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Abstract—Compression of hyperspectral images onboard of
spacecrafts is a tradeoff between the limited computational
resources and the ever-growing spatial and spectral resolution of
the optical instruments. As such, it requires low-complexity algo-
rithms with good rate-distortion performance and high through-
put. In recent years, the Consultative Committee for Space
Data Systems (CCSDS) has focused on lossless and near-lossless
compression approaches based on predictive coding, resulting in
the recently published CCSDS 123.0-B-2 recommended standard.
While the in-loop reconstruction of quantized prediction residuals
provides excellent rate-distortion performance for the near-
lossless operating mode, it significantly constrains the achievable
throughput due to data dependencies. In this paper, we study
the performance of a faster method based on prequantization
of the image followed by a lossless predictive compressor. While
this is well known to be suboptimal, one can exploit powerful
signal models to reconstruct the image at the ground segment,
recovering part of the suboptimality. In particular, we show that
convolutional neural networks can be used for this task and that
they can recover the whole SNR drop incurred at a bitrate of 2
bits per pixel.

Keywords—Hyperspectral image compression, convolutional neu-
ral networks

I. INTRODUCTION

Hyperspectral imaging from spaceborne spectrometers en-
ables a wide range of applications, including material identi-
fication, terrain analysis and military surveillance. The ever-
increasing spectral and spatial resolution of such instruments
allows to create higher and higher quality products for the
final user but it poses challenges in handling such wealth of
data. In particular, onboard compression is critical to overcome
the limited downlink bandwidth. This area of research poses
specific challenges due to the strict complexity limitations on
the payload hardware. Several solutions based on different
techniques have been proposed, such as low-complexity spatial
[1] and spectral transforms [2], distributed source coding [3],
compressed sensing [4], [5], [6], and predictive coding [7],
[8], [9], [10]. Predictive coding has emerged as one of the
most popular solutions, as it enables low-complexity, high-
throughput solutions, excellent rate-distortion performance and
flexibility in the definition of image quality policies [11],
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[12], [13], [14]. The CCSDS has been working on extending
the CCSDS 123.0-B-1 recommendation [10] for predictive
lossless compression, resulting in the recent publication of the
123.0-B-2 recommendation [15]. The new standard extends
the previous one in the lossless mode, and includes lossy
compression modes based on the introduction of a quantizer
and a local decoder inside the prediction loop. It is well known
[16] that an in-loop quantizer provides better rate-distortion
performance than quantization followed by lossless predictive
coding. However, one must consider that the need for a local
decoder to reconstruct pixel values in the prediction neighbor-
hood creates data dependencies which prevent parallelization
and, consequently, high-throughput operations.

Meanwhile, recent years have seen the rise of neural
networks as data-driven methods to solve problems previ-
ously tackled with hand-crafted models. In particular, imaging
problems have been revolutionized by convolutional neural
networks (CNNs). CNNs are able to capture very complex
models about natural images because the convolution operation
exploits powerful image priors such as shift invariance, and
compositionality, where a complex global model is constructed
from nonlinear hierarchies of local features. Ultimately, CNNs
have proved to be able to achieve state-of-the-art performance
on a wide variety of tasks including classification [17], seg-
mentation [18], object detection [19] and regularization of
inverse problems such as denoising [20] and superresolution
[21], [22], [23].

