% 1.53% 0.37% 0.09% 

E%(7) -43.21% 9.45% 1.75% 0.48% 0.16% 

E%(8) -44.94% 14.54% 2.34% 0.52% 0.13% 

E%(9) -50.51% 12.86% 2.82% 0.76% 0.26% 

E%(10) -51.83% 13.73% 2.96% 0.69% 0.20% 

 

A 32 x 32 mesh with quadrilateral RZT shell elements is able to guarantee errors 

lower than 1% over the first ten natural frequencies. Using triangular RZT shell 

elements, the same accuracy is obtained for the first 6 frequencies. Once again, FSDT 

shell models provides poor response predictions with a 64 x 64 mesh. 



38 

The effect of using irregular mesh patterns has also been investigated. Figure 17 

shows the triangular, quadrilateral and mixed mesh schemes that have been considered 

for this study. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 17. Irregular mesh schemes for the pinched cap: (a) mesh Q1 (Nn = 283), (b) mesh T1 (Nn = 

283), (c) mesh QT1 (Nn = 283), (d) mesh Q2 (Nn = 1087), (e) mesh T2 (Nn = 1087), (f) mesh QT2 (Nn 

= 1087). 
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Coarse mesh patterns Q1, T1 and QT1 have 283 nodes and can be compared to 

regular mesh schemes with 16 x 16 subdivisions (289 nodes). Similarly, mesh patterns 

Q2, T2 and QT2 have 1087 nodes thus being comparable to 32 x 32 regular meshes 

(1089 nodes). Table 12 compares the accuracy of the RZT shell model with irregular 

mesh schemes (Q1, T1 and QT1) and regular mesh schemes (16 x 16) for the first 5 

natural frequencies. Table 13 reports the same results for more refined meshes, irregular 

(Q2, T2 and QT2) and regular (32 x 32). 

  

Table 12. Pinched cap natural frequencies: percent errors of the RZT shell models with Q1, T1 and 

QT1 irregular mesh schemes with respect to the MSC/NASTRAN 3D reference solution. 

Mesh scheme 

Regular 

Quad 16 x 16 

(Nn = 289) 

Regular 

Tria 16 x 16 

(Nn = 289) 

Irregular 

Q1 

(Nn = 283) 

Irregular 

T1 

(Nn = 283) 

Irregular 

QT1 

(Nn = 283) 

E%(1) 1.71% 2.78% 6.37% 2.67% 5.16% 

E%(2) 1.25% 2.60% 7.43% 2.35% 5.68% 

E%(3) 1.36% 2.82% 3.65% 2.72% 2.91% 

E%(4) 1.13% 2.50% 4.12% 2.42% 3.22% 

E%(5) 1.25% 2.99% 2.59% 2.38% 2.24% 

 

Table 13. Pinched cap natural frequencies: percent errors of the RZT shell models with Q2, T2 and 

QT2 irregular mesh schemes with respect to the MSC/NASTRAN 3D reference solution. 

Mesh scheme 

Regular 

Quad 32 x 32 

(Nn = 1089) 

Regular 

Tria 32 x 32 

(Nn = 1089) 

Irregular 

Q2 

(Nn = 1087) 

Irregular 

T2 

(Nn = 1087) 

Irregular 

QT2 

(Nn = 1087) 

E%(1) 0.76% 1.00% 1.49% 0.83% 1.47% 

E%(2) 0.28% 0.60% 1.06% 0.40% 0.90% 

E%(3) 0.35% 0.67% 0.68% 0.52% 0.64% 

E%(4) 0.36% 0.74% 0.74% 0.63% 0.71% 

E%(5) 0.36% 0.79% 0.55% 0.63% 0.55% 

 

When a reduced number of elements and nodes is used (Table 12), irregular mesh 

schemes can lead to natural frequencies prediction slightly poorer than those obtained 

for regular meshes, especially when using Quad elements (Q1 and QT1). The distorted 

mesh scheme with only Tria elements (T1) is slightly more accurate than the 
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corresponding regular one with the same number of nodes, revealing that Tria elements 

can easily adapt to the geometry of the structure even if a regular discretization pattern 

is not followed. Similar conclusions can be drawn considering the results with finer 

meshes (Table 13) but, in this case, errors are very low for regular and irregular 

schemes. These results demonstrate that, also for curved structures and with an adequate 

level of discretization, the proposed RZT-based shell elements are accurate both with 

regular and with irregular mesh patterns.  

 

5. CONCLUSIONS  

A three-node triangular and a four-node quadrilateral flat shell element based on 

the Refined Zigzag Theory (RZT) have been developed to study multilayered composite 

and sandwich curved structures. The theory is reviewed in order to set the framework 

for the development of the finite elements. RZT is based on seven kinematic variables 

that include the three displacements, the two bending rotations and the two zigzag 

rotations. Employing interdependent C0-continuous shape functions derived for a beam-

frame element eliminates shear locking within a realistic range of edge length-to-

thickness rations and provides the shell element with a displacement field that is fully 

compatible at the interfaces among adjacent elements. In particular, the “coarse” drilling 

rotation in introduced through the shape functions and the effect of “zigzag” drilling 

rotation is artificially added to the stiffness matrix.  Moreover, due to the “coarse” 

drilling degree of freedom formulation, a stabilization matrix has been added to the 

element stiffness matrix in order to remove zero-energy modes. Full-quadrature 

integration has been used on all stiffness, mass and load-vector terms to ensure 

variational consistency and correct stiffness-matrix rank.  

