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Abstract: We describe a classifier made of an ensemble of decision trees, designed using information
theory concepts. In contrast to algorithms C4.5 or ID3, the tree is built from the leaves instead of the
root. Each tree is made of nodes trained independently of the others, to minimize a local cost function
(information bottleneck). The trained tree outputs the estimated probabilities of the classes given
the input datum, and the outputs of many trees are combined to decide the class. We show that the
system is able to provide results comparable to those of the tree classifier in terms of accuracy, while
it shows many advantages in terms of modularity, reduced complexity, and memory requirements.

Keywords: information Theory; information bottleneck; classifier; decision tree; ensemble

1. Introduction

Supervised classification is at the core of many modern applications of machine learning. The
history of classifiers is rich and many variants have been proposed, such as decision trees, logistic
regression, Bayesian networks, and neural networks (for an overview of general methods, see [1–3]).
Despite the power of modern deep learning, for many problems involving categorical structured
datasets, decision trees [4–7] or Bayesian networks [8–10] usually outperform neural network based
approaches.

Decision trees are particularly interesting because they can be easily interpreted. Various types of
tree classifiers can be discriminated according to the metric for the iterative construction and selection
of features [4]: popular tree classifiers are based on information theoretic metrics, such as ID3 and C4.5
[6,7]. However, it is known that the greedy splitting procedure at each node can be sub-optimal [11],
and that decision trees are prone to overfitting when dealing with small datasets. When a classifier
is not strong enough, there are, roughly speaking, two possibilities: choosing a more sophisticated
classifier or ensembling multiple “weak” classifiers [12,13]. This second approach is usually called
the ensemble method. In the performance tradeoff by using multiple classifiers simultaneously, we
improve classification performance, paying with the loss of interpretability.

The so-called “information bottleneck”, described by Tishby and Zaslavsky [14] and Tishby et al.
[15], was proposed in [16] to build a classifier (Deep Information Network, DIN) with a tree topology
that compresses the input data and generates the estimated class. DINs [16] are based on the so-called
information node that, using the input samples of a feature Xin, generates samples of a new feature
Xout, according to the conditional probabilities P(Xout = j|Xin = i) obtained by minimizing the mutual
information I(Xin; Xout), with the constraint of a given mutual information I(Xout; Y) between Xout

and the target/class Y (information bottleneck [14]). The outputs of two or more nodes are combined,
without information loss, to generate samples of a new feature passed to a subsequent information
node. The final node (root) directly outputs the class of each input datum. The tree structure of the
network is thus built from the leaves, whereas C4.5 and ID3 build it from the root.

We here propose an improved implementation of the DIN scheme in [16] that only requires the
propagation through the tree of small matrices containing conditional probabilities. Notice that the
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previous version of the DIN was stochastic, while the one we propose here is deterministic. Moreover,
we use an ensemble (e.g., [12,13]) of trees with randomly permuted features and weigh their outputs
to improve classification accuracy.

The proposed architecture has several advantages in terms of:

• extreme flexibility and high modularity: all the nodes are functionally equivalent and with a
reduced number of inputs and outputs, which gives good opportunities for a possible hardware
implementation;

• high parallelizability: each tree can be trained in parallel with the others;
• memory usage: we need to feed the network with data only at the first layer and simple

incremental counters can be used to estimate the initial probability mass distribution; and
• training time and training complexity: the locality of the computed cost function allows a

nodewise training that does not require any kind of information from other points of the tree
apart from its feeding nodes (that are usually a very small number, e.g. 2-3)

With respect to the DINs in [16], the main difference is that samples of the random variables
in the inner layers of the tree are never generated, which is an advantage in the case of large
datasets. However, an assumption of statistical independence (see Section 2.3) is necessary to
build the probability matrices and this might be seen as a limitation of the newly proposed method.
However, experimental results (see Section 5) show that this approximation does not compromise the
performance.

We underline similarities and differences of the proposed classifier with respect to the methods
described in [6,7] since they are among the best performing ones. When using decision trees, as well
as DINs, categorical and missing data are easily managed, but continuous random variables are not:
quantization of these input features is necessary in a pre-processing phase, and it can be performed as
in C4.5 [6], using other heuristics, or manually. Concerning differences, instead, the first one is that
normally a hierarchical decision tree is built starting from the root and splitting at each node, whereas
we here propose a way to build a tree starting from the leaves. The topology of our network implies
that, once the initial ordering of the features has been set, there is no need, after each node is trained,
to perform a search of the best possible next node. The second important difference is that we do not
use directly mutual information as a metric for building the tree but we base our algorithm on the
Information Bottleneck principle [14,15,17–21]. This allows us to extract all the relevant information
(the sufficient statistic) while removing the redundant one, which is helpful in avoiding overfitting. As
in [12,13], we use an ensemble method. We choose the simplest possible form of ensemble combination:
we train independently many structurally equivalent networks, using the same single dataset but
permuting the order of the features, and produce a weighted average of the outputs based on a simple
rule described in Section 3.1. Notice that we use a one-shot procedure, i.e. we do not iterate more than
once over the entire dataset and exploit techniques similarly to [22,23]. We leave the study of more
sophisticated techniques to future works.