In this paper, we propose to combine a low-complexity
onboard compressor of hyperspectral images with a CNN-
based reconstruction algorithm working at the ground seg-
ment. The main objective is to study its the rate-distortion
performance with respect to the latest CCSDS standard. It
is known that midpoint reconstruction from quantized data is
not always optimal for image reconstruction, and e.g., using
uniform-threshold quantization and a Laplacian assumption
on the residuals is better. CNNs do not require an a priori
model of the residuals, but are able to learn this model from
training data. We show that the CNN learns to exploit the
spatial and spectral correlation patterns of natural images to
regularize the inverse reconstruction problem, and can be very
effective at improving the quality of the image. Armed with
such a powerful tool that runs at the ground segment where
computational resources are abundant, one may wonder how
much complexity is really needed onboard where resources
are scarce. Preliminary FPGA implementations of the CCSDS
123.0-B-2 standard (using the Golomb entropy encoder) show
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that the lossless algorithm can achieve throughputs in excess
of 100 Msamples/s [24], [25], while its lossy counterpart is
limited to 20 Msamples/s [26] due to the aforementioned
data dependencies. The new standard addresses this issue
with a coding mode dedicated to high-throughput scenarios
by removing some data dependencies, at a cost in terms
of rate-distortion performance. In this paper, we propose to
replace the lossy standard compressor with a different scheme
based on prequantization of the raw pixels followed by the
lossless CCSDS 123.0-B-2 encoder and a CNN reconstructor
at the ground segment. The throughput of this compressor is
essentially limited by the lossless predictor which is fast due to
the lack of data dependencies. We show that the suboptimality
due to moving the quantizer outside the prediction loop can be
fully recovered by the CNN reconstruction and the same rate-
distortion performance as lossy CCSDS 123.0-B-2 (without
the CNN) is achieved, while potentially achieving the same
throughput of the lossless version of the recommendation.

A preliminary version of this work appeared in [27]. With
respect to the conference version, the method and its analysis
are more thoroughly explained, we expand the treatment by
also considering a relative error objective, present new ex-
periments on a larger test set, and discuss transfer learning
to different sensors. The paper is organized as follows. Sec.
II provides some background material on the CCSDS 123.0-
B-2 recommendation for lossy compression. Sec. III details
the CNN used for image reconstruction. Sec. IV outlines the
two approaches to onboard compression analyzed in the paper,
i.e., lossy CCSDS 123.0-B-2 and prequantization followed
by lossless CCSDS 123.0-B-2, for two quality objectives,
namely bounded absolute or relative error. Sec. V discusses the
experimental results. Finally, Sec. VI draws some conclusions.

II. BACKGROUND ON CCSDS 123.0-B-2

The CCSDS issued the Blue book for the 123.0-B-1 rec-
ommendation in May 2012 [10] and an Issue 2 in February
2019 [15]. The original recommendation focused on defining
a method for lossless compression of hyperspectral images
based on predictive coding. In particular, it is based on the fast
lossless [28] predictor, which uses an adaptive filter to estimate
a pixel value from information in a causal neighborhood.
The prediction residual is then entropy coded by means of
Golomb power of 2 (GPO2) codes [29]. This recommendation
has been recently subject to a revision in order to extend
it to lossy compression, resulting in the CCSDS 123.0-B-2
standard [15]. This extension is essentially based on the near-
lossless coding principle, whereby a prediction residual, i.e.,
the difference between the predicted and the original pixel
values, is quantized and locally decoded in order to update the
weights of the prediction filter with the sign algorithm [30].
The extended recommendation also introduces a new predic-
tion mode, namely narrow local sums, which essentially avoids
using the pixel immediately on the left and in the same band
of the pixel being coded. This mode is motivated by reasons
of implementation efficiency: due to the local decoder in the
prediction loop, the current pixel cannot be predicted unless
every pixel in the causal neighborhood under consideration

has already been coded and decoded. The pixel on the left is
especially important because it is coded immediately before
the current one in the popular BSQ and BIL orderings and it
is the main bottleneck in hardware implementations.

More in detail, the algorithm computes a local sum σx,y,z
which is defined as

σx,y,z =



sRx−1,y,z + sRx−1,y−1,z + sRx,y−1,z + sRx+1,y−1,z,

y > 0, 0 < x < Nx − 1

4sRx−1,y,z, y = 0, x > 0

2(sRx,y−1,z + sRx+1,y−1,z), y > 0, x = 0

sRx−1,y,z + sRx−1,y−1,z + 2sRx,y−1,z,

y > 0, x = Nx − 1

for the wide, neighbor-oriented mode and as

σx,y,z =



sRx−1,y−1,z + 2sRx,y−1,z + sRx+1,y−1,z,

y > 0, 0 < x < Nx − 1

4sRx−1,y,z−1, y = 0, x > 0

2(sRx,y−1,z + sRx+1,y−1,z), y > 0, x = 0

2(sRx−1,y−1,z + sRx,y−1,z), y > 0, x = Nx − 1

4smid, y = 0, x > 0, z = 0

for the narrow, neighbor-oriented mode, being sRx,y,z the re-
constructed pixel at position (x, y, z). Column-oriented modes
also exist but will not be considered in this paper, as they
are mostly intended for images with striping artifacts. The
reduced prediction mode only uses the central local difference
dx,y,z = 4sRx,y,z − σx,y,z while the full prediction mode also
uses directional local differences dNx,y,z ,dWx,y,z ,dNW

