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Improved Performance Measures for Video Quality
Assessment Algorithms Using Training and Validation Sets

Ahmed Aldahdooh, Enrico Masala, Olivier Janssens, Glenn Van Wallendael, Marcus Barkowsky, and Patrick Le Callet

Abstract—The training and performance analysis of objective video
quality assessment algorithms is complex due to the huge variety of
possible content classes and transmission distortions. Several secondary
issues such as free parameters in machine learning algorithms and
alignment of subjective datasets put additional burden on the developer.
In this paper, three subsequent steps are presented to address such issues.
First, the content and coding parameter space of a large-scale database
is used to select dedicated subsets for training objective algorithms.
This aims at providing a method for selecting the most significant
contents and coding parameters from all imaginable combinations. In
the practical case where only a limited set is available, it also helps to
avoid redundancy in the training subset selection. The second step is a
discussion on performance measures for algorithms that employ machine
learning methods. The particularity of the performance measures is
that the quality of the training and verification datasets is taken
into consideration. Common issues with often used existing measures
are presented and improved or complementary methods are proposed.
The measures are applied to two examples of No-reference objective
assessment algorithms using the aforementioned subsets of the large-scale
database. While limited in terms of practical application, this sandbox
approach of objectively predicting objectively evaluated video sequences
allows for eliminating additional influence factors from subjective studies.
In the third step, the proposed performance measures are applied to
the practical case of training and analyzing assessment algorithms on
readily available subjectively annotated image datasets. The presentation
method in this part of the paper can also be used as an exemplified
recommendation for reporting in-depth information on the performance.
Using this presentation method, future publications presenting newly
developed quality assessment algorithms may be significantly improved.

Index Terms—Video quality, No-Reference VQA, HRC selection,
Datasets evaluation, Content features.

I. INTRODUCTION

MEASURING the perceived video quality has an important
role in enhancing the quality of experience (QoE). Moreover,

measuring video quality is important in different stages of video
delivery systems, e.g., processing, compression, transmission, post-
processing [1] and displaying [2]. Video quality can be measured
either subjectively or objectively. Subjective video quality is human
dependent and it is generally measured with the mean opinion score
(MOS) of a number of observers. Since this method is highly
expensive, time consuming, and cannot be integrated in automated
systems, a lot of efforts have been devoted to developing objective
measures [3], [4]. Objective video quality approaches, instead, rely on
algorithms that can be classified into three different types depending
on how much data of the original video is available to them.
Full reference (FR) objective measures can access the full original
video, whereas reduced reference (RR) ones can only access some
representative characteristics and features of the original video [5].
No reference (NR) objective measures, instead, rely on the capability
to extract bitstream or content features from the distorted video [6]–
[8]. A tremendous number of video quality algorithms have been
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proposed in the past. In recent years, Narwaria et al. [9] published
a low-complexity FR algorithm relying on machine learning based
pooling, Naccari et al. [10] developed a NR measure for video quality
monitoring, Anegekuh et al. [11] took the content characteristics
into account in their NR-bitstream measures, and also Hameed et
al. [12] and Li et al. [13] proposed a NR-bitstream model enhanced
with content features for controlling the amount of forward error
correction and playout and packet scheduling respectively. Stability
and Consistency of these measures over a wide range of conditions
is important for those and many other common scenarios such as
rate-distortion based mode decisions (Sung et al. [14]) and client- or
server-side controlled HTTP Adaptive Streaming (Bouten et al. [15]).
However, evaluating the stability and consistency of objective video
quality measures is a difficult task due to the scarce availability of
suitable datasets and the lack of good indicators to compare the
measures. This paper investigates two methodologies to address such
issues.
Three approaches can be used to select a suitable dataset for eval-
uating a video quality assessment (VQA) measures. The first one
depends on the researchers’ expertise. In video coding community,
for instance, different quality levels can be obtained by using dif-
ferent bitrate budgets or different quantization parameters (QPs).
This approach would not guarantee the same performance when
another dataset is selected by another expert since the contents and
coding conditions are varied. The second approach is to provide a
large-scale database that covers wide range of contents and coding
conditions. Although a large-scale database can be created and can
help in providing insight into the performance of VQA measures, as
we showed in our previous work [16] by using 1,984 hypothetical
reference circuits (HRCs) for each content type and resolution, using
such a large-scale database to iteratively develop a new VQA measure
is not practical. Hence, a third approach is recommended, that we
name hybrid approach. In this approach, a large scale database is
created, then a set of proccessed video sequences (PVSs) are selected
to create a database. In our previous work [17], the problem of
finding good datasets is addressed and Algorithm 1 was proposed
to generate suitable and small representative databases from a large-
scale database. The performance of these algorithms were evaluated
using Pearson Linear Correlation Coefficient (PCC) which might
not report the best evaluation of the VQA measure. In this paper,
the performance of the algorithms in [17] is emphasized using the
proposed performance measures.
The second important factor in evaluating and comparing VQA
measures is to use indicators that can effectively distinguish and
compare the performance obtained using different measures and
datasets. Typically, in the VQA community such comparisons are
carried out by means of the Pearson Linear Correlation Coefficient
(PCC), Spearman’s Rank Order Correlation Coefficient (SROCC),
and the Root Mean Squared Error (RMSE). However, in many cases
such indicators are not able to capture the peculiarities of the VQA
measures. Therefore, in this work we aim to find which performance
evaluation measures should be used if PCC and RMSE are not
able to report the goodness of a subset of HRCs. The main
focus and contribution of this paper is to discuss the advantages and
the shortcomings of these evaluation measures and propose further
measures based on the analysis of the results obtained with the
performed subset analysis. We took advantages of analyzing the
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Fig. 1: Structural overview of the paper’s experimental setup and data flow.
Green boxes highlight this paper’s contribution, while red boxes reviewed and
extended from the author’s previous publications.

residuals, the difference between the annotated and the predicted
scores of the degraded videos, and of analysis the confidence intervals
(CIs) of the fitting of the different models. The proposed performance
measures are also highlighted by green-filled boxes in Figure 1.
In order to practically demonstrate how the proposed performance
measures can measure the performance of the VQA measures and
the datasets, many experiments are conducted and discussed in details
in Sections II and III. Firstly, datasets are created from an existing
database. Then, VQA/IQA measures are used to predict the quality
of degraded videos/images. Finally, the VQA measures are assessed
using the proposed performance indicators.

The rest of the paper is organized as follows. In Section II, an
overview of the experiment is presented. Section III presents and
explains the NR VQA models that are used in this paper. Section IV
focuses on how to improve current performance evaluation measures
and introduces the new VQA performance measures. The advantages
achieved by the proposed methodologies are shown in Section V by
applying them to two IQA algorithms from the literature. Conclusions
are drawn in Section VI.

II. EXPERIMENT OVERVIEW

Figure 1 visually summarizes our contributions and the conducted
experiments by showing the overall structure used for evaluation.
Our contributions are highlighted by green-filled boxes. The red-filled
boxes show the main elements that emphasize the concept of the
whole paper. They will be briefly summarized in the following.