Sections 2 and 3 more precisely describe the structure of the DIN and how it works, Section 4
gives some insight on the theoretical properties, Section 5 comments the results obtained with standard
datasets. Conclusions are finally drawn in Section 6.

2. The DIN Architecture and Its Training

The information network is made of input nodes (Section 2.1), information nodes (Section 2.2),
and combiners joined together through a tree network described in Section 2.3. Moreover, an ensemble
of Nmach trees is built, based on which the final estimated class is produced (Section 3.1). In [16], the
input nodes are not present, the information node has a slightly different role, the combiners are much
simpler than those described here, and just one tree was considered. As already stated, the new version
of the DIN is more efficient when a large dataset with relatively few features is analyzed.

In the following, it is assumed that all the features take a finite number of discrete values; a case
of continuous random variables is discussed in Section 5.2.
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It is also assumed that Ntrain points are used in the training phase, Ntest points in the testing phase,
and that D features are present. The nth training point corresponds to one of Nclass possible classes.

2.1. The Input Node

Each input node (see Figure 1) has two input vectors:

1. xin of size Ntrain, whose elements take values in a set of cardinality Nin; xin corresponds to one of
the D features of the dataset (typically one column)

2. y of size Ntrain, whose elements take values in a set of cardinality Nclass; y corresponds to the
known classes of the Ntrain points

Input node

xin

Xin

y

Y

Figure 1. Schematic representation of an input node: the inputs are two vectors and the outputs are
matrices that statistically describe the random variables Xin and Y.

The notation we use in the equations below is the following: Y, Xin represent random variables;
y(n) and xin(n) are the nth elements of vectors y and xin, respectively; and 1(c) is equal to 1 if c is
true, and is otherwise equal to 0. Using Laplace smoothing [2], the input node estimates the following
probabilities (the probability mass function of Y in Equation (1) is common to all the input nodes: it
can be evaluated only by the first one and passed to the others):

P̂(Y = m) ' 1 + ∑Ntrain−1
n=0 1(y(n) = m)

Ntrain + Nclass
m = 0, . . . , Nclass − 1 (1)

P̂(Xin = i) ' 1 + ∑Ntrain−1
n=0 1(xin(n) = i)

Ntrain + Nin
, i = 0, . . . , Nin − 1 (2)

P̂(Y = m, Xin = i) ' 1 + ∑Ntrain−1
n=0 1(y(n) = m)1(xin(n) = i)

Ntrain + NclassNin
(3)

From basic application of probability rules, P̂(Y = m|Xin = i) and P̂(Xin = i|Y = m) are then
computed. From now on, for simplicity, we denote all the estimated probabilities P̂ simply as P.

All the above probabilities can be organized in matrices defined as follows:

PY ∈ R1×Nclass , PY(m) = P(Y = m) (4)

PXin ∈ R1×Nin , PXin(i) = P(Xin = i) (5)

PXin |Y ∈ RNclass×Nin , PXin |Y(m, i) = P(Xin = i|Y = m) (6)

PY|Xin
∈ RNin×Nclass , PY|Xin

(i, m) = P(Y = m|Xin = i) (7)

Note that vectors xin and y are not needed by the subsequent elements in the tree; only the input
nodes have access to them.
Notice also that the following equalities hold:

PXin = PYPXin |Y (8)
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PY = PXin PY|Xin
(9)

2.2. The Information Node

The information node is schematically shown in Figure 2: the input discrete random variable
Xin is stochastically mapped into another discrete random variable Xout (see [16] for further details)
through probability matrices:

• The input probability matrices PXin , PXin |Y, PY|Xin
, PY describe the input random variable Xin,

with Nin possible values, and its relationship with class Y.
• The output matrices PXout , PXout |Y, PY|Xout

, PY describe the output random variable Xout, with
Nout possible values, and its relationship with Y.

Compression (source encoding) is obtained by setting Nout < Nin.
In the training phase, the information node generates the conditional probability mass function

that satisfies the following equation (see [14]):

P(Xout = j|Xin = i) =
1

Z(i; β)
P(Xout = j)e−βd(i,j), i = 0, . . . , Nin − 1, j = 0, . . . , Nout − 1 (10)

where

• P(Xout = j) is the probability mass function of the output random variable Xout

P(Xout = j) =
Nin−1

∑
i=0

P(Xin = i)P(Xout = j|Xin = i), j = 0, . . . , Nout − 1 (11)

• d(i, j) is the Kullback–Leibler divergence

d(i, j) =
Nclass−1

∑
m=0

P(Y = m|Xin = i) log2
P(Y = m|Xin = i)
P(Y = m|Xout = j)

= KL(P(Y|Xin = i)||P(Y|Xout = j)) (12)

and

P(Y = m|Xout = j) =
Nin−1

∑
i=0

P(Y = m|Xin = i)P(Xin = i|Xout = j),

m = 0, . . . , Nclass − 1, j = 0, . . . , Nout − 1 (13)

• β is a real positive parameter.
• Z(i; β) is a normalizing coefficient to get

Nout−1

∑
j=1

P(Xout = j|Xin = i) = 1. (14)

The probabilities P(Xout = j|Xin = i) can be iteratively found using the Blahut–Arimoto algorithm
[14,24,25].