x,y,z (we refer
the reader to [15] for more details on the definitions). The
predicted central difference d̂x,y,z is obtained by multiplying
the adaptive filter weights with the vector of differences, i.e.,

d̂x,y,z = Wx,y,z



dNx,y,z
dWx,y,z
dNW
x,y,z

dx,y,z−1
dx,y,z−2

...
dx,y,z−P


for full mode and

d̂x,y,z = Wx,y,z


dx,y,z−1
dx,y,z−2

...
dx,y,z−P


for reduced mode. The predicted central difference is then
transformed to obtain the predicted pixel value ŝx,y,z .

Finally, the recommendation also provides new tools such
as sample representatives and new hybrid entropy coder able
to reach rates lower than 1 bit per pixel (bpp), overcoming
the limit of the original GPO2 encoder. Two main objectives
can also be specified to drive the in-loop quantizer: bounded
absolute error or bounded relative error.
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Fig. 1: Reconstruction CNN. C: 2D convolution, R: leaky ReLU, IN: 2D instance normalization, CLIP: residual clipping. Input
and output sizes are Nl ×Nc × 8.

III. RECONSTRUCTION USING CONVOLUTIONAL NEURAL
NETWORKS

This section presents the proposed approach to recover part
of the image information lost during the lossy compression
process. Any kind of lossy compression introduces artifacts
which change the distribution of pixel values with respect to
the one exhibited by natural uncompressed images. Recovering
the original image from its distorted version is an ill-posed in-
verse problem, as there are infinitely many solutions. However,
it is possible to compute a better estimate of the original image
by properly modelling what constitutes a natural image.

Traditional techniques relied on hand-crafted image priors
to model image data. For instance, a popular technique is total
variation minimization, which amounts to requiring that the
energy of the gradients in a natural image should be small.
Image recovery from a compressed image IQ is cast as the
solution to the following minimization problem:

IDQ = arg min
I

[
‖I− IQ‖22 + λ

∑
x,y,z

(|Ix+1,y,z − Ix,y,z|+

+ |Ix,y+1,z − Ix,y,z|+ |Ix,y,z+1 − Ix,y,z|)
]
. (1)

Recently, convolutional neural networks (CNNs) have
shown remarkable results in a variety of inverse problems,
including denoising and superresolution. Their success lies in
their ability to create more sophisticated models of complex
image data as well as being able to handle perturbations with
non-trivial statistics (e.g., non-Gaussian).

A. Proposed CNN
The proposed CNN reconstructs a better estimate of the

original image from decoded hyperspectral images after lossy
compression. Its training objective is to minimize the mean
squared error (MSE) between the reconstructed image and
the original. It is important to notice that the reconstruction
depends on the specific algorithm used for compression and
also the chosen quality level. This is similar to the denoising
problem where several algorithms are based on knowing the
noise variance [20], [31]. In our case, we train a CNN to invert
a specific compression algorithm (e.g., near-lossless CCSDS
123.0-B-2) at a specific quality point which is known from
the compression system design (e.g., a fixed quantizer step
size for bounded absolute error near-lossless compression). We
also argue that the trained model is optimal for new images
acquired by the same sensor, as the network learns to exploit
the peculiar spatial and spectral correlation patterns produced
by that sensor. Nevertheless, the CNN has some generalization

capability to unseen sensors as some feature extraction steps
are common for all sensors, thus only requiring fine-tuning
with a smaller amount of data. Concerning the MSE training
loss, some works have addressed image restoration using ad-
versarial losses [32], [33], i.e., a game between two networks,
one restoring the image, the other discriminating whether its
input is an original or restored image. We will not consider
this kind of loss because it tends to hallucinate image details
which might be visually pleasing [34], but not really part of
the original image and, in fact, such objective typically yields
higher MSE values.