A. Generation of small representative datasets from a large-scale
database

Differently from many other works that propose new VQA mea-
sures, we rely on a non-subjectively annotated large-scale database.
However, the database contains several different objective VQA
measures that have been computed for each HRC. In our previous
work [17] we showed how, on the basis of such values, HRC subsets

can be selected with limited loss of generality for the purpose of
testing the performance of VQA methods. For completeness’ sake
we briefly report this approach here in Algorithm 1. Here we show,
through practical examples using NR measures, the effectiveness
of such a method. Note also that different optimization targets are
possible. The second part (Lines 10-15) of Algorithm 1 is optimized
to find HRCs that cover different ranges of (PSNR, Bitrate) values,
whereas the first one (Lines 5-9) searches HRCs that have widely
different impact depending on the type of content. Later in the paper,
for comparison purposes, three randomly-generated subsets are also
used. Note that the need for different comparison methods stems
from the typical development cycle of an objective measure. First, a
training dataset (i.e., one of a number of possible subsets) is selected;
second, the VQA measures is iteratively developed; third, the VQA
model is tested using validation dataset.

B. NR VQA measures
As a further exemplification, we apply the presented methodologies

to the specific case of NR VQA measures. A classification of no-
reference quality estimation models for images and video has been
presented in [18], which also discusses the most recent approaches,
mainly focusing on coding artifacts due to JPEG or H.264/AVC.
Although NR measures optimized for H.264/AVC could be adapted to
the High Efficiency Video Coding (HEVC) case, some publications
have specifically addressed HEVC [19]–[23]. Despite the fact that
the state-of-the-art NR VQA measures provide promising results, it
is not yet clear how well they can perform in real application contexts
since the measures have almost all been implemented and tested
using a small dataset that might not be sufficiently representative
of real world conditions. This is currently an important limitation
of such proposals. Hence, One approach to tackle the problem of
general applicability is to use the large-scale database. In [24], the
large-scale database is used to predict the behavior of the objective
measures with full-reference (FR) video quality metrics for loss-
impaired sequences using encoding, channel, and content features.
Following the conclusions from [24], we extend this work in this
paper by including pixel-based features to predict the video quality.
These pixel-based features are used effectively in other works such as
[25], [26]. Moreover, bitstream-based features [21] are used to build
VQA models for HEVC coded videos. More details are discussed

Algorithm 1 HRCs Selection process [17]

Input: data(PSNR,bitrate), K, N {for each HRC for each video sequence, K
is number of clusters, and N is the number of sub-ranges}

Output: HRC1, HRC2 {set of selected HRCs for content and qual-
ity/bitrate driven subsets}

1: HRC1, HRC2 ⇐ null
2: psnrRank ⇐ rank(PSNR)
3: rateRank ⇐ rank(log(bitrate)) ascending.
4: kmean++(psnrRank, rateRank,K)

subset: content-driven
5: Find HRCs that distribute sources to the same clusters and assign them

to a group #Groups=G
6: for g = 1 : G do
7: Compute the magnitude of the rank for each src in each hrc
8: HRC1 ← HRC1+ Select the HRC that has the highest standard

deviation
9: end for

subset: quality/bitrate-driven
10: for k = 1 : K do
11: Find the common HRCs (group(s)) between different sources
12: For each group Get the COST = PSNR/log(bitrate)
13: Divide the COST range into (N) sub-ranges
14: HRC2 ← HRC2+ For each subrange find the common HRC that

is close to the mid-range point
15: end for
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in Section III. In the final part of this paper we also investigate
the specific case of two existing NR image quality assessment
(IQA) algorithms [27], [28], showing the usefulness of our proposed
methodologies to compare the performance of the two algorithms
when trained using one out of four different datasets.

C. Performance evaluation measures

Measuring the suitability of the different subsets for the training
and verification stages is not straightforward. We will assess the PCC,
SROCC, and RMSE indicators, discussing their advantages and short-
comings, and propose new comparison methodologies inspired by the
previous development procedure. In particular, we propose to analyze
residual errors and confidence intervals in the training and evaluation
phases. For the specific case of support vector regression (SVR), we
also found that a useful indicator could be the support vectors (SV)
density. However, it should be noted that subset selection for the
training stage inevitably introduces a bias in the quality measurement
model which may be chosen such that particular degradations or
content characteristics are better predicted at the expense of worse
performance for others. In fact, in this paper we show this effect by
using two subsets, one aimed at maximizing content variety and the
other to maximize the coverage of rate-distortion tradeoff points.

III. NO-REFERENCE VIDEO QUALITY MEASURES

A. The pixel-based content features

The pixel-based content features used in this paper have been
presented in our previous work [24] and used in [24], [29]. The
features cover spatial and temporal characteristics that are extracted
from the luminance frame (Y), and the chrominance frames (Cb
and Cr), in the spatial or frequency domain. The features have been
extracted on both block and frame levels. For the features that have
been extracted at the block level, the Minkowski sum with different
power has been applied to obtain a scalar value of each frame, then
several statistical measures (e.g., mean, maximum, standard deviation,
etc.) have been applied to get a scalar value that represents the
video sequence. In addition to those features the standard deviation,
the variance, the skewness, and the kurtosis of the motion intensity
histogram that is computed using a pixel change ratio map (PCRM)
[30] have been calculated. In total, 284 features have been extracted
from a subset of the encoded sequences in the large-scale database
[16].

B. Bitstream features

In [21], Shahid et. al. use 52 bitstream features in order to perform
perceptual quality estimation of HEVC coded videos. Ratios of
various used CU sizes and of various prediction modes of intra
and inter frames, and statistics of different levels of quantization
parameters and motion vectors have been considered in these features.
The features have been extracted as follows:

- The bitstream information extractor (HMIX) [16] has been used
to generate the ‘.xml’ file from the encoded stream file.

- HMIXParser, developed for this work, has been used to extract
the bitstream features. Firstly, the frame-level features have been
extracted and then sequence-level features have been calculated
using a pooling strategy based on the average value.

C. Subset description

Five HRC subsets have been used in this work. Two HRC subsets
have been selected using HRC generation algorithms [17], see
Algorithm 1. The first one shows the selection that is optimized for
the HRCs that cover different ranges of (PSNR, Bitrate) values. The
second shows the selection that is optimized for the HRCs in terms of
contents, i.e. those that behave differently depending on the sources.

The other three datasets use a random selection. Figure 3 shows
the histograms of the quality scores (PSNR) for the five subsets.
This histogram will be useful, for instance, when testing HRCs that
are under-represented in the subset (i.e. PSNR > 50). These subsets
will be named as HRC1, HRC2, HRC3, HRC4, and HRC5 and
correspond to the Content-driven subset, the quality/bitrate-driven
subset, and the three random-based subsets respectively. Note that
the number of HRCs in each subset are 97, 83, 100, 100, and 100,
respectively. The number of HRCs is not identical due to the selection
algorithms but sufficiently close for comparison.