Equation (10) solves the information bottleneck: it minimizes the mutual information I(Xin; Xout)

under the constraint of a given mutual information I(Y; Xout). In particular, Equation (10) is the
solution of the minimization of the Lagrangian

L = I(Xin; Xout)− βI(Y; Xout). (15)

If the Lagrangian multiplier β is increased, then the constraint is privileged and the information node
tends to maximize the mutual information between its output Xout and the class Y; if β is reduced, then
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minimization of I(Xin; Xout) is obtained (compression). The information node must actually balance
compression from Xin to Xout and propagation of the information about Y. In our implementation, the
compression is also imposed by the fact that the cardinality of the output alphabet Nout is smaller than
that of the input alphabet Nin.

The role of the information node is thus that of finding the conditional probability matrices

PXout |Xin
∈ RNin×Nout , PXout |Xin

(i, j) = P(Xout = j|Xin = i) (16)

PY|Xout
∈ RNout×Nclass , PY|Xout

(j, m) = P(Y = m|Xout = j) (17)

PXout ∈ R1×Nout , PXout(j) = P(Xout = j) (18)

PY PY |Xin

PXin|Y

PXout

PY

PXin

PY |Xout

PXout|Y

Information

node

Xin, Y

Xout, Y

Figure 2. Schematic representation of an information node, showing the input and output matrices.

2.3. The Combiner

Consider the case depicted in Figure 3, where the two information nodes a and b feed a combiner
(shown as a triangle) that generates the input of the information node c. The random variables Xout,a

and Xout,b, both having alphabet with cardinality N1, are combined together as

Xin,c = Xout,a + N1 Xout,b (19)

that has an alphabet with cardinality N1 × N1.
The combiner actually does not generate Xin,c; it simply evaluates the probability matrices that

describe Xin,c and Y. In particular, the information node c needs PXin,c |Y, which can be evaluated
assuming that Xout,a and Xout,b are conditionally independent given Y ( notice that in implementation
[16] this assumption was not necessary):

P(Xin,c = k|Y = m) = P(Xout,a = ka, Xout,b = kb|Y = m)

= P(Xout,a = ka|Y = m)P(Xout,b = kb|Y = m) (20)

where k = ka + N1kb. In particular, the mth row of PXin,c |Y is the Kronecker product of the mth rows of
PXout,a |Y and PXout,b |Y

PXin,c |Y(m, :) = PXout,a |Y(m, :)⊗ PXout,b |Y(m, :) m = 0, . . . , Nclass − 1 (21)
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(here A(m, :) identifies the mth row of matrix A). The probability vector PXin,c can be evaluated
considering that

P(Xin,c = k) =
Nclass−1

∑
m=0

P(Xin,c = k, Y = m) =
Nclass−1

∑
m=0

P(Xin,c = k|Y = m)P(Y = m) (22)

so that
PXin,c = PYPXin,c |Y (23)

At this point, matrix PY|Xin,c
can be evaluated element by element since

P(Y = m|Xin,c = k) =
P(Xin,c = k|Y = m)P(Y = m)

P(Xin,c = k)
,

m = 1, . . . , Nclass − 1, k = 0, . . . , N1 × N1 − 1 (24)

It is straightforward to extend the equations to the case in which Xin,a and Xin,b have different
cardinalities.

c

ba

Xin,a

Xout,a Xout,b

Xin,c

Xout,c

Xin,bN0 N0

N1 N1

N1 ×N1

N2

Figure 3. Sub-network: Xin,a, Xout,a, Xin,b, Xout,b, Xin,c, and Xout,c are all random variables; N0 is the
number of values taken by Xin,a and Xin,b; N1 is the number of values taken by Xout,a and Xout,b; and
N2 is the number of values taken by Xout,c.

2.4. The Tree Architecture

Figure 4 shows an example of a DIN, where we assume that the dataset has D = 8 features
and that training is thus obtained using a matrix Xtrain with Ntrain rows and D = 8 columns, with a
corresponding class vector y. The kth column x(k) of matrix Xtrain feeds, together with vector y, the
input node I(k), k = 0, . . . , D− 1.
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Layer 1

Layer 2

Layer 3

N
(1)
out

N
(2)
in

N
(1)
in

0, 1 1, 1 2, 1 3, 1

0, 3

1, 20, 2

N
(3)
out

N
(2)
out

Layer 0

N
(1)
outN

(1)
out

N
(0)
out N

(0)
out

N
(0)
out N

(0)
out N

(0)
out N

(0)
out

N
(1)
in N

(1)
in N

(1)
in

N
(1)
out

N
(2)
in

N
(2)
out

N
(3)
in

Xin(0, 1)

Xout(1, 1)Xout(0, 1)

Xin(0, 2)

Xout(0, 2) Xout(1, 2)

Xin(0, 3)

Xout(0, 3)

Xin(1, 1)

Xout(0, 0) Xout(1, 0)

I(0)

x(0)

I(1)

x(1)

I(2)

x(2)

I(3)

x(3)

I(4)

x(4)

I(5)

x(5)

I(6)

x(6)

I(7)

x(7)

Xin(0, 0)

0, 0

Xin(1, 0)

1, 0

Xin(2, 0)

2, 0

Xin(3, 0)

3, 0

Xin(4, 0)

4, 0

Xin(5, 0)

5, 0

Xin(6, 0)

6, 0 7, 0

Xin(7, 0)

Xin(1, 2)

Xout(2, 1) Xout(3, 1)

Xout(4, 0) Xout(5, 0)N
(0)
out N

(0)
out

N
(0)
in N

(0)
in

N
(0)
in

Figure 4. Example of a DIN for D = 8: the input nodes are represented as rectangles, the info nodes
as circles, and the combiners as triangles. The numbers inside each circle identify the node (position

inside the layer and layer number), N(k)
in is the number of values taken by the input of the info node

at layer k, and N(k)
out is the number of values taken by the output of the info node at layer k. In this

example, the info nodes at a given layer all have the same input and output cardinalities.