Fig. 1 shows an overview of the network. The input to the
network is a slice of a hyperspectral image of size Nl×Nc×8,
where Nl and Nr are the number of lines and columns,
respectively. While the spatial dimensions can be arbitrary,
the number of bands is fixed to 8 in our proposed design.
The main reason for this choice is the use of two-dimensional
convolutional layers instead of three-dimensional ones. The
first convolutional layer of the network has 64 filters of size
3 × 3 × 8, thus merging the information from the 8 bands
without sliding the kernel in the spectral dimension. A three-
dimensional convolutional layer would have had a sliding
kernel over all the three dimension and would have allowed an
arbitrary number of spectral channels in the input. However,
we found two main issues with this approach: i) the large
size of hyperspectral images calls for careful memory usage
and 3D convolutions require a very large amount of memory;
ii) after reducing the use of memory to an acceptable value
we found training to be highly unstable and providing results
worse than those of the architecture with 2D convolutions. This
is also an important design point in order to deal efficiently
with images of large size. Notice that having a fixed number
of input bands does not mean that only images with 8 bands
can be processed. In fact, it is sufficient to slide a window over
the spectral dimension of an image with more bands to process
each slice and then merge the results. If partially overlapping
slices are processed then the results are averaged by weighing
each band by the number of times it has gone through the
network.

The global input-output residual connection in the architec-
ture means that the network learns to estimate the perturbation
of the input image. This is an established solution in the liter-
ature on denoising [20], as it allows solving a simpler task by
removing low-frequency content predicted by the input image.
The inner layers of network show two main residual blocks
composed of alternating convolutions, instance normalization
layers and leaky ReLU nonlinearities [35]. The use of residual
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blocks was introduced by the ResNet architecture [36] for
image classification and has multiple benefits such as reducing
the vanishing gradient problem thanks to one of the addends
skipping several layers and improved learning capability due
to the need to only learn the residual of an identity mapping
instead of the full mapping. Instance normalization [37] nor-
malizes activations to be approximately zero mean and unit
standard deviation but, contrary to batch normalization [38],
has different normalization factors for each image in the batch.
Intuitively, this acts as a “contrast normalization” across the
batch and helps dealing with perturbations that have more
complex statistics than Gaussian noise, such as the case for
reconstruction of compressed images.

Finally, the last layer allows to enforce consistent recon-
struction, i.e., it ensures that the reconstructed pixel values fall
in the same quantization bins as the original pixels by clipping
the values of the correction estimated by the neural network.
This is a design point that is specific to the reconstruction
problem presented in this paper and also depends on the choice
of the quantizer in the compression algorithm. In order to
understand this, let us study a simple example. Suppose that
the compression algorithm consists of simple uniform scalar
quantization of the integer pixel values, i.e. IQ = Qb I

Q + 1
2c,

with Q = 2∆ + 1 for some integer ∆. Then, we know that
the error is bounded as |IQ − I| ≤ ∆. If we call ECLIP the
correction term estimated by the network, then it must obey
|ECLIP| ≤ ∆ since we know that the quantized pixel is never
further than ∆ from the original. Also notice that the bound
on maximum error on the reconstructed image is, inevitably,
twice the original bound.

We want to emphasize that proposing an entirely novel
CNN architecture is outside the scope of this paper. Instead,
we are interested in assessing how a baseline design inspired
by recent results in the literature can already show that the
proposed approach is competitive. Further optimization is
certainly possible, e.g., by exploiting non-local features [39],
[40]. However, this further strengthens the main point of this
paper, which is about showing that coupling a simpler on-board
compressor with a CNN at the ground segment allows higher
throughput and has competitive rate-distortion performance
with respect to the lossy CCSDS 123.0-B-2 standard.

IV. ONBOARD COMPRESSION APPROACHES

This section discusses two approaches to lossy onboard
compression of hyperspectral images, namely the new CCSDS
123.0-B-2 recommendation and a simpler algorithm based
on scalar quantization of the pixel values followed by a
lossless predictive coding scheme, which we choose to be
the lossless mode of CCSDS 123.0-B-2. We will refer to this
method as “prequantization”. Fig. 2 visually depicts the two
methods. We study the performance of both algorithms for two
quality objectives: bounded absolute error and bounded relative
error. We also study the performance impact of an on-ground
reconstruction stage using the CNN presented in the previous
section.
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(a) CCSDS 123.0-B-2 lossy compressor.