The static and dynamic numerical experiments performed on a flat multilayered 

composite and on a double curved sandwich structure have demonstrated the 



41 

convergence characteristics of the new RZT-based shell elements, their robustness with 

respect to distorted and irregular mesh schemes and the elimination of shear-locking for 

realistically thin structures (edge length-to-thickness ratios ranging from 10 to 104). 

Comparisons have been made with the results coming from RZT exact solution (when 

available), high-fidelity 3D finite element models and a 2D FSDT-based shell element 

formulation. This novel element technology offers substantial improvements over the 

current state-of-the-art plate modeling which is either based on FSDT or higher-order 

plate and continuum solid elements. 

Future developments of this effort will include: (i) formulation of shear locking-

free finite elements based on both RZT and RZT(m) for the analysis of extremely thin 

structures and (ii) through-the-thickness analysis (displacements and stresses) of 

multilayered curved structures. 

 

Appendix A 

The membrane, bending and transverse shear strain measures of RZT are defined as 

[31] 
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The RZT stiffness coefficients matrices are [31] 
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It is in particular interesting to recall the definition of some coefficients of the 

matrix G  
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The RZT inertia coefficients matrix is 
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where [9] 
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Appendix B 

The quadratic shape functions P  used for the initial approximation of deflection in 

triangular elements, Eq. (16), are defined as follows [54] 
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where iL  are the area-parametric coordinates. For quadrilateral elements, P  are the 

biquadratic serendipity shape functions [54] 
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where ( ,  ) are the normalized element local in-plane coordinates,  ( , ) 1, 1     , 

and ( ,i i  ) are the coordinates of the i-th corner node. 

Quadratic shape functions 1iQ  and 2iQ  appearing in the final, “constrained” 

approximation of deflection (Eq. (18)) are defined as 

 

 

 

 

1 1 1 1 1

2 2 2 2 2

1,2,3( )
2

2,3,1

( ) 3,1,2
2

i
i j i j k i k

i
i j i j k i k

L iQ L x x L x x

j
L

Q L x x L x x k

           
  

         

 (B3) 

 

for the triangular element, and as 
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for the quadrilateral element, where ( 1 2,i ix x ) are the local in-plane coordinates of the i-

th corner node and functions kiP  and ijP  are as defined in Eq. (B2) [52]. 

 

Appendix C 

For a triangular element it is easy to find that Eq. (31) yields 

 

    1 3 1 3 1 3ia   (C1) 

 

thus leading to the following expression for matrix K    (Eq. (33)) 
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with S  area of the triangular element. 
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Figure captions 

Figure 1. Plate geometry and notation for Refined Zigzag Theory. 

Figure 2. RZT-based beam finite element: topology and kinematic variables. 

Figure 3. Unconstrained RZT-based beam finite element: topology and nodal degrees of 

freedom. 

Figure 4. Constrained RZT-based beam finite element: topology and nodal degrees of 

freedom. 

Figure 5. RZT-based flat shell elements: topology and kinematic variables. 

Figure 6. Unconstrained RZT-based flat shell elements: topology and nodal degrees of 

freedom. 

Figure 7. Constrained RZT-based flat shell elements: topology and nodal degrees of 

freedom. 

Figure 8. Regular mesh schemes for ¼ of the square plate characterized by Ne = number 

of subdivisions per edge and Nn = total number of nodes: (a) Quad mesh (Ne =3, Nn = 

16), (b) Tria(1) mesh (Ne =3, Nn = 16), (c) Tria(2) mesh (Ne =3, Nn = 16), (a) Tria(3) 

mesh (Ne =3, Nn = 25). 

Figure 9. Square plate problem: convergence of the RZT FEM maximum deflection to 

the RZT exact one for regular mesh patterns. 

Figure 10. Irregular mesh schemes for ¼ of the square plate: (a) mesh D1 (Nn = 82), (b) 

mesh D2 (Nn = 82), (c) mesh D3 (Nn = 81), (d) mesh D4 (Nn = 82), (e) mesh D5 (Nn = 

24), (f) mesh D6 (Nn = 25). 

Figure 11. Square plate problem: comparison between the performances of the irregular 

and regular mesh schemes. 

Figure 12. Square plate problem: performance of the RZT-shell finite elements for 

thinner and thinner plates. 
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Figure 13. Pinched cap geometry (¼ of the structure is represented). 

Figure 14. MSC/NASTRAN 3D model of the pinched cap: (a) overview, (b) zoomed 

view around the hole cutout. 

Figure 15. RZT shell model of the pinched cap with 8 x 8 subdivisions and regular mesh 

schemes: (a) triangular mesh (128 elements), (b) quadrilateral mesh (64 elements). 

Figure 16. Pinched cap static problem: (a) RZT regular Quad shell model (64 x 64) with 

applied loads, (b) MSC/NASTRAN 3D model with applied loads. 

Figure 17. Irregular mesh schemes for the pinched cap: (a) mesh Q1 (Nn = 283), (b) 

mesh T1 (Nn = 283), (c) mesh QT1 (Nn = 283), (d) mesh Q2 (Nn = 1087), (e) mesh T2 

(Nn = 1087), (f) mesh QT2 (Nn = 1087). 
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