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Abstract

Subjective quality assessment is a necessary activity to validate objective measures or to
assess the performance of innovative video processing technologies. However, designing
and performing comprehensive tests requires expertise and a large effort especially for
the execution part. In this work we propose a methodology that, given a set of processed
video sequences prepared by video quality experts, attempts to reduce the number of
subjective tests by selecting a subset with minimum size which is expected to yield the
same conclusions of the larger set. To this aim, we combine information coming from dif-
ferent types of objective quality metrics with clustering and machine learning algorithms
that perform the actual selection, therefore reducing the required subjective assessment
effort while trying to preserve the variety of content and conditions needed to ensure the
validity of the conclusions. Experiments are conducted on one of the largest publicly
available subjectively annotated video sequence dataset. As performance criterion, we
chose the validation criteria for video quality measurement algorithms established by the
International Telecommunication Union.

Keywords: subjective testing, subset selection, statistical analysis, video quality
assessment, clustering
2010 MSC: 00-01, 99-00

1. Introduction

The evaluation of the performance gain of innovative video processing technology
such as video coding or video post-processing frequently requires assessment by human
observers. Objective measures are often used during the development. In production
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environments, When used by the industry, for example in broadcast monitoring, mea-5

surement algorithms can only be trusted after careful evaluation of their correlation with
the results of human scores. Such an evaluation is a tedious task and the outcome is
limited to the scope under which the measurement algorithms were evaluated — new
video processing technologies come with different types of degradations and therefore
require the re-evaluation of the performance for the new use case. The International10

Telecommunication Union creates new recommendations for industrial use cases on a
regular basis, starting with the now somewhat outdated ITU-T Rec. J.144 [1] for evalu-
ating the transmission of standard definition television with the video coding algorithms
of 2001 to the latest hybrid video quality measurement algorithms of 2014 in ITU-T Rec.
J.343 [2].15

The Video Quality Experts Group (VQEG) [3] has conducted the validation experi-
ments for these recommendations. The careful preparation and execution of the valida-
tion experiments requires a time frame of two to three years and corresponding effort and
cost but also research questions are tackled. Most notably, scientific questions are posed
on the selection of video content, the alignment of subjective scores, and the performance20

comparison of the objective measurement algorithms.
A recurrent research question in these efforts concerns the representativeness of the

selected video content (source sequences, SRC) and the degradation procedures and their
parameters (hypothetical reference circuits, HRC). Both are currently carefully selected
by experts and in most cases a larger set of processed video sequences (PVS) is created25

from which a subset gets evaluated by human observers. The obtained scores are then
compared to the algorithms’ results by statistical means and the (set of) best performing
algorithm(s) is chosen for recommendation by the ITU under the assumption that the
evaluated sequences represent the variety of conditions that the video industry aims to
measure. The exact procedure is documented by VQEG in testplan documents and final30

reports.
A scientific analysis for this kind of testing has been performed by Keimel et.al. in

[4]. Alternative approaches have been proposed, in [5] Ciaramello proposes to stress test
the algorithms with degradation algorithms that are known to be monotonically decreas-
ing the quality. Based on an analysis of pairwise comparisons with dead-zone, Reibman35

proposed an optimized selection method for subjective assessments in [6]. An adaptive
subjective testing method for the particular case of multiple types of degradations has
been developed by Reiter and Korhonen in [7]. In order to find the optimum in this
case, Voran and Catellier proposed a gradient ascent strategy that may also be adapted
for improving validation experiments [8]. In the reverse case, similar to our approach,40

employing objective measurement algorithms in conjunction with subjective scores has
already helped in the alignment of distinct subjective assessment databases as proposed
by Pinson et.al. [9]. In their work, they used objective measures to find sequences with
similar quality properties in two (or more) distinct datasets in order to align the subjec-
tive votes of these datasets. Their approach allowed to avoid an additional subjective45

alignment experiment. Our goal is to construct a dataset that minimizes the occurrence
of sequences with similar properties in order to reduce the effort of subjective testing.