DECODER CNN

Q+

Q-1+Spatial/Spectral 
predictor

Entropy 
encoder

Input
image

+

Spatial/Spectral 
predictor

Entropy 
encoder

Input
image

Q Q-1

DECODER

ENCODER

CNN

ENCODER

On-board On-ground

Output
image

Output
image

On-board On-ground

(b) Prequantization lossy compressor.

Fig. 2: Two predictive compression approaches. CCSDS 123.0-
B-2 uses a quantizer inside the prediction loop. Prequantization
quantizes raw pixel data and then applies a lossless predictor.

A. Complexity and data dependencies

The main reason to compare the two methods is to assess
the most efficient way to employ the revised recommendation
for lossy hyperspectral image compression. Scenarios requiring
high-throughput implementations are particularly interesting,
whereby the in-loop quantizer significantly limits the CCSDS
algorithm. Recalling the notation of Sec. II, let us consider the
wide, neighbor-oriented coding mode of lossy CCSDS 123.0-
B-2 under band interleaved by line (BIL) coding order. The
computation of the current local sum σx,y,z requires knowing
the value of sRx−1,y,z , i.e., the reconstructed pixel value on the
left of the current pixel in the same band. In the BIL order,
the (x−1, y, z) pixel is coded immediately before the (x, y, z)
pixel, which implies that all computations for (x−1, y, z) must
be terminated before starting coding (x, y, z). This prevents
building efficient parallel pipelines where the computation of
the local sum can be started for several pixels ahead of the one
being coded. The lossless version of CCSDS 123.0-B-2 does
not suffer from such dependency as it only requires the original
pixel values, not the reconstructed ones. In fact, space-grade
FPGA implementations [24], [41] of the lossless algorithm
achieved a throughput in excess of 100 Msamples/s while a
comparable FPGA implementation of the lossy standard [26]
was only limited to 20 Msamples/s due to this dependency
issue.

The prequantization approach removes the quantizer from
the prediction loop and therefore does not suffer from the same
bottleneck. The prediction loop is lossless and can therefore
achieve very high throughput, while the prequantization oper-
ation of the input data has negligible complexity compared to
the predictor. Therefore, the prequantization method essentially
shifts part of the complexity from the on-board encoder to the
CNN needed after the decoder at the ground segment in order
to recover the sub-optimal rate-distortion performance com-
pared to the in-loop quantizer. The ground segment has fewer
complexity issues and the main limitation is the memory usage
of the GPU while reconstructing the image. This is limited by
the design in Sec. III-A which uses 2D convolutions instead
of more expensive 3D convolutions. The memory required by
each 2D convolutional layer is NxNyF floating point values
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Fig. 3: Relative error quantizer for prequantization method.
Dashed lines show the ±10% error bound.

instead of NxNyNzF floating point values required by 3D
convolutions, being F the number of layer filters (64 in our
design) and Nx×Ny the spatial dimensions of the input image.

B. Bounded absolute error

A guarantee bounding the absolute error is achieved by
both the CCSDS and the prequantization methods by using
a uniform scalar quantizer. In the former case, the quantizer
operates on the prediction residuals, while in the latter case it
is directly applied to the pixel values.

C. Bounded Relative error

A method to compress hyperspectral images using the
CCSDS 123.0-B-2 standard with a target on relative er-
ror, rather than absolute error has been first proposed by
Conoscenti et al. [14] and it is included in the revised recom-
mendation. The main idea is to use an in-loop uniform scalar
quantizer whose quantization step size changes at every pixel
as it depends on the predicted pixel value to approximate the
desired relative error. In particular, the following formula is
used:

Q = 2bR|ŝx,y,z|c+ 1,

being R the target relative error and ŝx,y,z the predicted
pixel value. Notice that the predicted pixel value is used
rather than the original pixel value in order to maintain causal
decodability. This does not provide a hard bound on the relative
error, but the use of a safety margin in the formula to compute
the desired quantization step size showed good performance,
with rare instances of error beyond the chosen limit.