D. Feature selection process
Figure 2 shows the model that has been used in the experiments.

First, all HRCs are encoded and then an objective full-reference
measure, i.e., the VQM [31], has been used to estimate the quality.
Then, the pixel-based features are extracted from the decoded output
and finally the support vector regression (SVR) has been used to
train the model. The feature selection algorithm in [24] has been
used to get the features that are required for the support vector
regression (SVR) process. Epsilon-SVR (LIBSVM tool [32]) with
radial basis function has been used to train the model with 10-fold
cross validation. Before the training is started, the parameters of the
SVR (C, G, and epsilon) are optimized by selecting one combination
of different C, G, and epsilon values. Five feature selection processes
(SP) have been carried out: the first one SP1 for the content-
driven subset HRC1, the second one SP2 for the quality/bitrate-
driven subset HRC2, and the SP3, SP4, and SP5 for the three
random subsets HRC3, HRC4, and HRC5, respectively. These
processes have been carried out for the pixel-based NR VQA and
another five selection processes have been carried out for bitstream-
based NR VQA. In the training phase, an exhaustive process of
adding each feature one by one has been applied. In the training
process of SP1, 16 features have been selected to be used for the
SVR training. LIBSVM reports the squared correlation coefficient
(SCC) as performance criterion. The SCC when 16 features are
used is 0.9728. On the other hand, 14 features are selected in SP2
with an SCC equal to 0.9735. Figure 4 and Figure 5 show two
features for the selected HRCs. The first feature (DCTHis13) is the
histogram dissimilarity of DCT based feature maps using low and
high frequency maps. The second feature (entrB p4 mean) is the
mean of entropy of 64x64 gray level co-occurrence matrix using
Minkowski pooling (p=4). It can be observed that the features cover
different ranges of values which make them useful for the training
model. In SP3/4/5, 45, 11, and 8 features are selected, respectively,
with SCC of 0.9883, 0.9830, and 0.9828. It can be observed that the
number of selected features largely depend on the training data. Due
to the over-fitting problem, the model that has the highest correlation
is not necessarily the best one. This can be tested when the trained
model is further validated with other datasets.

E. Training and testing results: the impact of content features
After the features have been selected for the training model for

the five HRC subsets, each training model has been trained and
tested using all other HRC subsets including the subset that has been
used in the training phase. The experiments have been divided into
three categories: the first category will show the overall impact of
the pixel-based content features in the different datasets. The second
category will study the impact of pixel-based features per content.
The third category will show which HRC group behaves differently
when using the features. The performance of all experiments are
measured using Pearson Linear Correlation Coefficient (PCC) and
Root Mean Squared Error (RMSE).
In the first category, 25 experiments (referenced to as
X(row, column)) have been conducted as shown in Figure
6. The rows of the figure represent the different training
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models that have been trained, from top to bottom, using
HRC1, HRC2, HRC3, HRC4, and HRC5, while the columns
represents the test data for each model and they are, from left to
right, HRC1, HRC2, HRC3, HRC4, and HRC5. Hence, the
diagonal represents the evaluation of the model using the training

data as the input. The green line represents y = x, while the red line
represents the fitting line of each experiment. The first observation
concerns the stability of content-driven, quality/bitrate-driven, and
random 2 prediction models. It can be noticed that, when looking at
the performance row by row, there is a stable and high performance
(PCC higher than 0.95) for rows HRC1, HRC2 and HRC4.
Although the prediction model using HRC3 is stable, it is still a
random process and, as it can be noticed in the other random-based
prediction models, the correlation scores are not stable when using
HRC5 and the fitting line deviates by a notable offset. Further
discussion on the PCC performance measure will be presented in
Section IV. Moreover, the predicted VQM in X(2, 1) is better
correlated than X(1, 2). This can be explained as follows: both
experiments try to predict VQM but the HRCs in X(2, 1) cover a
wide range of quality/bitrate values while this is not the case for
X(1, 2). Therefore, the training model has a better ability to predict
the VQM value. Hence, this is an indication that the selection
algorithm for quality/bitrate-driven yields good performance.
Another observation can be made by looking column-wise at the
correlation of the experiments. This can suggest which HRCs
are challenging to a certain model. The two challenging sets are,
in order, quality/bitrate-based HRCs and content-based HRCs.
Table I presents the analysis of PCC by calculating the absolute
mean difference of the correlation coefficients, showing that the
quality/bitrate-based and the HRC3 subsets perform better in
the pixel-based models, whereas the quality/bitrate-based and the
content-based subsets perform, in general, better than others.
In the second category of experiments the influence of the content
is presented. One content has been left out during the training and
then the model has been tested on the content that has been left out.
Table II shows a typical example where source 5 is left out of the
training set and used for evaluation. Comparing this figure with the
results of models that includes all contents in the training, it can be
observed that the correlation is reduced and also the residual error
is increased. That is an indication of content importance and how
the absence of some content HRCs would affect the training model.
Finally, in order to show that the HRCs subset selection algorithms
work well, we compare the results on the diagonal. In general,
on average, the Random 1 HRCs set has a lower correlation: this
suggests that each content in the subset is valuable. The content
and the quality/bitrate HRC subsets come next. When leaving one
sample out from a subset that has many samples, a negligible drop
in correlation means that this sample is redundant, whereas a huge
drop in correlation means that the subset is not good enough. On
the basis of this assumption, the content and the quality/bitrate HRC
subsets are the ones that shows good performance.
In the third category of the experiments, the influence of individual
HRCs cannot simply be seen by removing one HRC from the training
phase and then testing with this HRC since, in this experiment, only
10 sources are used and there are HRCs that share the same encoder
conditions. Therefore, one HRC group, i.e., coding condition, is
removed from the training phase and the model is tested with this
group. It is observed, as shown in Table III, that the main HRC
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groups that have the highest impact are the quality groups whereas
other groups such as ‘Open/Closed GOP’, ‘Intraperiod’, and ‘Slice
Arg.’ present stable results and higher PCC compared to quality
groups. In general, removing one of these HRCs groups will highly
impact the training model. For instance, including HRCs of low
quality (QP=46) and high quality (8 Mbps, 16 Mbps, and QP=26)
will help the model in better predicting the quality of new sample
videos.

F. Training and testing results for bit-stream based no-reference
model

Figure 7 shows the same training/testing experiments done for the
pixel-based features, but this time for bit-stream-based features NR
VQA. Here, the samples (HRCs) are common between the pixel-
based model and the bitstream-based model. It can be observed
that all HRC subsets have a high correlation which makes it quite
difficult to distinguish between them. Since, samples and features are
important inputs for the training, the following conclusions can be
drawn: first, the bit-stream features are optimal for the prediction, so
all subsets have a high correlation. Second, the performance measures
(PCC and RMSE) are not indicative of the significance of the HRCs.
Further discussion will be elaborated in Section IV.