There are two aspects of the term representativeness which we will later refer to as
“aspect 1” and “aspect 2”. The first one is that all conditions that may occur in the
scope of the actual industrial environment should be taken into consideration, including50

border cases. The second one is that the algorithms' performance should be optimal
2



on the average use case — including but not overemphasizing the border cases. This
calls for a selection of test conditions for subjective assessment by large-scale automatic
evaluation prior to the selection by experts.

The purpose of this contribution is to evaluate to which extent clustering with various55

machine learning algorithms can be used in order to find a representative subset that
fulfills both criteria. The aim is to reduce the number of test conditions without changing
the results of a validation experiment — conversely, in the next validation experiment,
the preselection may help to improve on the representativeness of the test conditions
without increasing the number of total scores.60

Our contribution starts with an overview of the proposed framework in Section 2, fol-
lowed in Section 3 by the presentation of the data used for the practical experiments and
how they have been derived from the publicly available VQEG-HDTV dataset. Section 4
presents the proposed approach to perform and evaluate the subset selection procedure,
followed by results in Section 5. Conclusions are drawn in Section 7.65

2. Framework

An overview of the proposed evaluation scheme is shown in Fig. 1. In the first step,
n video sequences are collected based on the scope of the evaluation using well-known
guidelines, e.g. Pinson et al. [10]. An analysis of the video content with objective char-
acteristics measures ranges from simple Spatial and Temporal perceptual Information70

measures (SI/TI) specified in ITU-T P.910[11] to more complex signal based character-
istics [12] up to the semantical analysis of objects. In the next step, m degradations are
added that typically include video coding and image processing algorithms such as color
pre- and post-processing, sharpening or image resizing.

SRC1..n HRC1..m

Simple Objective 
measure 1..o

Full Subjective 
Assessment

Objective 
Measures under 

Test 1..p

Subset Selection
Reduced 

Subjective 
Assessment

Statistical 
Performance 

Analysis

Equivalent 
ITU Validation 

Result?

Statistical 
Performance 

Analysis

Figure 1: Framework overview

As shown in the figure by the Full Subjective Assessment block, the selected sequences75

usually get evaluated in one or several subjective experiments. When the subjective
assessment is too large to be performed as a whole with a single group of observers, an
alignment procedure on the subjective scores should be performed, for example based on
a common set of PVS that is shown in each evaluation [13, 14, 15]. Pinson et al. also
developed a method using simple objective measures to combine subjective datasets [9],80

an idea which is similar to our framework. If the merge spans over languages and cultures,
special consideration of the perceptual scale attributes is required [16, 17].
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In validation experiments, proponents submit their measurement algorithms for inde-
pendent evaluation prior to the creation of PVS. Once the PVS are established, objective
scores or video quality ratings (VQR) are obtained from the proponents’ measurement85

algorithms. It should be noted that, for the sake of unbiased validation, no modification
to the original algorithms is allowed although the proponents often improve their com-
mercial products during the timespan in which the PVS are created. This step is shown
as Objective Measures under Test in Fig. 1.

Using these subjective and objective scores, a statistical performance analysis is car-90

ried out. In this analysis, as more thoroughly described in Sec.4.2, the VQR are mapped
to the subjective scale and differences between objective measures are quantified using
root mean square error (RMSE) analysis.

Despite the enormous effort that is made, concerns are often raised regarding the
validity of the experiment that relate to the representativeness of the chosen PVS as95

detailed in the introduction.
The overview diagram in Fig. 1 contains our proposal in the last row: First, the

quality is evaluated by simple objective measures (1..o). Existing fast measures may be
used as the focus is not on precise measurement but only on capturing the variability of
the PVS. Examples of measures and how and why they can be used for this purpose will100

be given in Section 3.2. In the next step, a subset selection is performed that shall reduce
redundancies while maintaining the spread of the PVS characteristics. This should lead
to a smaller subjective experiment compared to a full evaluation with redundancies,
potentially weighting PVS that represent larger or more populated clusters with more
observers to get more precise results. Finally, the performance analysis can be done with105

respect to the coverage of the scope of evaluation (representativeness aspect 1) and with
respect to the average behavior (aspect 2).