Information node (k, 0) at layer 0 processes the probability matrices generated by the input node
I(k), with N(0)

in possible values of Xin(k, 0), and evaluates the conditional probability matrices with

N(0)
out possible values of Xout(k, 0), using the algorithm described in Section 2.2. The outputs of info

nodes (2k, 0) and (2k + 1, 0) are given to a combiner that outputs the probability matrices for Xin(k, 1),
having alphabet of cardinality N(1)

in = N(0)
out × N(0)

out , using the equations described in Section 2.3. The
sequence of combiners and information nodes is iterated, decreasing the number of information nodes
from layer to layer, until the final root node is obtained. In the previous implementation of the DINs in
[16], the root information node outputs the estimated class of the input and it is therefore necessary
that the output cardinality of the root info node is equal to Nclass. In the current implementation,
this cardinality can be larger than Nclass, since classification is based on the output probability matrix
PY|Xout

.
For a number of features D = 2d, the number of layers is d. If D is not a power of 2, then it

is possible to use combiners with 3 or more inputs (the changes in the equations in Section 2.3 are
straightforward, since a combiner with three inputs can be seen as two cascaded combiners with two
inputs each).
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The overall binary topology proposed in Figure 4 requires a number of information nodes equal
to

Nnodes = D +
D
2
+

D
4
+ · · ·+ 2 + 1 = 2D− 1 (25)

and a number of combiners equal to

Ncomb =
D
2
+

D
4
+ · · ·+ 2 + 1 = D− 1 (26)

All the info nodes run exactly the same algorithm and all the combiners are equal, apart from the
input/output alphabet cardinalities. If the cardinalities of the alphabets are all equal, i.e. N(i)

in and N(i)
out

do not depend on the layer i, then all the nodes and all the combiners are exactly equal, which might
help in a possible hardware implementation; in this case, the number of parameters of the network is
(Nout − 1)× Nin × Nnodes.

Actually, the network performance depends on how the features are coupled in subsequent layers
and a random shuffling of the columns of matrix Xtrain provides results that might be significantly
different. This property is used in Section 3.1 for building the ensemble of networks.

2.5. A Note on Computational Complexity and Memory Requirements

The modular structure of the proposed method has several advantages in terms of both memory
footprint and computational cost. The considered topology in this explanation is binary, similarly
to what is depicted in Figure 4. We furthermore consider for simplicity cardinalities of the D input
features all equal to Nin and input/output cardinalities of subsequent layers information node to

also be fixed constants N∗in and N∗out =
N∗in
2 , respectively. As we show in the experiment (Section 5),

small values for N∗in and N∗out such as 2, 3, or 4 are sufficient in the considered cases. Straightforward
generalizations are possible when considering inhomogeneous cases.

At the first layer (the input node layer), each of the D input nodes stores the joint probabilities
of the target variable Y and its input feature. Each node thus includes a simple counter that fills
the probability matrix of dimension Nin × Nclass. Both the computational cost and the memory
requirements for this first stage are the same as the Naive Bayes algorithm. Notice that, from the
memory requirements point of view, it is not necessary to store all the training data but just counters
with number of joint occurrences of features/classes. If after training, new data are observed, it is
in fact sufficient to update the counters and properly renormalize the values to obtain the updated
probability matrices. In this paper, we do not cover the topic of online learning as well as possible
strategies to reduce the computational complexity in such a scenario.

At the second layer (the first information node layer), each node receives as input the joint
probability matrix of feature and target variable and performs the Blahut–Arimoto algorithm. The
internal memory requirement of this node is the space needed to store two probability matrices of
dimensions N∗in × Nclass and N∗in × N∗out, respectively. The cost per iteration of Blahut–Aritmoto
depends on matrix multiplication of sizes N∗in × N∗out and N∗in × Nclass, and thus obviously the
complexity scales with the number of classes of the considered classification problem. To the best
of our knowledge, the convergence rate for the Blahut–Arimoto algorithm applied to information
bottleneck problems is unknown. In this study, however, we found empirically that, for the considered
datasets, 5–6 iterations per node are sufficient, as discussed in Section 5.5.

Each combiner process the matrices generated by two information nodes: the memory requirement
is zero and the computational cost is roughly Nclass Kronecker products between rows of probability

matrices. Since for ease of explanation we chose N∗out =
N∗in
2 the output probability matrix have again

dimensions N∗in × Nclass.
The overall memory requirement and computational complexity (for a single DIN) is thus going to

scale as D times the requirements for an input node, 2D− 1 times the requirements for an information
node, and D − 1 times the requirements for a combiner. To complete the discussion, we have to
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remember that a further multiplication factor of Nmach is required to take into account that we are
considering an ensemble of networks (actually, at the first layer, the set of input nodes can be shared by
the different architectures since only the relative position of the input nodes changes , see Section 3.1).