G. Results from different machine learning algorithms
The two NR VQA models are trained using Stochastic Gradient

Boosted Regression Trees algorithm, which recently has been shown
objectively to be the state-of-the-art approach on structured data [33].
Furthermore, XGBoost is used, which is the state-of-the-art variation
of the Stochastic Gradient Boosted Regression Trees algorithm [34].
In recent years, the popularity of this algorithm has risen dramatically
due to its performance results in many machine learning competitions.
For example, on the Kaggle platform, 17 out of 29 challenge
winning solutions in 2015 used XGBoost. These XGBoost-based
approaches outperformed both neural network and support vector
machine-based solutions [35]. Apart from its success in machine
learning competitions, XGBoost has also been proven to work well
for practical applications such as train occupancy prediction [36],
offshore wind turbine power prediction [37] and ads click-through
prediction [38]. The success of XGBoost is often attributed to several
aspects such as the fact that it is an ensemble model, requires little
hyper parameter tuning, can deal with sparse data, requires no feature
scaling and is very scalable due to its out-of-core learning ability [35].
The aim of this step is to observe some similarities and some
dissimilarities when using different machine learning algorithms. The
five models are trained using the same selected features for the pixel-
based and bitstream-based VQA models. In comparisons with SVR
technique and using the PCC performance measure, the XGBoost
results confirm that HRC5 is the worst subset and it disagrees in
the performance order of other subsets. The absolute mean difference
of PCC is considered as the stability measure between two different
machine learning algorithms. Therefore, because they almost agree
when using the absolute mean difference of the PCC performance
measure, see Tables I and IV, we will complete the rest of this paper
using the SVR technique.
After comparing the two machine learning algorithms, the two
trained NR VQA models (using XGBoost) are now compared. From
Table IV, it can be concluded that content-based and quality/bitrate-
based HRC subsets provide the best results with respect to the cor-
relation analysis; the absolute mean difference performance measure,
regarding the pixel-based model, HRC3 shows better performance
on average, then HRC1 HRC2 HRC4 HRC5 come next in order.
It should be noted that it is difficult to distinguish the difference
between the HRC1,2. On the other hand, in bitstream-based mod-
els, the average correlation shows that the content-based subset is
the worst and it is very hard to distinguish the difference among

HRC2,3,4. But when analyzing the absolute mean difference of the
PCC, the content-based and the quality/bitrate-based subsets perform
better than others for both NR VQA models.

IV. PERFORMANCE MEASURES FOR MODELS AND (SUB)SETS

As explained in the introduction, one of the main goals of the
paper is to have an HRCs subset that can represent the large scale
database. Hence, a set of analyses for the predicted values should be
identified in order to judge the datasets. Since, as discussed in the
previous section, the usual PCC and RMSE are not enough to judge
a dataset, in this section other analyses are proposed for performance
evaluation.
Please note that a prerequisite of all the following measures is that
the input data is restricted to the unit interval, zero to one. This can
be achieved by linear rescaling in most cases.

A. Analysis of the residuals using PCA

1) Redundancy in the training data PRPCA T:
Purpose: measure the goodness of the training data in the training
process by Analysis of the residuals using PCA.
Idea: find the systematic redundancies in the training data that should
be avoided such as redundant HRCs or redundant contents. By
identifying similar behavior of the RMSE for two contents over all
HRCs, redundancies can be identified. Optimality is reached if the
HRCs behave differently for any two contents of the subset. The same
applies to the HRC analysis: Optimality is reached if the contents
behave differently for any two HRCs of the subset.
Process: train the model and evaluate it on the training data. Calculate
the residual errors of the prediction by the model. For the content
analysis (dimension=SRC), first create a vector per content that
contains the residual errors for each HRC. Perform a PCA on these
m vectors. Calculate the sum of the Eigenvalues of the first n
components of the total m components. The default value should
be n = 0.2m. Perform the same operations by creating a vector per
HRC (dimension=HRC).
Reporting: Use P dimension

RPCA T ( n
m
,m) = x, i.e. P SRC

RPCA T(0.2, 10) = 0.9.
Interpretation: the lower the value, the better because the explained
variance is low in the first n components, i.e. the remaining compo-
nents have significant information.
Example and further explanations: The titles of the subplots in
Figure 8 show the sum of the first two principal components, i.e
P SRC

RPCA T(0.2, 10). The higher the value, the higher the possibility of
existing systematic redundancy. As shown in the diagonal of Figure
8, it is observed that the quality/bitrate-based subset has the lowest
explained variance in the first two components. That is an indication
that the HRCs are valuable in the subset. Using the RMSE would not
provide the same information, as can be seen from Fig. 6 because
the best subset with respect to different HRCs is not easy to identify.

2) Redundancy in the validation data PRPCA V:
Purpose: measure the goodness of the validation data in the subset
and model comparison process by analyzing the residuals using PCA.
In other words, characterize which subset is challenging for the
trained models.
Idea: similar to PRPCA T, find the systematic redundancies in the
validation data. Redundancy should be avoided, both as redundant
HRC or redundant content.
Process: Evaluate the already trained model on the validation data
without retraining. Then, follow the process of Section IV-A1 in order
to obtain PRPCA V.
Reporting: Use P dimension

RPCA V ( n
m
,m) = x, i.e. P SRC

RPCA V(0.2, 10) = 0.4.
Interpretation: The lower the value of PRPCA V, the better the perfor-
mance as less redundancy is found in the considered dimension in
the validation. There are two sources of redundancy in the validation:
The first one is the same as with training, i.e. the used set contains
systematic redundancies; the second source is that the model may
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TABLE I: Correlation analysis, expressed as a percentage, for the NR VQA models using SVR

PCC Difference to train PCC Absolute
mean differenceHRC1 HRC2 HRC3 HRC4 HRC5 Average HRC1 HRC2 HRC3 HRC4 HRC5

Pi
xe

l-
ba

se
d HRC1 98.8 97.1 96.3 96.6 96.5 96.6 0 1.7 2.53 2.21 2.29 2.19

HRC2 98.3 98.8 98.8 99.1 98.9 98.8 0.53 0 0.01 -0.32 -0.13 0.02
HRC3 97.8 96.1 99.5 97.2 90.5 95.4 1.71 3.44 0 2.30 9.03 4.12
HRC4 95.1 98.2 98.7 99.3 99.0 97.7 4.13 1.12 0.60 0 0.27 1.53
HRC5 62.7 60.0 68.6 91.9 99.2 70.8 36.52 39.22 30.66 7.33 0 28.43

B
its

tr
ea

m
-

ba
se

d

HRC1 98.0 97.3 97.4 97.5 97.8 97.5 0 0.73 0.59 0.49 0.26 0.52
HRC2 97.2 98.2 97.9 98.1 98.2 97.8 1.07 0 0.35 0.10 0.02 0.38
HRC3 96.5 97.4 98.5 98.4 98.0 97.6 1.96 1.04 0 0.04 0.44 0.87
HRC4 95.7 97.1 98.1 99.0 98.4 97.3 3.34 1.94 0.99 0 0.69 1.74
HRC5 96.8 97.6 97.7 98.4 98.9 97.6 2.09 1.25 1.16 0.46 0 1.24

Fig. 6: The PCC and the RMSE for the 25 experiments of the pixel-based model. Rows: the different training models that are trained using
HRC1, HRC2, HRC3, HRC4, and HRC5,. Columns: the test data for each model, from the left, HRC1, HRC2, HRC3, HRC4, and HRC5. The
green line is the reference (y = x).

behave similarly for different conditions, such as not considering a
certain degradation at all. When using several subsets for training
and validation, further analysis on these two can be obtained by
comparing the graphs cross-wisely, i.e. X(n, :) and X(:, n). Good
models should provide low values of PRPCA V row-wise in X(n, :)
and good subsets for verification are characterized by high values
of PRPCA V column-wise, i.e. X(:,m) because a high value indicates
that a model is challenged by the subset m, i.e. the model can not
reliably predict this subset.
Example: following the above interpretation in Figure 8, models
that were trained on the specific subsets are performing in the
following rank order: quality/bitrate-based, random 2, random 1,
content-based, random 3. The subsets in decreasing order of goodness
are quality/bitrate-based, content-based, random 2, random 1 and
finally random 3.