In this contribution, we focus on the framework’s concept by (artificially) reducing
the number of PVS that get subjectively evaluated. This limits our analysis to the first
aspect because we are missing information about the distribution of the selected PVS110

in the industrial use case for our dataset. This is left for future work, potentially in an
upcoming validation experiment.

3. Dataset

In this work we take advantage of one of the largest subjectively annotated database of
high-resolution video sequences, i.e., the so-called Video Quality Expert Group (VQEG)115

HDTV dataset [18].
In short, such a database has been originally developed in order to evaluate objective

video quality models submitted by several proponents. In this paper, these submitted
objective quality models will be named model A to F. The quality values stemming
from the use of those models have been compared with the results of a rigorous, very120

well controlled, extensive subjective quality evaluation campaign. Final conclusions were
drawn in the VQEG’s Final Report approved June 30, 2010 [18].

In addition to two ITU Recommendations [19, 20], such a large effort produced a
reliable subjectively annotated database including more than 1,000 PVSs with different
types of content and impairments (HRCs). The large majority of such database, made125

available through the CDVL website [21], can be used for research purposes, e.g., for
designing and training new models and algorithms.
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VQEG-HDTV dataset consists of six independently evaluated subjective datasets,
three of them are progressive (dataset 1,3,5) and can therefore be evaluated by the
simple measures as explained in Sec. 3.2.130

Note also that several HRCs introduce some temporal misalignments (for example due
to transmission errors), which need to be duly considered in case traditional frame-based
full-reference (FR) objective models are used. In particular, a temporal registration step
is required so that the FR models always compare frames that correspond to the same
time instant. This step has been performed by the authors of this work by means of the135

temporal registration algorithm described in Sec. 3.1. We will only consider FR measures
applied to those temporally-registered PVSs.

3.1. Temporal and Spatial Registration

VQEG’s testplan [22] defines the limits of spatial, temporal, brightness and color
changes that may be found in the PVS due to coding and transmission outages. In140

order to run image based video quality measurement algorithms, a temporal and spatial
registration is required. As we are aiming at measuring all degradations that are present
in the PVS, for each frame, a corresponding reference frame is created. In Fig. 2 an
overview flow chart is provided. Please note that for each PVS a unique set of two
aligned sequences is created.145

In this work, we first identify for the complete sequence image blocks that allow for
temporal registration, i.e. blocks with high spatial activity. Then, a single global spatial
offset is determined based on these blocks, using a temporally subsampled version of
the sequence. A horizontal or vertical pixel shift was allowed as a result of hardware
encoders or as part of format conversions but it was not allowed to change during the150

sequence. In this step, each possible spatial offset has to be calculated for each possible
temporal shift - the subsampling reduces the computational burden with limited effect on
the performance. Next, using the initial blocks, each image is compared to its temporal
candidates with the fixed spatial offset. The resulting difference, calculated as Mean
Square Error for the blocks, is interpreted as a probability value for the match for each155

frame. The final temporal registration for each frame is obtained from those probabilities
using a maximum likelihood approach similar to the Viterbi algorithm as published
in [23].

The exact implementation with all parameters can be found online at: (link will be
inserted in the final version of the paper).160

3.2. Measures Computation

A number of different measures, referred to as “Simple Objective measure 1..o” in
Figure 1, have been employed in our work. The general idea is that using several mea-
sures which are sensitive to different aspects of the content can contribute to capture the
variability of the PVS. For instance, the widely used Peak Signal-to-Noise Ratio (PSNR)165

is very sensitive to brightness changes, whereas SSIM [24] and MS-SSIM [25] are par-
ticularly sensitive to contrast changes and structural distortion, and VIF [26] takes into
more consideration human visual system characteristics. Therefore, we presume that the
variability of the PVS is different if such measures give different results.

The publicly available VQMT software [27] is a flexible tool that can compute all170

these frame-based objective quality measures. For those measure, the VQMT software
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Figure 2: Flow chart of the temporal registration process.

operates by computing and making available such measures for each frame in the video
sequence. In addition, it also produces a single value expected to represent the quality
of the whole sequence.