3. The Running Phase

During the running phase, the columns of matrix X with N rows and D columns are used as
inputs. Assume again that the network architecture is that depicted in Figure 4 with D = 8, and
consider the nth input row X(n, :).

In particular, assume that X(n, 2k) = i and X(n, 2k + 1) = j. Then,

1. (a) input node I(2k) passes value i to info node (2k, 0);
(b) input node I(2k + 1) passes value j to info node (2k + 1, 0);

2. (a) info node (2k, 0) passes the probability vector pa = PXout(2k,0)|Xin(2k,0)(i, :) (ith row) to
the combiner; pa stores the conditional probabilities P(Xout(2k, 0) = g|X(n, 2k) = i) for
g = 0, . . . , N(0)

out − 1;
(b) info node (2k + 1, 0) passes the probability vector pb = PXout(2k+1,0)|Xin(2k+1,0)(j, :) (jth row)

to the combiner; pb stores the conditional probabilities P(Xout(2k + 1, 0) = h|X(n, 2k + 1) =
j) for h = 0, . . . , N(0)

out − 1;
3. the combiner generates vector

pc = pa ⊗ pb, (27)

which stores the conditional probabilities P(Xin(k, 1) = s|X(n, 2k) = i, X(n, 2k + 1) = j) for
s = 0, . . . , N(1)

in − 1, where N(1)
in = N(0)

out × N(0)
out ;

4. info node (k, 1) generates the probability vector

pcPXout(k,1)|Xin(k,1), (28)

which stores the conditional probabilities P(Xout(k, 1) = r|X(n, 2k) = i, X(n, 2k + 1) = j) for
r = 0, . . . , N(1)

out
5. in the following layer, each combiner performs the Kronecker product of its two input vectors

and each info node performs the product between the input vector and its conditional probability
matrix PXout |Xin

;
6. the root information node at Layer 3, having the input vector p, outputs

pout(n) = pPXout(0,3)|Xin(0,3)PY|Xout(0,3), (29)

which stores the estimated probabilities P(Y = m|X(n, :)) for m = 0, . . . , Nclass − 1.

According to the MAP criterion, the estimated class of the input point X(n, :) is

Ŷ(n) = arg max pout(n) (30)

but we propose to use an improved method, as described in Section 3.1.

3.1. The DIN Ensemble

At the end of the training phase, when all the conditional matrices have been generated in
each information node and combiner, the network is run with input matrix Xtrain (Ntrain rows and D
columns) and the probability vector pout is obtained for each input point Xtrain(n, :). As anticipated at
the end of Section 2.4, the DIN classification accuracy depends on how the input features are combined
together. By permuting the columns of Xtrain, a different probability vector pout is typically obtained.
We thus propose to generate an ensemble of DINs by randomly permuting the columns of Xtrain, and
then combine their outputs.
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Since in the training phase y(n) is known, it is possible to get for each DIN v the probability
pv

out(n), and ideally pv
out(n, y(n)), the estimated probability corresponding to the true class y(n),

should be equal to one. The weights

wv =
∑Ntrain−1

n=0 pv
out(n, y(n))

∑Ntrain−1
n=0 ∑Nmach−1

j=0 pj
out(n, y(n))

(31)

thus represent the reliability of the vth DIN.
In the running phase, feeding the Nmach machines each with the correctly permuted vector X(n, :),

the final estimated probability vector is determined as

p̂ens(n) =
Nmach−1

∑
v=0

wvp̂v
out(n) (32)

and the estimated class is
Ŷ(n) = arg max p̂ens(n). (33)

4. The Probabilistic Point of View

This section is intended to underline the difference in probability terms formulation between the
Naive Bayes classifier [2,26] and the proposed scheme, since both use the assumption of conditional
independence of the input features. Both classifiers build in a simplified way the probability matrix
PY|X0,...,XD

with Nclass rows and ∏D−1
i=0 N(i)

in , where N(i)
in is the cardinality for the input feature Xi. In

the next sections, we show the different structure of these two probability matrices.

4.1. Assumption of Conditionally Independent Features

The Naive Bayes assumption allows writing the output estimated probability of the Naive Bayes
classifier as follows:

P(Y = m|x = x0) =
P(x = x0|Y = m)P(Y = m)

P(x = x0)

=

[
∏D−1

k=0 P(Xk = xk0|Y = m)
]

P(Y = m)

∑Nclass
s=0

[
∏D−1

k=0 P(Xk = xk0|Y = s)
]

P(Y = s)
(34)

which is very easily implemented, without the need of generating the tree network. We rewrite this
output probability in a fairly complex way to show the difference between the naive Bayes probability
matrix and the DIN one. Consider the nth feature x(n), which can take values in the set {c0

n, . . . , cDn−1
n }.