B. Analysis of confidence intervals (CIs) of the different models
fittings

In this section, further performance measures for the models are
explained. These analyses are based on two different notions of
confidence intervals. When fitting a model, the parameters of the
model are determined based on training data. The more training data
is available and the better the model fits, the smaller the confidence
intervals for each calculated model parameter. In this text, this is
called the model confidence, model-C. When the model is used
for prediction, a certain percentage (usually 95%) of the predicted
data lies in a corridor bounded by the upper and lower confidence
intervals. This is called the data confidence, data-C.

1) Model’s prediction performance on particular validation
dataset:
Purpose: measure the goodness of the trained model with respect to
its reliability of predicting validation data.
Idea: Determine the confidence interval corridor for the model
predicting its own training data. Then, count the number of
validation data points that fall into this corridor.
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TABLE II: The PCC and the RMSE for the 25 experiments that are trained without source 5 and tested with source 5 HRCs.

Tested on
PCC RMSE

Content RD Rand 1 Rand 2 Rand 3 Content RD Rand 1 Rand 2 Rand 3
Tr

ai
ne

d
on

Content 0.31 0.22 0.41 0.69 0.6 0.25 0.23 0.17 0.17 0.15
RD 0.92 0.91 0.92 0.93 0.92 0.16 0.17 0.14 0.14 0.13

Rand 1 -0.3 0.21 0.19 0.62 0.62 0.16 0.18 0.22 0.22 0.23
Rand 2 0.96 0.98 0.98 0.98 0.98 0.06 0.06 0.07 0.08 0.08
Rand 3 0.78 0.76 0.81 0.89 0.87 0.39 0.39 0.36 0.35 0.29

Fig. 7: The PCC and the RMSE for the 25 experiments of bitstream-based model. Rows: the different training models that are trained using
HRC1, HRC2, HRC3, HRC4, and HRC5,. Columns: the test data for each model, from the left, HRC1, HRC2, HRC3, HRC4, and HRC5. The
green line is the reference (y = x).

Process: Train the model on the training data. Evaluate it on the
validation dataset. The 95% confidence interval boundaries for data-
Care obtained by using a function such as MATLAB’s1 polycon
function. This function is applied on the training data in order to get
the two boundary lines that are parallel to the fitting line, i.e. y ± δ.
The validation data is then predicted by the same model and for
each datapoint it is determined whether it is inside the previously
determined confidence interval boundary. The ratio of inliers i and
outliers o of the total number of datapoints in the validation set
n is reported. This is similar to the well-known outlier ratio with
respect to the standard error but takes into consideration training
and validation. This analysis is further studied in Section IV-C.
Reporting: Use PDCI V(δ, n)= i

o
, i.e. PDCI V(0.12, 100)=0.3.

Interpretation: The higher the ratio, the better the model predicts
the validation data with respect to its own training data.
Example: as shown in Figure 9, the black lines are the boundaries
of data-Cof the trained model and the black points are the predicted
data points of the trained data. The red points are the predicted data
points of the validation data. In addition, the red lines show the
boundaries of data-Cusing the validation subset (further exploited

1 MATLAB functions are given here for exact reproducibility, other
software such as Octave or R have similar functionality.

in IV-C). Each sub figure reports the PDCI V. For instance, the fifth
row X(5, :), which refers to the validation of the model trained
on Random3, shows that the spread of content and quality/bitrate
based subset is the largest compared to the other subsets. This is
reflected in the value of PDCI V. Since the content-based model is not
designed to have a wide-range of quality and bitrate, the predicted
VQM values of content-based HRCs mostly lie outside the area of
the data-CCIs for other models. Therefore, its HRCs are challenging
for other models, especially random-based models.

2) Model determined by its training data:
Purpose: measure the goodness of the model by analyzing the area
of the confidence interval spread by the model-C.
Idea: the size of the area of the model parameter’s confidence spread
provides information about the exactness with which the model
parameters can be determined by the training data.
Process: determine the confidence interval values for each of the
trained model parameter on the training data of size n. For a
linear model, gradient and offset have a confidence interval that is
provided by the fitting function, e.g. the MATLAB1 function fitlm
in conjunction with coefCI . Determine the maximum confidence
boundaries that are spread by the uncertainty, e.g. for a linear model
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Fig. 8: The cumulative sum of explained variances of the principal components. The red lines indicate when the model reach a 95% of cumulative variances.

Fig. 9: How much the predicted VQM values lie in area of confidence interval of the fitted data.

the lower bound is determined by the line y = (a−CIa)x+(b−CI).
Calculate the area of uncertainty x, e.g. for a linear model between
the lower and upper bound y = (a+CIa)x+(b+CI). This analysis
is studied further in Section IV-C.
Reporting: Use PMCI T(n)=x, i.e. PMCI T(120)=0.4.

Interpretation: the lower the value, the better the model is able to
predict its training data. Please note that a low value may also indicate
overtraining or irrelevant training data. Hence, we will consider this
value when considering the interaction between the training data and
the validation data in Section IV-C.



IEEE TRANSACTIONS ON MULTIMEDIA 9

Example: Figure 6 shows in each subplot 5 lines. The green line
represents y = x. The two black ones are the CIs of a fitted model,
therefore each row in the figures shows the same two black lines. The
value of PMCI T(n) for the five models are, respectively, 0.014, 0.014,
0.008, 0.011, and 0.010. The sign of the over-fitting is obvious for
random-based subsets. Going further than PMCI T, the two red lines
represent the model-CCIs when trained on the validation set. This
leads to the idea of observing the amount of overlap between training
a model on one or the other subset. A good model is characterized
by red lines located between black lines. As shown in Figure 6, the
amount of overlap in the quality/bitrate-based model is the largest
one.

C. Interaction between the model training, the training data, and the
validation data

In this subsection, the goodness of a the trained model on its
own training data and on a specific validation subset is studied.
The analysis can be applied to the model fit (model-CCI) or to
the data fitting ability (data-CCI). The following three attributes of
the CI analysis are used. The area between the CI boundaries of
the training (black lines, denoted as b), the area between the CI
boundaries of the validation (red lines, denoted as r), and finally the
area of the intersection between the two areas (denoted as i). The
main conditions with respect to line intersections are explained in
Table V.

1) Goodness of data prediction using a trained model on
validation data:
Purpose: provide an absolute number for the prediction performance
of a trained model on a validation dataset taking into consideration
the training dataset.