The usefulness of having different objective quality measures also stems from the fact175

that simple formulations such as the PSNR one, being a pure signal processing measure,
disregards important factors such as viewing conditions and the human visual system
(HVS) characteristics [28].

To overcome such limitations, other measures try to incorporate some natural visual
characteristics. For instance, SSIM and its variants [24, 25] attempt to measure the180

structural distortion introduced in the distorted frame when compared to the reference
one by combining a set of statistical measures such as mean, variance and covariance of
the samples. The Visual Information Fidelity (VIF) [26] approach, instead, also relies on
the use of Human Visual System (HVS) modeling as well as visual statistics, attempting
to quantify the information that could be extracted by the observer from the reference185

image and the distorted one.

3.3. Temporal Pooling

Many video quality evaluation algorithms produce a single quality measure for each
frame. Most algorithms also employ a simple temporal pooling strategy to obtain video
quality measure of the whole sequence, i.e., the average the quality value of all frames in190

the sequence.
Such an approach presents the advantage of simplicity. However, parts of the video

sequence presenting different quality levels should probably be weighted differently in the
sequence quality measure. For instance, empirical observations showed that subjective
scores are more influenced by the low quality parts than the high quality ones. Since there195

is currently no agreement in the research community about how to obtain a single quality
measure from the values of each single frame, in our work we decided to experiment
with several temporal pooling methods. Among them, we used some of the temporal
pooling strategies that have been recently made available as part of the VMAF software
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distribution package [29], as well as some of the so-called “temporal collapsing functions”200

in the NTIA report [30] about video quality measurement techniques.
In particular, apart from the widely used arithmetic average, we computed the me-

dian, the geometric and harmonic averages, three Lp-norm (with p = 1, 2, 3), and the
75-th and 90-th percentile values. Assuming N measures xi corresponding to the frames
of the video sequence, we computed:205

arithmetic =
∑N

i=1
1
N xi

geometric =
(∏N

i=1 xi

) 1
N

harmonic = N∑N

i=1

1
xi

Lp-norm = (
∑N

i=1 |xi|p)
1
p

(1)

whereas the median and percentile first requires to sort the xi values, then to select the
one with the index i corresponding to N/2 (for the median) or the desired percentile
P which corresponds to index i = P

100N . If a non-integer value is selected, the average
values at the two nearest indexes is used.

4. Proposed Approach210

4.1. Subset Selection

This section focuses on using different machine learning algorithms to select a set
of representative PVSs from a larger one. Note that, in the literature, several machine
learning algorithms have been used in the context of visual quality assessment. For
instance, in [31, 32], Kmeans is used to cluster the large-scale database [33] to help select215

a representative subsets, i.e. small-scale subsets. In this work, instead, machine learning
algorithms are used to find similarities or redundancies in a database of video sequences.
The underlying principle is as follows. When machine learning algorithms assign several
PVS to the same cluster, it is expected that they contain too many similarities to be
challenging enough for the objective metrics; otherwise, the PVS is hard to assign and220

it can be quite challenging for the objective metrics.
As mentioned in Section 3, databases are subjectively evaluated and objectively eval-

uated with different pooling strategies as well. For each pooling strategy, we prepared
a data matrix X(m,n), where m and n respectively represents the number of samples,
i.e., the PVSs in our case, and the number of features, i.e., the objective mapped scores225

in our case. X(m,n) is prepared as illustrated in the blue part of Figure 3:

� The PVSs are temporally registered with their reference on a frame-by-frame basis.

� The FR objective scores are measured per frame, in particular PSNR, SSIM, MS-
SSIM, and VIF.

� Different pooling strategies are applied to compute a single score for the whole230

video sequence for each metric.