Define px(n)|y=m = [P(x(n) = c0
n|Y = m), . . . P(x(n) = cDn−1

n |Y = m)]; then,

PXin |Y(m, :) = ⊗D−1
k=0 px(k)|y=m (35)

and thus obviously

PXin |Y =


⊗D−1

k=0 px(k)|y=0
⊗D−1

k=0 px(k)|y=1
...

⊗D−1
k=0 px(k)|y=Nclass

 (36)

We can write the joint probability matrix as

PXin ,Y = diag(PY)PX|Y (37)
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and the probability matrix of target class given observation as

PY|Xin
= (PXin ,Ydiag(P◦(−1)

Xin
))T (38)

The hypothesis of conditional statistical independence of the features is not always correct and
thus we can incur obvious performance degradation.

4.2. The Overall Probability Matrix

We now instead compute the output estimated probability for the DIN classifier. Consider again
the sub-network in Figure 3 made of info nodes a, b, and c. Info node a is characterized by matrix
Pa, whose element Pa(i, j) is P(Xout,a = j|Xin,a = i); similar definitions hold for Pb and Pc. Note that
Pa and Pb have N0 rows and N1 columns, whereas Pc has N1 × N1 rows and N2 columns; the overall
probability matrix between the inputs Xin,a, Xin,b and the output Xout,c is P̃ with N0 × N0 rows and N2
columns. Then,

P(Xout,c = i|Xin,a = j, Xin,b = k)

=
N1−1

∑
r=0

N1−1

∑
s=0

P(Xout,c = i, Xout,a = r, Xout,b = s|Xin,a = j, Xin,b = k)

=
N1−1

∑
r=0

N1−1

∑
s=0

P(Xout,c = i|Xout,a = r, Xout,b = s)P(Xout,a = r|Xin,a = j)P(Xout,b = s|Xin,b = k)

=
N1−1

∑
r=0

N1−1

∑
s=0

P(Xout,c = i|Xout,s = r, Xout,b = s)Pa(j, r)Pb(k, s). (39)

It can be shown that
P̃ = (Pa ⊗ Pb)Pc (40)

where ⊗ identifies the Kronecker matrix multiplication; note that Pa ⊗ Pb has N0 × N0 rows and
N1 × N1 columns. By iteratively applying the above rule, we can get the expression of the overall
matrix P̃ for the exact topology of Figure 4, with eight input nodes and four layers:

P̃ =

[{[
(P0,0 ⊗ P1,0)P0,1

]
⊗
[
(P2,0 ⊗ P3,0)P1,1

]}
P0,2

⊗
{[

(P4,0 ⊗ P5,0)P2,1
]
⊗
[
(P6,0 ⊗ P7,0)P3,1

]}
P1,2

]
P0,3. (41)

The overall output probability matrix PY|X can finally be computed as

PY|Xin
= P̃PY|Xout(0,3). (42)

The DIN then behaves as a one-layer system that generates the output according to matrix PY|Xin
,

whose size might be impractically large. It is also possible to interpret the system as a sophisticated way
of factorizing and approximating the exponentially large true probability matrix. In fact, the proposed
layered structure needs smaller probability matrices, which makes the system computationally efficient.
The equivalent probability matrix is thus different in the DIN (Equation (42)) and Naive Bayes
(Equation (38)) cases.

5. Experiments

In this section, we analyze the results obtained with benchmark datasets. In particular, we
consider the DIN ensemble when: (a) each DIN is based on the probability matrices (the scheme
described in this paper); and (b) each information node of the DIN randomly generates the symbols, as
described in the previous work [16]. We refer to these two variants in captions and labels as DIN(Prob)
and DIN(Gen), respectively. The reason for this comparison is that conditional statistical independence
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is not required in the case DIN(Gen), and the classification accuracy could be different in the two
cases. Note that Franzese and Visintin [16] considered just one DIN, not an ensemble of DINs. In
the following, we introduce three datasets on which we tested the method (Sections 5.1– 5.3) and
propose some examples of DINs architectures. Complete analysis of numerical results is described in
Section 5.4. Sections 5.5 and 5.6 analyze the impact of changing the maximum number of iterations of
Blahut–Arimoto algorithm and Lagrangian coefficient β, respectively. Finally, a synthetic multiclass
experiment is described in Section 5.7. In all experiments, the value of β was optimized similarly to
what is described in Section 5.6 using the training set.

5.1. UCI Congressional Voting Records Dataset

The first experiment on real data was conducted on the UCI Congressional Voting Records dataset
[27], which collects the votes given by each of the U.S. House of Representatives Congressmen on 16
key laws (in 1985). Each vote can take three values corresponding to (roughly, see [27] for more details)
yes, no, and missing value; each datum belongs to one of two classes (Democrats or Republican).
The aim of the network is, given the list of 16 votes, decide if the voter is Republican or Democratic.
In this dataset, we thus have D = 16 features and 435 data split into Ntrain data for training and
Ntest = 435− Ntrain data for testing. The architecture of the used network is the same as the one
described in Section 2.4, except for the fact that there are 16 input features instead of 8 (the network
has thus one more layer). The input cardinality in the first layer is N(0)

in = 3 (yes/no/missing) and

the output cardinality is set to N(0)
out = 2. From the second layer on, the input cardinality for each

information node is equal to N∗in = 4 and N∗out = 2. In the majority of the cases, the size of the
probability matrices is therefore 4× 2 or 2× 2. In this example, we used Nmach = 30 and Ntrain = 218
(roughly 50% of the data). The value of β was set to 2.2.

