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DEEP LEARNING FOR SUPER-RESOLUTION OF UNREGISTERED MULTI-TEMPORAL
SATELLITE IMAGES

Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, Enrico Magli

Politecnico di Torino

ABSTRACT
Recently, convolutional neural networks (CNN) have been
successfully applied to many remote sensing tasks. However,
deep learning for multi-image superresolution from multi-
temporal imagery has received little attention so far. We
propose a residual CNN that exploits both spatial and tem-
poral correlations in the low-resolution image set by using
3D convolutional layers to combine multiple images from the
same scene. The experiments have been carried out using a
dataset of PROBA-V satellite ground images, composed of
several low-resolution and high-resolution images taken at
different times from instruments on the same platform, in the
context of a challenge issued by the European Space Agency.

Index Terms— Multi-image superresolution, convolu-
tional neural networks, multi-temporal images

1. INTRODUCTION

Super-resolution (SR) techniques reconstruct a high resolu-
tion (HR) image from one or more low resolution (LR) im-
ages. Despite the continuous development of ever more ad-
vanced optical devices, the limitations and the high cost of
hardware technology still highlight the importance of devel-
oping post-processing techniques to achieve high spatial res-
olution. This is especially important in fields such as video
surveillance, medical diagnosis, and remote sensing. Remote
sensing is playing an increasingly important role in mapping
and monitoring the Earth. Increasing the availability of high
spatial resolution remote sensing data is crucial for many ap-
plications such as urban mapping, military surveillance, intel-
ligence gathering, disaster and vegetation growth monitoring.

The approaches to image super-resolution can be framed
into two main categories: single-image SR (SISR) and multi-
image SR (MISR). SISR exploits spatial correlation in a sin-
gle image to recover the HR version. The literature on SISR
approaches is extensive and includes classic interpolation
methods such as bicubic and Lanczos filters, optimization-
based methods explicitly modeling prior knowledge about
natural images such as low total variation [1] or sparsity
[2, 3] and data-driven approaches learning such a prior in the
form of convolutional neural networks (CNNs) [4, 5, 6].
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However, the amount of information available in a sin-
gle image is quite limited as some information has inevitably
been lost in the LR image formation process. Certain appli-
cations provide multiple LR versions of the same scene to
be combined by means of MISR techniques, where the re-
construction of high spatial-frequency details takes full ad-
vantage of the complementary information coming from dif-
ferent observations of the same scene. For remote sensing
problems, multiple images of the same scene can typically be
acquired by a spacecraft during multiple orbits, or may be ob-
tained by multiple satellites imaging the same scene. In the
context of remote sensing, MISR was first explored by Tsai
and Huang [7] who used multiple under-sampled images with
sub-pixel displacements to improve the spatial resolution of
Landsat TM images. Many other classical MISR algorithms
were proposed over the years. Irani and Peleg [8] introduced
the iterative back-projection approach (IBP) which aims to
improve an initial guess of the super-resolved image by it-
eratively inverting the forward imaging process. Elad et al.
[9] proposed to reconstruct an HR image from LR images by
using projection onto convex sets (POCS), maximum likeli-
hood (ML), and maximum a posteriori (MAP) estimators for
a linear noisy forward model. Zhang et al. [10] presented a
reconstruction algorithm which adaptively weights the con-
tributions of images acquired from multiple angles. Ma et
al. [11] proposed an operational SR approach for multi-angle
WorldView-2 remote sensing images, which consists of im-
age registration and super-resolution reconstruction. The for-
mer corrects for the local geometric distortion and photomet-
ric disparity. The latter uses an `1 norm data fidelity term and
a total variation regularizer. To the best of our knowledge,
deep learning has not yet been employed for MISR in the
remote sensing field, where important issues such as image
registration, invariance to absolute brightness variability and
unreliable data (e.g., due to cloud coverage) must be handled
in order to develop a successful MISR model.

In this paper we present a deep learning architecture aim-
ing to tackle the problem of MISR applied to a novel dataset
provided by ESA’s Advanced Concept Team in the context of
a challenge [12]. The goal is to super-resolve images from
the PROBA-V satellite. The unique feature of this dataset is
that both LR and HR images have been acquired by the same
spacecraft, as opposed to previous works where LR images



are artificially down-scaled, degraded and shifted versions of
an HR image. The images are not simultaneously acquired so
temporal variations exist and have to be handled as well in the
SR process.