� For the purpose of normalization, the objective scores are mapped to MOS scores
(from 0 to 5) using a generalized logistic function with four fitted shape parameters.
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Figure 3: The flow of preparing the data X(m,n) and the generation of the small representative dataset
(proposed methodology)

For instance, X(m,n) for the mean pooling strategy contains four features. The
first one is the mapped PSNR mean score. The second, third, and fourth features are235

SSIM mean, MS-SSIM mean, and V IF mean, respectively.
This data matrix X(m,n) is fed into three unsupervised machine learning algorithms:

Kmeans++ [34], Hierarchical clustering [35] and Gaussian mixture model (GMM). Kmeans
is a clustering algorithms that aims to minimize the sum of point to centroid distances,
Euclidean distance in our case. Hierarchical clustering aims to build a cluster tree fol-240

lowing two main steps: the first is to measure the similarity between the observations, in
our case through the Euclidean distance, and then the data are grouped using a linkage
function, here the Ward’s method. Finally, the Gaussian mixture model aims at maxi-
mizing the component of the posterior probability given the data. It can be considered
as a soft Kmeans clustering.245

However, for each machine learning algorithm some parameters have to be decided.
For instance, the number of clusters in the case of Kmeans, the distance and linkage
metrics for hierarchical clustering. In this paper, the data is clustered into (K =) 3
clusters. Moreover, the Euclidean distance and the Ward’s linkage metric are used in the
hierarchical clustering.250

After this decision, the selection process of the PVSs is rather straightforward. Once
the clustering is done for each pooling strategy, the PVSs that are assigned to different
clusters are counted to be the candidate PVSs and to be a representative subset. The red
part of Figure 3 illustrates the process. Note that the size of the representative dataset
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depends on the clustering algorithm results, i.e. on comparing the similarity in clustering255

assignments, not on the clustering parameters such as number of clusters.
Note that the selection of the number of clusters is guided by the characteristics of

the feature spaces of different objective measures. Classifying the data into two clusters
is analogous to low and high quality groups, while classifying them into three clusters is
analogous to low, medium, and high qualities. Hence, selecting more than three clusters260

is not reasonable due to the limitation of the feature space of the objective measures. In
this paper, the data is clustered into two and three clusters.

4.2. Subset Comparison Methodology

To demonstrate the effectiveness of the proposed subset selection procedure, the pro-
posed technique is compared to an extensive amount of random subsets. To make the265

comparison between different subsets, the analysis techniques as described in the VQEG-
HDTV test report [18] have been applied.

Initially, different subset selection processes are performed to allow a proper compar-
ison. From the progressive datasets, namely 423 PVSs from VQEG-HDTV datasets 1,3,
and 5, the different subsets are selected based on the proposed solution. Additionally, in270

order to make a comparison, different subsets are generated in a random fashion. Ran-
dom subsets of PVSs are selected ranging from a 5% reduction in dataset size (approx.
400 PVSs) up to 95% reduction (approx. 22 PVSs) in steps of 5%. From these 19 dif-
ferently sized subsets, 100 random versions have been generated. As a consequence, the
proposed subset selection will be compared with 1,900 random subset selection strategies.275

If a 95% reduction in dataset size corresponds to only subjectively evaluating approx.
22 PVSs, it is clear that different conclusions will be drawn from such ana subjective
test. To quantify this difference the following process is followed. The MOS from the
different PVSs is transformed to a difference mean opinion score (DMOS) calculated as
follows:280

DMOS = MOS(PV S)−MOS(SRC) + 5 (2)

In contrast to subjective scores, scores predicted by an objective model are not clipped
at a minimum and maximum MOS. Therefore, it is crucial to map the objective score or
VQR with a trend corresponding to the behavior of subjective scores. So, the VQRs are
mapped using the following cubic polynomial function [36, 37]:

DMOSp = a · V QR3 + b · V QR2 + c · V QR+ d (3)

In this equation, DMOSp is the mapped/predicted DMOS and a, b, c, and d are calcu-285

lated using a nonlinear programming solver optimizing for the least square error between
the DMOSp and the actual DMOS [38]. As additional constraints, the optimization
should lead to a monotonous increasing function with the inflection point outside the
interval.