5.2. UCI Kidney Disease Dataset

The second considered dataset was the UCI Kidney Disease dataset [28]. The dataset has a total
of 24 medical features, consisting of mixed categorical, integer, and real values, with missing values.
Quantization of non-categorical features of the dataset was performed according to the thresholds in
Appendix A, agreed upon by a medical doctor.

The aim of the experiment is to correctly classify patients affected by chronic kidney disease. We
performed 100 different trials training the algorithms using only Ntrain = 50 out of 400 samples for the
training. Layer zero has 24 input nodes, and then the outputs of layer zero are mixed two at a time to
get 12 information nodes at Layer 1, 6 at Layer 2, and 3 at Layer 3; the last three nodes are combined
into a unique final node. The output cardinality of all nodes is equal to N∗out = 2. The value of β was
set equal to 5.6. In addition, in this case, we used an ensemble of Nmach = 30 DINs.

5.3. UCI Mushroom dataset

The last considered dataset was the UCI Mushroom dataset [29]. This dataset is comprised of
22 categorical features with different cardinalities, which describe some properties of mushrooms,
and one target variable that defines whether the considered mushroom is edible or poisonous/unsafe.
There are 8124 entries in the dataset. We padded the dataset with two null features to reach the
cardinality of 24 and used exactly the same architecture as the kidney disease experiment. We selected
Ntrain = 50, β = 2.7, and number of DINs equal to Nmach = 15.

5.4. Misclassification Probability Analysis

We hereafter report results in terms of misclassification probability between the proposed
method and several classification methods implemented using MATLAB R© Classification Learner. All
datasets were randomly split 100 times into training and testing subsets, thus generating 100 different
experiments. The proposed method shows competitive results in the considered cases, as can be
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observed in Table 1. It is interesting to compare in terms of performance the proposed algorithm
with respect to the Naive Bayes classifier, i.e. Equation (34), and the Bagged Tree algorithm, which
is the closest algorithm (conceptually) to the one we propose. In general, the two variants of the
DINs perform similarly to the Bagged Trees, while outperforming Naive Bayes. For Bagged Trees and
KNN-Ensemble, the same number of learners as DIN ensembles were used.

Table 1. Mean misclassification probability (over 100 random experiments) for the three datasets with
the considered classifiers.

Classifier Congressional Voting Records Kidney Disease Mushroom
Naive Bayes 0.10894 0.051 0.20641
Decision Tree 0.050691 0.062314 0.05505
Bagged Trees 0.043641 0.0268 0.038305

DIN Prob 0.050138 0.037229 0.020796
DIN Gen 0.049447 0.026286 0.022182

Linear Discriminant Classifier 0.059724 0.091029 0.069923
Logistic Regression 0.075161 0.096429 0.07074

Linear SVM 0.063226 0.049914 0.04513
KNN 0.08682 0.11369 0.037018

KNN-Ensemble 0.062811 0.036057 0.043967

5.5. The Impact of Number of Iterations of Blahut–Arimoto on The Performance

As anticipated in Section 2.5, the computational complexity of a single node scales with the number
of iterations of Blahut–Arimoto algorithm. To the best of our knowledge, a provable convergence rate
for the Blahut–Arimoto algorithm in the information nottleneck setting does not exist. We hereafter
(Figure 5) present empirical results on the impact of limiting the number of iterations of Blahut–Arimoto
algorithm (for simplicity, the same bound is applied to all nodes in the networks). When the number
of iterations is too small, there is a drastic decrease in performance because the probability matrices in
the information nodes have not yet converged, while 5–6 iterations are sufficient and a further increase
in the number of iterations is not necessary in terms of performance improvements.
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Figure 5. Misclassification probability versus number of iterations (average over 10 different trials) for
the considered UCI datasets.

5.6. The role of β: Underfitting, Optimality, and Overfitting

As usual with almost all machine learning algorithms, the choice of hyperparameters is of
fundamental importance. For simplicity, in all experiments described in the previous sections, we
kept the value of β constant through the network. To gain some intuition, Figure 6 shows the
misclassification probability for different β for the three considered datasets (each time keeping β

constant through the network). While the three curves are quantitatively different, we can notice
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the same qualitative trend: when β is too small, not enough information about the target variable is
propagated, and then by increasing β above a certain threshold, the misclassification probability drops.
Increasing β too much however induces overfitting, as expected, and the classification error (slowly)
increases again. Remember (from Equation (15)) that the Lagrangian we are minimizing is

L = I(Xin; Xout)− βI(Y; Xout).

Information theory tells us that at every information node we should propagate only the sufficient
statistic about the target variable Y. In practice, this is reflected in the role of β: when it is too small,
we neglect the term I(Y; Xout) and just minimize I(Xin; Xout) (that corresponds to underfitting), while
increasing β allows passing more information about the target variable through the bottleneck. It is
important to remember, however, that we do not have direct access to the true mutual information
values but just to an empirical estimate based on a finite dataset. Especially when the cardinalities
of inputs and outputs are high, this translates into an increased probability of spotting spurious
correlations that, if learned by the nodes, induce overfitting. The overall message is that β has an
extremely important role in the proposed method, and its value should be chosen to modulate between
underfitting and overfitting.
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Figure 6. Misclassification probability versus β (average over 20 different trials) for the considered UCI
datasets.