TABLE III: PCC of the prediction using leave-one-out strategy, i.e. leave one
HRC group out.

HRC groups
Data sets

HRC1 HRC2 HRC3 HRC4 HRC5

GOP

GOP2 0.99 0.98 0.99 0.99 0.99
GOP4 0.98 0.99 1.00 0.99 0.99
GOP8 0.96 0.98 0.99 0.99 0.99

LDGOP4 0.98 0.99 0.99 0.98 0.99

Q
ua

lit
y

C
on

tr
ol

B
itr

at
e

500000 0.96 0.97 0.96 0.97 0.97
500001 0.95 0.96 0.94 0.94 0.95
1000000 0.98 0.98 0.98 0.96 0.97
1000001 0.98 0.98 0.97 0.97 0.97
2000000 0.97 0.97 0.98 0.95 0.94
2000001 0.99 0.93 0.98 0.96 0.95
4000000 0.83 0.80 0.91 0.86 0.88
4000001 0.88 0.87 0.93 0.94 0.91
8000000 0.58 0.34 0.72 0.67 0.63
8000001 0.55 0.25 0.77 0.75 0.62

16000000 - 0.13 0.50 0.22 0.04
16000001 0.23 0.13 0.54 0.20 -0.02

Q
P

26 0.92 0.93 0.93 0.95 0.91
32 0.92 0.97 0.94 0.92 0.95
38 0.94 0.96 0.90 0.93 0.91
46 0.08 0.42 0.29 0.54 0.22

O
pe

n/
cl

os
e

G
O

P

1 0.96 0.98 0.99 0.99 0.99

2 0.99 0.99 0.99 0.99 0.99

In
tr

a-
pe

ri
od

8 0.97 0.98 0.98 0.99 1.00
16 0.99 0.98 1.00 0.99 0.99
32 0.97 0.98 0.99 0.99 0.98
64 0.97 0.99 0.99 0.99 0.99

Sl
ic

e
A

rg
. 0 0.98 0.98 1.00 0.99 0.99

2 0.99 0.98 1.00 0.99 1.00
4 0.99 0.98 0.99 0.99 0.98

1500 0.98 0.99 0.99 0.99 0.99

Idea: The model prediction performance can be characterized by the
data-CCI of the validation data. The smaller the CI, the better the
model. Taking into consideration the training process, the smaller
the CI on the training data, the better the model. Finally, taking into
consideration the interaction between the training and the validation,
the larger the intersection between the CI, the better the fitting.
Process: Train the model on the training data. Calculate the area
of the data-CCI corridor similar to Subsection IV-B1 in order to
obtain the area b. Perform the same operation without retraining on
the validation data in order to obtain r. Calculate the intersection
between the two corridors in order to obtain i.
Reporting: The goodness value is reported as P (b,r,i)

GData=
i

max(b,r)2
, e.g.

P (0.5,0.4,0.3)
GData = 1.2

Interpretation: The higher the value, the better the model’s
performance and the data on which the model was trained. The
calculation is divided into two terms, the first one being i

max(b,r)

which achieves its maximum value 1 if the intersection covers
exactly the larger area, whereas it is equal to zero in case of no
overlap. The second term is 1

max(b,r)
which becomes larger as the

CI areas become smaller. The measure was designed to provide
a reasonable tradeoff between these goals. The behavior of this
measure can be seen in Figure 10.
Example: Figure 11 shows 4 sub-figures, the first column is related
to P (b,r,i)

GData for the features-based NR VQA and bitstream-based NR
VQA. In both NR VQA models, the quality/bitrate-based dataset
has the largest P (b,r,i)

GData value, whereas the content-based subsets rank
third and fifth in both models, respectively.

2) Goodness of two datasets for determining linear model param-
eters:
Purpose: evaluate the model’s stability when using different datasets.
Idea: A good model should provide a stable linear relation to any
given dataset. This is similar to Subsection IV-C1 but exchanging
data-Cwith model-C
Process: Train the model on the training data. Perform a linear fitting
on the training data and calculate the area b=PMCI Tas explained in
Subsection IV-B2. Perform a linear fitting on the validation data and
calculate the area r similarly. Calculate the intersection between the
two areas i.
Reporting: The goodness value is reported as P (b,r,i)

GModel=
i

max(b,r)2
,

e.g. P (0.5,0.4,0.3)
GModel = 1.2

Interpretation: The higher the value, the better. The same explanation
as in Subsection IV-C1 holds but, in this case, the stability of the
model to predict different datasets is analyzed.
Example: The second column of Figure 11 is related to P (b,r,i)

GModel for
the features-based NR VQA and bitstream-based NR VQA. In both
NR VQA models, the quality/bitrate-based dataset has the largest
P (b,r,i)

GModel(b,r,i) value, whereas the content-based subsets rank third and
second in both models, respectively.

D. Comparing the performance of HRC subsets

As discussed and observed in the previous sections, all the afore-
mentioned performance measures yield different results for different
HRC subsets. Therefore, in this subsection, all the results are put
together in order to judge the HRC subsets. A rank-order technique is
applied in order to get a final score for each HRCs set. Since we have
5 HRC subsets, each HRCs set will have an order number for each
performance measure discussed in this paper and then a comparison
between the two NR VQA measures is presented. Table VI shows
all HRC subsets ranks for each performance measure and for the
pixel-based and the bit-stream-based NR VQA measures. From the
table, it can be surmised that the systematic way of selecting the
HRC set to be used for the experiments performs better than the
random selection that covers different ranges of bitrate and quality.
The key advantage of using such technique in evaluation is that when
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TABLE IV: Correlation analysis, expressed as a percentage, for the NR VQA models using XGBoost

PCC Difference to train PCC Absolute
mean differenceHRC1 HRC2 HRC3 HRC4 HRC5 Average HRC1 HRC2 HRC3 HRC4 HRC5

Pi
xe

l-
ba

se
d HRC1 96.5 95.8 96.9 97.2 97.0 96.7 0 0.69 -0.40 -0.78 -0.58 0.27

HRC2 94.6 96.4 96.3 97.0 96.8 96.2 1.76 0 0.08 -0.59 -0.47 0.20
HRC3 98.2 98.5 99.9 99.4 99.4 98.9 1.72 1.38 0 0.46 0.46 1.00
HRC4 87.1 89.5 92.0 95.9 95.1 90.9 8.76 6.35 3.89 0 0.77 4.94
HRC5 82.9 85.5 90.3 93.7 94.3 88.1 11.35 8.74 4.01 0.59 0 6.17

B
its

tr
ea

m
-

ba
se

d

HRC1 98.0 95.9 97.0 96.5 97.0 96.6 0 2.13 1.02 1.46 1.03 1.41
HRC2 97.9 100.0 98.8 98.5 98.9 98.5 2.10 0 1.21 1.47 1.06 1.46
HRC3 97.2 97.6 99.6 98.7 98.4 98.0 2.47 1.98 0 0.94 1.18 1.64
HRC4 97.1 97.8 98.8 99.9 99.0 98.2 2.80 2.14 1.12 0 0.97 1.76
HRC5 94.5 96.9 97.4 98.2 99.7 96.7 5.25 2.89 2.37 1.58 0 3.02

Fig. 10: The behavior of G with different max(b, r) and i values.
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Fig. 11: The G values for the CIs analysis for the pixel-based and bit-stream-
based NR VQA models

a given performance measure cannot give clear indications about

which model is better than others, another performance measure can.