When the objective ratings are on the same scale as the DMOS values, the RMSE290

evaluation metric is calculated between the DMOSp of the objective metric and the
actual DMOS. So, for every objective quality metric the following RMSE value is calcu-
lated:

RMSE =
√

1
N−d

∑N
i=1(DMOS(i)−DMOSp(i))2 (4)

9



In this equation, N is the number of PVSs and d is the degrees of freedom of the mapping
function, i.e. 4.295

In VQEG’s validation experiment, the objective measures were compared to each
other in terms of RMSE values taking into consideration whether or not a statistical
significant difference existed between any two RMSE values of the six tested algorithms.
To evaluate different subsets, the significance of the differences in RMSE needs to be
known and compared to the results found during the standardization process. It will300

be assumed that a subset is good if it leads to the same results concerning ranking and
statistical difference.

With the assumption that the two populations are normally distributed, we define the
H0 hypothesis as there being no difference between the RMSE scores of two objective
measures. To evaluate this hypothesis the following statistic is evaluated against the305

F-distribution:

ζ = (RMSEmax

RMSEmin
)2 (5)

From the pair of RMSE values, RMSEmax is the highest one and RMSEmin the
lowest one. When this ζ statistic is higher than F(0.05, N-d, N-d) within the 95%
significance level, then there is a significant difference between the two RMSE scores.

This significance is calculated between the six objective measures evaluated in the310

VQEG-HDTV study [18] resulting in 15 comparisons. The result of calculating these
15 numbers on the entire dataset will be called the ground truth analysis result. When
taking a subset of the dataset, the significance between different objective measures will
change and these differences are summed. From here on, this number of differences with
the full set will be called the Subset Error (SError). Only when this number is zero, the315

analysis of the subset will lead to the same conclusion as the analysis of the full dataset.
The higher the SError, the more a subset will result in different conclusions about the
comparison of the performance of different objective measures.

Finally, objective quality metrics can be pairwise ranked using the previously calcu-
lated significance information. A ranking between a pair of metrics is only meaningful320

when there is a significant difference between the two metrics. Only when a significant
ranking turns into a significant but opposite ranking, it will be counted as a ranking
error. Other changes, for example when a significant ranked pair becomes insignificant
(regardless of the order of the two objective metrics), the error is solely counted as a
SError.325

5. Results

5.1. Subset Selection

In this section, the analysis results will be studied. Figure 4 and Figure 5 show the
clustering of the three machine learning algorithms for arithmetic and harmonic temporal
pooling strategies respectively. The clusters are visualized using two features (objective330

scores): PSNR and VIF. In both figures, it can be observed, in the Kmeans algorithm, the
effect of the Euclidean distance between the points and the centroid. The farthest points
(from the centroid) are assigned to different clusters using the hierarchical clustering:
this is due the effect of the linkage functions. Comparing these two algorithms led to
some differences in assigning points to clusters. On the other hand, in the GMM, it335
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should be noted that there is interference between the clusters. Since the GMM compute
the posterior probability, each point has a probability for each cluster (soft clustering)
and it is assigned to the cluster with the highest probability (hard clustering). Hence,
the interfered points have weights to be assigned to any clusters which make them very
challenging for other clustering algorithms and that is why they are selected as candidate340

points for subset generations.
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Figure 4: Clustering harmonic pooling strategy data using Kmeans, hierarchical clustering, and Gaussian
mixture model with three clusters and with PSNR and VIF attributes.
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Figure 5: Clustering harmonic pooling strategy data using Kmeans, hierarchical clustering, and Gaussian
mixture model with three clusters and with PSNR and VIF attributes.

Figure 6 and Figure 7 show the results of the proposed strategy for the arithmetic
and the harmonic average pooling strategies, respectively. Each figure contains a plot-
ting of each pair of features. Black points refer to the PVSs that are selected to be a
representative subset when k = 3. With the arithmetic pooling strategy 225 of 423 PVSs345

are selected, whereas with the harmonic pooling strategy 175 of 423 PVSs are selected.
Table 1 shows the number of selected PVSs for different number of clusters (K = 2, 3,
and, 4). It can be observed, from Figure 6 and Figure 7, that the selected PVSs are
mainly located between the cluster borders in the harmonic pooling strategy, while this
does not happen in the arithmetic pooling strategy. This can be seen in all sub-figures350

except PSNR/SSIM and PSNR/MS-SSIM. This could be explained by noting that, in
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Table 1: The size of the selected PVSs for each pooling strategy for different number of clusters, k = 2, 3,
and 4.