2. THE PROBA-V SR DATASET

At present, it is difficult to find a dataset collecting both a
set of real-world LR observations and the corresponding HR
image for the same scene, captured from the same platform.
Many of the works found in literature are based on simulated
data, where LR observations for a specific scene are obtained
through a degradation and down-sampling process of the HR
images by assuming a sensor imaging model. This is a sim-
plified scenario as it either assumes a non-blind problem, i.e.,
the degradation model can be characterized to some extent,
or has the limitation that a too simple degradation model may
not accurately match the real one.

The Advanced Concepts Team of the European Space
Agency has issued a competition to perform MISR for the
images acquired by the PROBA-V satellite. The PROBA-V
satellite is an Earth observation satellite designed to map land
cover and vegetation growth across the entire globe. It was
launched in 2013 into a sun-synchronous orbit at an altitude
of 820km. Its payload provides an almost global coverage
with 300m LR images and 100m HR images. However, the
HR images are acquired with a higher revisit time, roughly
one every 5 days, instead of one per day. The dataset gath-
ers satellite data from 74 regions located around the world
from the PROBA-V mission. Images are provided as level
2A products composed of radiometrically and geometrically
corrected Top-of-Atmosphere reflectance in Plate Carre pro-
jection for the RED and NIR spectral bands. The size of the
collected images is 128× 128 and 384× 384 for the LR and
HR data respectively. The images have a single channel with
a bit-depth of 14 bits. Each data point consists of one HR im-
age and several LR images (ranging from a minimum of 9 to
a maximum of 30) from the same scene. In total, the dataset
contains 1160 scenes, 566 are from NIR spectral band and
594 are from RED band. The images of a specific scene are
captured multiple times over a maximum period of 30 days.
Weather and changes in the landscape pose a limitation in the
similarity of the images. Clouds, cloud shadows, ice, water,
missing regions, presence of agricultural activities and, in
general, human activity are the main sources of inconsistency
across these images, thus posing a major challenge for any
image fusion method. Moreover, each image comes with a
mask, indicating which pixels in the image can be reliably
used for reconstruction (e.g., they are not covered by clouds).
Subpixel shifts in the content do occur and are indeed impor-
tant for the MISR task. The geometric disparity among the
images can be considered as translational only.

The unique nature of this dataset (with real LR and HR
images captured by the same platform at multiple times)
makes for an interesting case study for SR techniques. De-

veloping SR products from multiple, more frequent LR im-
ages could simultaneously provide enhanced resolution and
higher temporal availability and is therefore an interesting
application of MISR. Moreover, having real images of the
same scene for both the low and high resolutions enables
data-driven methods such as CNNs to learn the inversion of
possibly complex degradation models and the best feature
fusion strategy to handle temporal variations.

3. PROPOSED METHOD

The proposed method aims to reconstruct a high-resolution
image IHR given a set of N LR images ILR

[0,N−1] representing
the same scene:

ISR = f(ILR
[0,N−1], θ),

where θ represents the model parameters and f represents the
mapping function from LR to HR. ILR

[0,N−1] and IHR are rep-
resented as real-valued tensors with shape N ×H ×W × C
and 1× rH × rW ×C respectively, where H and W are the
height and the width of the input LR frames, C is the number
of channels and r is the scale factor. While the LR images
roughly represent the same scene as the HR image, there are
several factors to be considered:

• the LR images are not registered with each other;

• the LR images and the HR image are not registered;

• the brightness of the HR image may be different from
that of any LR image;

• LR and HR images may be covered by clouds and cloud
shadows or affected by corrupted pixels.

To tackle this problem we propose to employ a supervised
deep learning approach, where a CNN learns the residual be-
tween bicubic interpolation and the ground truth HR image of
the scene. First, a bicubic interpolator scales the LR images
to the desired size; such images are then registered with re-
spect to a reference image. The registration is handled by the
phase correlation algorithm translating the images by integral
shifts at the high resolution (or equivalently, sub-pixel shifts
at low resolution). After these preprocessing operations, the
interpolated registered LR (IRLR) images are fed into a CNN
composed of two main building blocks. An overview of the
network is shown in Fig. 1. The first block, referred as SIS-
RNet, is a CNN aiming to perform a SISR task where each
of the N images is processed independently by a sequence of
2D convolutional layers. The convolutional filters are shared
along the temporal dimension, i.e., all the N LR images go
through the same set of filters. The second block, referred as
FusionNet, aims to merge the representations of the images
in the feature space in a “slow” fashion, i.e., by exploiting a
sequence of 3D convolutions with small kernels. The N out-
puts of the SISRNet are progressively fused by N/2 − 1 3D
convolutional layers until the network’s depth reduces to 1.
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Fig. 1. MISR fusion network. The input N bicubic upsampled and registered images are processed by SISR and fusion
subnetworks to produce a residual image. The residual image is then added to the average of the input to obtain the SR image.