E. Detailed Analysis of Support Vectors
Support vector (SV) based machine learning is one of the

widespread methodologies for regression fitting. Important insight
can be gained from support vectors because they are actual data
points from the training data set. In most cases this means that some
of the created conditions (resulting in PVSs) are deemed of foremost
importance for representing the whole training data set.
Purpose: Evaluate the efficiency of the distribution and the weighting
of the selected support vectors with respect to the ground-truth
quality.
Idea: Because the SVs are training data points, each support vector
is assigned to one ground truth quality score. The machine learning
should choose SVs that equally spread over the predicted quality
range. In other words, if the training chooses SVs in a small
quality subrange, the prediction may get unstable if compared with
conditions outside that particular quality range and the chosen SVs
may be redundant. The weighting of the SVs needs to be taken into
consideration.
Process: Train the algorithm on the training data and extract the SVs
and their weights. Identify which training data point corresponds to
each SV. Retrieve the ground-truth quality score (i.e., the ones on
which the algorithm was trained).
Reporting: Visualize the data in one or several scatterplots: on the
x-axis the ground-truth quality score and on the y-axis the main
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parameter(s) of the condition for the SV (e.g., bitrate). The size of
the dots indicates the weight.
Interpretation: The more widespread the data points over the quality
range, the better and the more stable the training result. Higher
density of data points and/or higher weights in certain quality
ranges should be analyzed. They may either indicate redundant or
overrepresented training data points or shortcomings of the algorithm
in distinguishing between these closely related conditions. In order to
further distinguish between such conditions, additional factors (e.g.,
quality indicators) may need to be added to the prediction algorithm.
Example: Figure 12 is a typical result of this analysis. It shows the
same prediction algorithm trained on three different training data sets
(from left to right: HRC1,2,3). Here, VQM is used as the ground-
truth quality score and the “main parameter of the condition for the
SV” is the quality control parameter being either QP (if<52) or bitrate
(if>52). A major problem can be observed in the case on the right
side. It is evident that the density of SV is higher on the low subrange
and on the high subrange of the VQM scores. This is an indication
of redundant HRCs in the set. On the other hand, the density of
support vectors in the content-based (left) and the quality/bitrate-
based (middle) training subsets is mostly uniform over the VQM
scores.
The example shows the results for the pixel-based NR-VQA model.
For the bit-stream-based NR VQA model, this strong difference
cannot be observed, i.e. the SVs for each HRC subset cover different

TABLE V: List of interesting cases for analysis of the data-CCI, the cases for
model-CCI are similar. Black lines indicate the CI on the training data. For
simplicity it is assumed that these are fixed which is true in most practical
cases. Red lines indicate the CI on the validation data.

Case Icon Note

1

Condition b = r = i: Typical case for validating on
the training data, this is considered the perfect fitting,
i.e. all three areas are identical. Refer for example
to the main diagonal X(n, n) in Fig. 6. In this case,
G = 1

max(b,r)
. To compare between different models

or data, the lower the max(b, r), i.e. the smaller the
larger CI, the better.

2

Condition r = i: The validation data is better pre-
dicted than the training data and the CI lie completely
within the boundaries of the trained model. This is
likely to be a default of the validation data and thus
goodness is reduced compared to Case 1. In this case,
G = r

b2
.

3

Condition b = i: The validation data is less well
predicted than the training data but the validation CI
covers completely the training CI. This is considered
a case of overfitting of the model and should thus be
penalized compared to case 1. In this case, G = b

r2
.

4

Condition b ≈ r: This is the typical case of slight de-
viation between training and validation. The goodness
depends mainly on the intersection area. In this case,
G = i

max(r,b)2
.

5 Condition b >> r and b << r: These cases indicate
a larger misalignment either of the training CI or the
validation CI with respect to the model fit and thus
are a combination of Case 4 with the Cases 2 and
3 respectively. In these cases, the smaller intersection
penalizes the goodness compared to Case 4 as the value
of i is smaller in G = i

max(r,b)2

.

6

7

Condition i = 0: This is the worst case, the validation
data does not succeed in being predicted by the model,
thus G = 0. Please note that this may also be an
indication of a missing alignment between the training
and validation data. An additional alignment step may
be required in particular for models that were trained
on different conditions (e.g. different video encoder).

ranges of VQM score levels. This may be due to the usage of
different factors, i.e. indicators, in the prediction algorithm. Notably
the QP value is included as one of the quality indicators for the
prediction algorithm. This leads to the effect that the output of the
prediction algorithm is mostly determined by QP or at least it is more
stable when the QP value is similar. Therefore, the SVM may avoid
selecting redundant SVs.
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Fig. 12: The VQM quality score and the quality control parameter that are
assigned to each SV of the following models: (left) HRC1, (middle) HRC2,
and (right) HRC3. The size of the dots indicates the weight of each SV.

V. NO-REFERENCE IMAGE QUALITY MEASURE

We first present the methodology on an large-scale database that
is evaluated objectively using the VQM algorithm. This ensures that
sufficiently large subsets of the database can be extracted without
database alignment issues. Then, in this Section we present a sample
application on a typical quality assessment case: the performance
evaluation on several subjective datasets that can be seen as subsets
of possible images/videos.
As discussed in the introduction, in this section the aim is not to
compare two NR IQA measures, but to see how they work with
different image datasets that are different in size, content, and image
distortion types and levels. In [27], a machine-learning-based NR IQA
measure is introduced. It uses Single Value Decomposition (SVD)
based features as input for the machine learning algorithm. Here,
the machine learning can be seen as a feature pooling technique;
256 features are extracted from the distorted images. In [28], natural
scene statistic (NSS) based features are extracted from patches that
correspond to original images. The resulting Natural Image Quality
Evaluator (NIQE) is an opinion and distortion unaware model. These
NR IQA measures are trained with different datasets that differ in
content, size, and number of distortions. These datasets are: the TID
database [39] (68 reference and 1700 distorted images), the IVC
database [40] (10 reference and 185 distorted images), the Toyama
database [41] (14 reference and 168 distorted images), and the WIQ
database [42] (7 reference and 80 distorted images). TID images are
distorted using 17 distortion types. IVC database uses four distortion
types while the Toyama database uses two distortion types. Finally,
WIQ uses four distortion types.
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TABLE VI: All HRC subsets ranks for each performance measure and for the pixel-based and the bit-stream-based NR VQA measures.