K 2 3 4
Size (mean) 45 225 228
Size (Geometric) 68 225 131
Size (Harmonic) 49 175 53
Size (Median) 60 194 210

Size (L1-norm) 45 225 215

Size (L2-norm) 59 210 205

Size (L3-norm) 61 188 261

general, PSNR and SSIM seems to be highly related compared to the relation between
other metrics. Therefore, using only PSNR and SSIM attributes is probably not enough
for a good clustering.

Figure 6: Clustering arithmetic pooling strategy data with three clusters. Black points are the candidate
PVSs.

For the sake of completeness, it could be interesting to add the Mean opinion Score355

(MOS), in some form, to the input features, despite in a real-world scenario such value
would not be known in advance. Therefore, for illustration purposes, a new data matrix
X(m,n) has been prepared with new attributes, i.e., the absolute differences between

12



Figure 7: Clustering harmonic pooling strategy data with three clusters. Black points are the candidate
PVSs.

the MOS scores and the objective scores. Figure 8 shows the results. It can be observed
that the candidate PVSs (the black points) are located between the cluster borders. In360

addition, the figure also shows that the PSNR and SSIM are highly correlated compared
to other metrics. Such behavior reinforces the previous observation for which using only
PSNR and SSIM attributes is in general not enough for clustering.

5.2. Subset Comparison

In this section, the performance of an analysis of a subset that should give the same365

or similar results as the full dataset is investigated. The result of the analysis, described
in Section 4.2, carried out on the full dataset can be found in Table 2. In this table,
the RMSE results of the six different objective measures (A-F) can be found in the
second row and column. There is also a significance label for each comparison between
two objective measures. As an example, the table indicates that objective measure D370

performs significantly better than any other measure and measure C is significantly worse
than any of the measures. When taking a subset results in a change of significance in
this table, then such a smaller subjective evaluation would result in a different analysis
result.

This table is also computed for the different subsets. As an example, the results of375

one of the best performing proposed subset selection procedures is provided in Table 3.
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Figure 8: Clustering arithmetic pooling strategy data with three clusters and with new attributes; the
absolute difference between the MOS scores and the objective scores. Black points are the candidate
PVSs.

With respect to significance analysis, only a single significance change can be observed
in the comparison between measures E and F (SError = 1).

Table 2: Ground truth analysis results as obtained from the full dataset. The RMSEs of six objective
measures (A-F) are evaluated on the significance of their difference between each other.

A B C D E F
RMSE 0.71 0.78 0.99 0.57 0.72 0.79

A 0.71 sign. sign. sign. not sign.
B 0.78 sign. sign. not not
C 0.99 sign. sign. sign.
D 0.57 sign. sign.
E 0.72 sign.
F 0.79

To make a comparison between the proposed and random subsets, changes in signif-
icance are plotted in Figure 9. For the random subset selection, up to three SErrors can380

occur with as little as 5% reduction in dataset size. In the 75% to 85% dataset reduction
region, between seven and ten of these analysis differences can be made in a worst case
scenario. Although the best performing proposed subset selections results in one SError
during the analysis, there is no random subset selection from the 100 tested possibilities

14



Table 3: Analysis results from the (raw OBJ) arithmetic dataset. Compared to the ground truth in
Table. 2, the significance change between metrics E and F is in bold.

A B C D E F
RMSE 0.68 0.80 1.09 0.57 0.75 0.80

A 0.68 sign. sign. sign. not sign.
B 0.80 sign. sign. not not
C 1.09 sign. sign. sign.
D 0.57 sign. sign.
E 0.75 not
F 0.80

that performs better.385

Figure 9: Amount of SErrors for 19×100 different random subsets (RND) selected from the full VQEG-
HDTV dataset. Both average and color coded histogram of the SErrors are provided for the 100 random
subsets of each subset size. The proposed subset selection is indicated as separate points in this plot for
each pooling strategy and for different number of clusters, k = 2 (green), 3 (red), and 4 (blue).