It is obvious that the prequantization method can achieve a
bounded relative error guarantee by designing a non-uniform
scalar quantizer, where large pixel values are more coarsely
quantized according to the desired relative error. Fig. 3 shows
a sample design [42] of such quantizer, obtained by successive
greedy extension of each quantization interval to match the
relative error constraint.

V. EXPERIMENTS

This section presents an experimental assessment of the per-
formance of the proposed CNN reconstruction when combined
with the two compression approaches presented in Sec. IV.
For both approaches we set the CCSDS predictor in its full
prediction mode with wide neighbor-oriented local sums. Their
rate-distortion performance is measured against a number of
baseline methods. A first baseline is a transform-coding ap-
proach to onboard hyperspectral image compressor where the
CCSDS 122 recommendation [1] for spatial compression using
wavelets is combined with the Pairwise Orthogonal Transform
(POT) to remove spectral correlation [2]. Another comparison
is drawn with the CCSDS lossy compressor set in reduced
prediction mode with narrow neighbor-oriented local sums.
This is the recommended mode of the CCSDS standard to
achieve high throughput at the expense of some compression
performance.

A. CNN training and testing details

The CNN described in Sec. III-A is trained from scratch
with patches from scenes acquired by the target sensor. The
number of patches should be large enough to represent the
variability in the acquired scenes. Patches, instead of full
scenes, can be used since the CNN is learning the distortion
introduced by the compression process, which is local in
nature. Once trained, the CNN can be used to restore any new
scene acquired by that sensor without further fine-tuning. In
a real operating scenario, one may not have realistic training
data to begin with, e.g., just after the launch of the satellite.
This can be easily solved by downloading a few scenes with
lossless compression as one of the first tasks after deployment,
and train the neural network using those (their compressed
versions at different quality points can be easily produced by
running the compression algorithm directly on the ground).

In our experiments, the CNN has been trained using 70000
patches of size 32× 32× 8 randomly extracted from AVIRIS
images from the Cuprite, Jasper and Moffett scenes. Notice
that these are older scenes and have some artifacts with
respect to newer scenes, showing that the proposed CNN
is also robust to perturbations and that the overall per-
formance could be further improved with a higher quality
training set. Nevertheless, we used them as they are well-
known and readily available to create a training set with
sufficiently varied scenes. Patches have been extracted from
the decoded images. Concerning the experiments on bounded
absolute error, the following quantization step sizes have
been chosen: Q ∈ {3, 7, 11, 15, 21, 31, 41, 61, 101} for both
the CCSDS and prequantization compressors to let the net-
works operate at roughly the same quality point. On the
other hand, the following maximum absolute relative errors
( defined as R = maxx,y,z

|IQ
x,y,z−Ix,y,z|

Ix,y,z
), have been cho-

sen for the experiments on bounded relative error: R ∈
{0.01, 0.001, 0.0075, 0.005, 0.0025, 0.0005}. An independent
model has been trained for each value of Q and R and
each compression method. The clipping layer in the CNN
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Fig. 4: Rate-SNR performance of various compression methods with and without onground CNN. 123-NL: lossy CCSDS 123.0-B-
2 (full, wide, neighbor-oriented mode); Q+123-LS: prequantization followed by lossless CCSDS 123.0-B-2 (full, wide, neighbor-
oriented mode); 123-NL-RED-NARROW: lossy CCSDS 123.0-B-2 (reduced, narrow, neighbor-oriented mode); 122-POT: CCSDS
122 and POT; CNN: CNN reconstruction.

implements the following operation

ECLIP
x,y,z =


−∆ if Ex,y,z ≤ −∆

∆ if Ex,y,z ≥ ∆

Ex,y,z otherwise
,

for the bounded absolute value experiments, and the following

ECLIP
x,y,z =


−RIQx,y,z if Ex,y,z ≤ −RIQx,y,z
RIQx,y,z if Ex,y,z ≥ RIQx,y,z
Ex,y,z otherwise

,

for the bounded relative error experiments. As a remark, one
might wonder why using an additive residual also for the
reconstruction problem with bounded relative error, instead
of a multiplicative residual: we found that a multiplicative
residual caused instability in the training process. We used
the Adam optimization algorithm [43] with a learning rate
equal to 10−8 for a total number of iterations corresponding
to 1000 epochs. It was noticed that models for small values of
Q and R especially benefited from the low learning rate. The
convolutional layers have a fixed number of filters equal to 64.
The CCSDS predictor has been set to use 3 prediction bands