5.7. A Synthetic Multiclass Experiment

In this section we present results on a multiclass synthetic dataset. We generated 64-dimensional
feature vectors z drawn from multivariate Gaussian distributions with mean and covariance depending
on a target class y and a control parameter ρ:

p(z|y = l) = |2πΣl |−
1
2 exp

(
−1

2
(z− µl)

T(ρΣl)
−1(z− µl)

)
l = 1, · · · , Nclass (43)

where for the considered experiment Nclass = 8. The mean µl is sampled from a normal 64-dimensional
random vector and Σl is randomly generated as Σl = AAT (where A is sampled from a matrix normal
distribution) and normalized to have unit norm. The other parameter ρ is inserted to modulate the
signal to noise ratio of the generated samples: a smaller value of ρ corresponds to smaller feature
variances and more distinct, less overlapping, pdfs p(z|y = l), and an easier classification task. We
then perform quantization of the result using 1 bit, i.e. the input of the ensemble of DINs is the
following random vector:

x = U(z) (44)



Entropy 2020, 22, 100 15 of 17

where U(·) is the Heaviside step operator. The designed architecture has at the first layer 64 input
nodes, followed by 32, 16, 4, 2, and 1. The output cardinalities are equal to 2 for the first three layers, 4
for the fourth and fifth layer, and 8 at the last layer. We selected Ntrain = 1000, β = 7 (constant trough
the network), and number of DINs equal to Nmach = 10. Figure 7 shows the classification accuracy (on
a test set of 1000 samples) for different values of ρ. As expected, when the value of ρ is small, we can
reach almost perfect classification accuracy, whereas, by increasing it, the performance drops to the
point where the useful signal is completely buried in noise and the classification accuracy reaches the
asymptotic level of 1

8 (that corresponds to random guessing when the number of classes is equal to 8).
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Figure 7. Varying of classification accuracy for different values of control parameter ρ

6. Conclusions

The proposed ensemble Deep Information Network (DIN) shows good results in terms of accuracy
and represents a new simple, flexible, and modular structure. The required hyperparameters are
the cardinality of the alphabet at the output of each information node, the value of the Lagrangian
multiplier β, and the structure of the tree itself (number of input information nodes of each combiner).

Simplistic architecture choices made for the experiments (such as equal cardinality of all node
outputs, β constant through the network, etc.) performed comparably to finely tuned networks.
However, we expect that, similar to what happened in neural network applications, a domain specific
design of the architectures will allow for consistent improvements in terms of performance on complex
datasets.

Despite the local assumption of conditionally independent features, the proposed method always
outperforms Naive Bayes. As discussed in Section 4, the induced equivalent probability matrix is
different in the two cases. Intuitively, we can understand the difference in performance under the point
of view of probability matrix factorization. On the one side, we have the true, exponentially large,
joint probability matrix of all features and target class. On the other side, we have the Naive Bayes one,
which is extremely simple in terms of complexity but obviously less performing. In between, we have
the proposed method, where the complexity is still reasonable but the quality of the approximation is
much better. The DIN(Gen) algorithm does not require the assumption of statistical independence,
but the classification accuracy is very close to that of DIN(Prob), which further suggests that the
assumption can be accepted from a practical point of view.

The proposed method leaves open the possibility of devising a custom hardware implementation.
Differently from classical decision trees, in fact, the execution times of all branches as well as the
precise number of operations is fixed per datum and known a priori, helping in various system design
choices. In fact, with classical trees, where a node’s utilization depends on the datum, we are forced to
design the system for the worst case, even if in the vast majority of time not all nodes are used. Instead,
with DIN, there is no such a problem.
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Finally, a clearly open point is related to the quantization procedure of continuous random
variables. One possible self-consistent approach could be devising an information bottleneck based
method (similar to the method for continuous random variables [20]).

Further studies on extremely large datasets will help understand principled ways of tuning
hyperparameters and architecture choices and their relationship on performance.
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Appendix A Quantization

Hereafter, we present the quantization scheme used for the numerical features of chronic kidney
disease dataset.

• Age (Years) {< 10,< 18,< 45,< 70,< 120}
• Blood (mm/Hg) { < 80,< 84,< 89,< 99,< 109,≥ 110}
• Blood Glucose Random (mg/dl) {< 79,< 160,< 200,≥ 200}
• Blood Urea (mg/dl) {< 6,< 20,≥ 20}
• Serum Creatinine (mg/dl) {< 0.5,< 1.2,< 2,≥ 2}
• Sodium (mEq/l) {< 136,< 145,≥ 145}
• Potassium (mEq/l) {< 3.5,< 5,≥ 5}
• Haemoglobin (gm) {< 12,< 17,≥ 17}
• Packed Cell Volume {< 27,< 52,≥ 52}
• White Blood Cell Count (cells/mm3) {< 3500,< 10500,≥ 10500}
• Red Blood Cell (millions/mm3) {< 2.5,< 6,≥ 6}
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