From Figure 9, two main conclusions can be drawn. The first conclusion regards the
performance of the generated/proposed subsets. All generated subsets with two and three
clusters have a lower or equal SError compared to random subset selection. It is noticed
that the datasets when having four clusters is not efficient because having more than
three clusters is not reasonable due to the characteristics of the feature space. Hence,390

this effort could help in selecting the challenging PVSs for the subjective experiment. For
instance, in this experiment, the PVSs are reduced to 175 out of 423 of the full subset
when k = 3 and harmonic pooling strategy are used. The second conclusion regards
the performance comparison of different pooling strategies. Comparing SErrors of subset
selection, it can be noticed that some pooling strategies, in this case the arithmetic395

and geometric means, are performing better than others, notably the L3-norm temporal
pooling-based strategy.

Finally, analysis of the ranking behavior of the different subsets led to the following
observations. All the proposed subset selection procedures result in the same ranking of
the different objective measures as the full dataset analysis. The same observation can400

be made for the random subsets up to a subset reduction of 85%. Reducing the testset
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further leads to 2% of the random subsets to have one rank error. Reducing the subset
size beyond 90% results in 10% of the subsets having a single rank error.

6. Discussion

Our approach has demonstrated that for the particular dataset VQEG-HDTV, similar405

results might have been obtained for the ITU Recommendation with only about one third
of the effort of subjective assessment.

There are a few aspects that should be noted: First, our analysis is limited because
it is a post-hoc analysis and its validity for planning a subjective validation experiment
requires further work. The procedure would be to create a large set of PVS with many410

different SRC, preferably by performing online capture of the targeted video services
(such as broadcast TV), then performing temporal alignment, running the simple objec-
tive measures, their temporal aggregations, and finally the subset analysis which would
then potentially require a fusion of the generated subsets.

The second note concerns our evaluation procedure. While our comparison to random415

subset selection provides some hints that redundancies in the full set were identified, a
more thorough analysis may be required, for example, by presenting the samples in each
cluster to human observers who should identify similarities. In order to enable further
research, we are providing our selected subsets online: (link will be inserted in the final
version of the paper).420

The third note is on the usage of VQEG-HDTV. We carefully selected this experiment
for our evaluation because all PVS were created from SRC that were screened by all
experts participating in the validation experiment and after the experiment, the PVS
were again verified and validated to conform to the testplan. We are not aware of any
other publicly available dataset that was screened so carefully. Nonetheless, it would be425

interesting to perform a similar analysis on other datasets.
Our approach should be seen as a generic procedure and it can be applied to other

use cases. For example, in the evaluation of new coding algorithms, PVS may be selected
in the same way. However, the set of similarity indicator (in our case, the simple qual-
ity measurement algorithms) may be amended by indicators that characterize the SRC430

with respect to coding parameters such as bitrate, length of motion vectors and other
indicators that are typically used for bitstream analysis. Different indicators such as the
Bjøntegaard’s BD-PSNR [39] may also be included in the set.

7. Conclusions

In this work we tackled the problem of how to identify similarities in a video quality435

assessment dataset by means of objective quality measures processed through machine-
learning based algorithms. Such an approach can be employed in many contexts that
would traditionally require large-scale subjective experiments such as validation exper-
iments by ITU or MPEG. Taking advantage of one of the largest, publicly available,
subjectively annotated video quality dataset, i.e., VQEG-HDTV, we showed that the440

proposed approach yields to interesting reductions of the amount of work to be done
in an actual subjective experiment without substantially modifying the conclusion that
would be drawn from the larger, more expensive, experiment. In this experiment, the

16



PVSs are reduced to small size relative to the full subset which correspondingly reduce
full experiment’s time, money, and efforts.445
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