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 7

TABLE I: SNR (dB) for test set

123-NL 123-NL + CNN Q + 123-LS Q + 123-LS + CNN 123-NL-RED-NARROW 122-POT
1.5 bpp 52.23± 0.49 53.38± 0.50 49.58± 0.69 51.10± 0.73 50.85± 0.64 53.13± 0.54
2.0 bpp 57.60± 0.34 58.19± 0.36 57.15± 0.33 57.65± 0.36 56.36± 0.33 55.53± 0.31
3.0 bpp 64.88± 0.34 64.93± 0.33 64.80± 0.34 64.92± 0.35 63.81± 0.32 60.09± 0.28
4.0 bpp 71.57± 0.36 71.55± 0.36 71.53± 0.37 71.56± 0.36 70.49± 0.34 65.33± 0.36
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Fig. 5: Error distribution for sc0 for Q = 61.

(a) Lossy CCSDS 123.0-B-2 (CNN gain: 0.88 dB)

(b) Prequantized (CNN gain: 1.13 dB)

Fig. 6: CNN reconstruction residual IDQ − IQ for Q = 31.
sc0 image, rows 150-300, all columns, band 47.

for both the lossy compressor and the lossless prediction after
prequantization.

The testing dataset is strictly disjoint from the training
data and it is composed of the sc0, sc3, sc10, sc11, sc18
scenes from the AVIRIS Yellowstone images. We remark
that these images have not been used during the training
phase. For testing purposes the input to the network is a
slice of the image with 8 bands and full spatial resolution
(512 × 680 × 8). All the possible slices of 8 bands out of
the available 224 bands are fed to the network by moving
the window selecting the bands by one band at a time and
finally merging the resulting images with a weighted average
of the overlapped parts. Reconstructing one full image of size
512 × 680 × 224 takes 64 seconds on an Nvidia GTX 1080
Ti with a peak GPU memory utilization of 4096 MB. A C-
language reference implementation of the CCSDS standard has

been used to generate compression results while the CNN
has been implemented with the PyTorch library. Code and
pretrained models are available online1.

B. Bounded absolute error
The first experiment regards the rate-distortion performance

of the two compressors and the relative gain provided by
the CNN for the bounded absolute error scenario. Quality is
measured by the SNR computed as

SNR = 10 log10

∑Npixel

i=1 s2i∑Npixel

i=1 (si − sRi )2
.

Other metrics such as the maximum spectral angle and the
average spectral angle have been studied in the literature [44],
but we omit them as they follow the same trends observed
for SNR. Fig. 4 shows the rate-SNR curves for four test
scenes. Table I reports the average SNR over the test set
achieved by the various methods at four fixed rates (SNR
values are linearly interpolated from the two closest available
rate-distortion points). First, it can be noticed that the CNN
provides more than 1 dB of improvement at 1.5 bpp, around 0.5
dB at 2.0 bpp and very small gains at high rates. Then, it is very
interesting to notice that the sub-optimality of the prequantized
method is quite limited and can be fully recovered by the CNN
at all rates above or equal to 2.0 bpp. We also notice that
the prequantized method is always better than lossy CCSDS
123.0-B-2 in reduced mode with narrow, neighbor-oriented
local sums, which enables higher-throughput implementations,
even without the help of the CNN.

Fig. 5 shows the distribution of the error between the orig-
inal sc0 image, the compressed version and the reconstructed
version using the CNN for Q = 61, for both compression
techniques. It can be noticed that the CNN is able to reduce
the average error amplitude, explaining the excess distribution
around zero. We can also notice the longer tail of the error for
the reconstructed image which is due to the ability to only
guarantee twice the original bound after the reconstruction
process, as explained in Sec. III-A. Fig. 6 visually shows the
residual correction, i.e., ECLIP = IDQ − IQ, estimated by the
network to restore the image. We can notice that the action of
the CNN is particularly significant around edges.