Performance measure Pixel-based NR VQA (Proposed) Bit-stream-based NR VQA
Content RD Rand 1 Rand 2 Rand 3 Content RD Rand 1 Rand 2 Rand 3

PCC Cross-dataset 3 1 4 2 5 4 1 3 5 2
PCC Leave-one-out 2 1 5 3 4 2 4 3 5 1
PCC Challenging HRCs 2 1 3 4 5 1 2 3 5 4
RMSE Cross-dataset 3 1 4 2 5 5 1 4 3 2
RMSE Leave-one-out 2 1 4 3 5 3 5 4 1 2
RMSE Challenging HRCs 1 2 3 4 5 1 3 5 2 4
P SRC

RPCA T(
n
m
,m), P SRC

RPCA V(
n
m
,m) 3 1 4 2 5 1 2 1 1 3

PDCI V(δ, n)= i
o

3 1 4 2 5 2 1 3 5 4
P (b,r,i)

GModel 3 1 4 2 5 2 1 3 4 5
P (b,r,i)

GData 3 1 4 2 5 5 1 2 3 4
Average 2.5 1.1 3.9 2.6 4.9 2.6 2.1 3.10 3.4 3.10

A. Evaluation methods
The predicted quality is fitted using a 5-parameter logistic function

as recommended in [43], and the correlation and the RMSE measures
are size-weighted to calculate the average correlation and RMSE.

1) PCC: Table VII and Table VIII show 16 experiments and the
corresponding PCC and RMSE. In the SVD-based and NIQE models,
the TID dataset performs better than the other datasets, i.e., the WIQ,
IVC, and Toyama datasets, respectively. It seems that the WIQ dataset
is not large enough to be used to build a NIQE model since it shows
a very low correlation when it is tested on the training data. Hence,
this dataset will be excluded in the final ranking order in the overall
ranking Table IX. Regarding the distortion types that are challenging
for the models, TID and the WIQ datasets show that there are, indeed,
distortion types and levels that are challenging for other models. This
result is expected since TID has very different distortion types and
WIQ has different distortions than the ones in the IVC and Toyama
databases.

2) RMSE: With the RMSE performance measure in SVD-based
IQA, WIQ performs better than the others. Then TID, IVC and
Toyama come next in order. For the case of the NIQE model, the
WIQ comes first, and then IVC, Toyama, and TID come next in order.
Regarding the distortion types that are challenging for the models,
IVC contains distortion types that are often challenging for other
models.

3) P SRC
RPCA T and P SRC

RPCA V: This measure is not applied here since the
distortions are not similar in terms of distortion type or distortion
level.

4) P (b,r,i)
GData: As discussed in Section IV-C1, this measure tries to

provide an absolute number for the prediction performance of a
trained model on a validation dataset taking into consideration the
training dataset. The first column of Figure 13 shows the P (b,r,i)

GData of
both image quality assessment. In the SVD-model and the NIQE-
model, IVC and TID datasets have the ability to predict the quality
within the confidence intervals corridors respectively.

5) P (b,r,i)
GModel: This measure reports the model’s stability when using

different datasets, Section IV-C2. This is done by measuring the
overlap between the two models (G), Table V. As it can be seen
in the second column of Figure 13, Toyama and IVC datasets have a
higher stability in SVD and NIQE models respectively. In the SVD-
based, the G value of the WIQ model is very small compared to the
others: this is due to the bad fitting model for the training data, i.e.
the black area is very large. Therefore, this dataset is not suitable for
training for both models.

6) Performance comparisons: As discussed and observed in the
previous sections, all the aforementioned performance measures give
different results for different image datasets. In this subsection, all
of them are put together in order to judge the image datasets. A
rank-order technique has been applied in order to get a final score

for each image dataset. Since we have 3 image datasets (WIQ has
been excluded), each set has an order number for each performance
measure discussed in this paper and then a comparison between
the two NR IQA measures is presented. Table IX shows all the
ranks for each performance measure and for the SVD-based and the
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Fig. 13: The G values for the CIs analysis for the SVD-based and NIQE-model
NR IQA models.

TABLE VII: The PCC and the RMSE for the 16 experiments that are trained
and tested with source 4 image datasets of SVD-based NR IQA measure

Tested on
PCC RMSE

TID IVC Toyama WIQ TID IVC Toyama WIQ

Tr
ai

ne
d

on TID 0.95 0.81 0.72 0.7 0.05 0.17 0.21 0.16
IVC 0.68 0.99 0.62 0.57 0.11 0.04 0.25 0.19

Toyama 0.53 0.74 0.99 0.47 0.13 0.2 0.04 0.2
WIQ 0.62 0.58 0.47 0.86 0.12 0.25 0.28 0.12

TABLE VIII: The PCC and the RMSE for the 16 experiments that are trained
and tested with source 4 image datasets of NSS-based NR IQA measure

Tested on
PCC RMSE

TID IVC Toyama WIQ TID IVC Toyama WIQ

Tr
ai

ne
d

on TID 0.4 0.62 0.82 0.15 0.14 0.24 0.18 0.22
IVC 0.5 0.69 0.71 0.22 0.13 0.22 0.22 0.22

Toyama 0.4 0.62 0.81 0.15 0.14 0.24 0.18 0.23
WIQ 0.57 0.62 0.77 0.17 0.12 0.24 0.2 0.23
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NIQE model NR IQA measures. As can be seen from the table,
there is no clear indication about which dataset can be used as a
generalized dataset. In the SVD-based model, the TID dataset is the
winner, while in the NIQE model the IVC dataset is the winner. This
observation already considers the exclusion of the WIQ dataset due to
its limitation in size and in types of distortions that are not in common
with the other datasets. In conclusion, we recommend that different
datasets should be tested with different performance measures when
a new objective NR IQA tool is introduced.

TABLE IX: All image datasets ranks for each performance measure and for
the SVD-based and NIQE NR VQA measures.

Evaluation
SVD-based NR IQA NIQE NR IQA
TID IVC Toyama TID IVC Toyama

PCC Cross-dataset 1 2 3 1 2 3
PCC Challenging HRCs 1 3 2 1 2 3
RMSE Cross-Dataset 1 2 3 3 1 2
RMSE Challenging HRCs 1 3 2 3 1 2
P (b,r,i)

GModel 3 2 1 2 1 3
P (b,r,i)

GData 3 1 2 1 2 3

Average 2.17 3.00 3.00 2.33 2.00 3.5

VI. CONCLUSION

In this paper we discussed the effects of different training and vali-
dation data sets on the performance of objective quality measurement
algorithms. As an example study, we used five subsets for training
and validation; two were targeted towards different goals, three were
random. In the study, two NR VQA algorithms with typical quality
indicators were trained by SVR.
We analyzed the outcome of this widespread approach with state-of-
the-art performance measures and identified important shortcomings.
We therefore proposed several novel performance measures in three
categories: The first category analyzes the residual errors to find
the systematic redundancies in the training and evaluation subsets.
The second category provides insight on the training by using the
confidence intervals of models fitting and the confidence interval of
the predicted data. The third category is specific to SVR and analyzes
the density of SV over the quality range.
An example study on image quality databases with subjective scores
illustrates the usefulness of the performance measures.
The newly proposed performance measures are presented such that
they can easily be reproduced. It would be very beneficial to
report such measures in future proposals of video quality assessment
algorithms in order to enable an in-depth analysis and a comparison
across the proposals of different authors in the domain who often use
varying datasets for training and validation.
Further performance measures may be required, in particular when
training with other machine learning algorithms such as deep-
learning.
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