Finally, we remark that we also tested total variation regu-
larization as defined in Eq. (1) but the gain was limited to 0.1
dB at 1.5 bpp, 0.05 dB at 2 bpp and no gain was observed at
higher rates, for both compression techniques. This confirms
that CNNs are able to exploit much more complex models to
regularize the reconstruction problem.

1https://github.com/diegovalsesia/hyperspectral-dequantization
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Fig. 7: Rate-MARE performance of various compression methods with and without onground CNN. 123-NL: lossy CCSDS
123.0-B-2 (full, wide, neighbor-oriented mode); Q+123-LS: prequantization followed by lossless CCSDS 123.0-B-2 (full, wide,
neighbor-oriented mode); 123-NL-RED-NARROW: lossy CCSDS 123.0-B-2 (reduced, narrow, neighbor-oriented mode); CNN:
CNN reconstruction.

C. Bounded relative error
In the experiments on bounded relative error we measure

image quality in terms of mean absolute relative error (MARE)
defined as:

MARE =
1

Npixel

Npixel∑
i=1

|si − sRi |
si

.

Fig. 7 shows the MARE as function of the rate for some
test scenes. Table II also reports the achieved MARE for
the different methods at fixed rate points. It can be noticed
that CCSDS 123.0-B-2 in full, wide, neighbor-oriented mode
followed by the CNN is confirmed as the best method.

However, the gain provided by the CNN is quite limited with
respect to the absolute error case. This may be due to the
more challenging error statistics, being dependent on the signal
in a multiplicative way. The prequantization method followed
by the CNN is competitive with the CCSDS 123.0-B-2 full,
wide, neighbor-oriented baseline, and can outperform the fast
CCSDS 123.0-B-2 reduced, narrow, neighbor-oriented method.
Fig. 8 reports the relative error distribution with and without
the CNN, again showing an excess around zero thanks to the
CNN and a tail extending to twice the original maximum error
target.
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TABLE II: Percentage mean absolute relative error for test set

123-NL 123-NL + CNN Q + 123-LS Q + 123-LS + CNN 123-NL-RED-NARROW
1.5 bpp (0.258± 0.023)% (0.255± 0.020)% (0.348± 0.033)% (0.284± 0.027)% (0.288± 0.024)%
2.0 bpp (0.138± 0.011)% (0.136± 0.012)% (0.153± 0.012)% (0.145± 0.010)% (0.160± 0.013)%
3.0 bpp (0.060± 0.003)% (0.060± 0.003)% (0.066± 0.004)% (0.065± 0.004)% (0.067± 0.004)%
4.0 bpp (0.026± 0.002)% (0.026± 0.002)% (0.032± 0.003)% (0.032± 0.003)% (0.030± 0.002)%
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Fig. 8: Relative error distribution for sc0 for R = 0.01.

D. Transfer learning experiment
The optimal reconstruction results from the CNN can be

obtained when the network is trained on images generated by
the same sensor, so that the specific spatial and spectral cor-
relation patterns or artifacts generated by that instrument can
be exploited. However, the CNN works as a feature extractor
and some of the features may generalize to different sensors.
Table III reports the results obtained by using the same CNNs
trained from the AVIRIS images on the gran9 scene from the
AIRS ultraspectral instrument, for the bounded absolute error
mode. The size of this scene is equal to 135×90×1501, thus
having lower spatial resolution but higher spectral resolution
with respect to the AVIRIS scenes. The results show that the
CNNs perform well even if not trained specifically for the
AIRS instrument.

VI. CONCLUSIONS

We proposed a method to compress hyperspectral images
composed of an onboard predictive compressor and a ground-
based CNN to reconstruct the decoded images and analyzed
how it relates to the new CCSDS-123.0-B-2 recommendation.
We showed that an onboard component based on prequanti-
zation followed by the lossless mode of CCSDS-123.0-B-2
can be significantly faster than the lossy mode of the standard
and that, when coupled with the onground CNN, the same
rate-distortion performance of the most efficient mode of lossy
CCSDS-123.0-B-2 is achieved.
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