Slow fusion in the feature space allows the network to learn
the best space to decouple image features that are relevant to
the fusion from irrelevant variations and to construct the best
function to exploit spatio-temporal correlations [13].

The proposed architecture employs an input-output resid-
ual connection. The network estimates the high-frequency
residual details to be added to the input, which carries most
of the low-frequency information, in order to obtain the high-
resolution image. This is an established technique for image
restoration problems using deep learning [4], including SISR.
However, with respect to SISR, the network proposed in this
work implements a many-to-one mapping, so the residual is
actually added to a basic merge of the IRLR images in the
form of their average:

Ī IRLR =
1

N

∑
i∈[0,N−1]

I IRLR
i ,

ISR = Ī IRLR +R,

being R the residual estimated by the CNN.

3.1. Loss Function
Model parameters are optimized minimizing a loss function
computed as a modified version of the Euclidean distance be-
tween the SR image and the HR target. Minimizing the Eu-
clidean distance is optimal in terms of the mean-squared error
metric. Some deep learning works on SISR attempted to use
an adversarial loss [14]. While this approach produces visu-
ally pleasing results, it tends to hallucinate information, re-
sulting in lower MSE scores and less reliable products in the
context of remote sensing; hence, the adversarial approach
has not been followed in the present work. As we mentioned
in Sec. 2, since the PROBA-V satellite does not capture LR
images and HR images of a specific ground scene simultane-
ously, there are discrepancies coming from different weather
conditions, changes in the landscape and variable absolute
brightness due to the large inter-time interval between satel-
lite shots. The LR images could be quite different from one
another and from the corresponding HR image as well. For

this reason, we must make the training objective as invariant
as possible to such conditions. In particular, in order to build
invariance to absolute brightness differences between ISR and
IHR, the modified loss function equalizes the intensities of
the SR and HR images so that the average pixel brightness of
both images match. Moreover, since the ISR and IHR could be
shifted by a maximum of 3 pixels, the loss embeds a shift cor-
rection. ISR is cropped by a 3 pixel border, then all possible
patches Iu,vHR of size (rH−3)×(rW−3) are extracted from
the target IHR. All possible Euclidean distances are computed
and the lowest one is taken as loss to optimize. Our loss takes
three inputs: residual estimate, network input (averaged IRLR
image) and ground truth HR image:

L = min
u,v∈[0,6]

‖ IHR
u,v − (ISR

crop + b) ‖2,

where b represents the brightness correction and ISR
crop the

cropped network output:

b =
1

(rW − 3)(rH − 3)

∑
x,y

(
IHR
u,v − ISR

crop

)
,

ISR
crop = Ī IRLR +R.

The loss is computed by utilizing only the HR image pix-
els that are marked as reliable by the mask provided with the
dataset and the SR image pixels for which at least one out of
N LR images were clear. The reason for this is that a cloud
in the HR image can never be predicted from terrain data in
the IRLR images, so its pixels should not contribute to the
loss function. Viceversa, it is also impossible to predict HR
terrain if all the IRLR images have concealed regions.

4. RESULTS

In this section we perform an experimental evaluation of
the proposed method, comparing it with several alternative
approaches. Such approaches include a CNN-based SISR
method, a MISR baseline consisting of averaging bicubic-
interpolated and registered images, and a MISR method
where a CNN performs SISR on each IRLR image and then
the obtained SR images are averaged.



Fig. 2. Left to right: 4 random LR images, SR image reconstructed by our method and HR image

Fig. 3. Left to right: one among the LR images, baseline, SISR only, SISR+Mean, our method, HR image

Table 1. Average mPSNR (dB) - PROBA-V Test Set
Proposed SISR+Mean Baseline SISR

NIR 47.21 46.48 45.63 45.56
RED 49.52 48.79 47.88 48.21

4.1. Experimental setting and training process

In the following experiments, we employed both NIR and
RED band datasets described in Sec. 2 and the same train-
ing procedure has been applied separately for them. We used
396 scenes for training and 170 for testing from NIR band
dataset and 415 for training and 176 for testing from RED
band dataset. Since the proposed network is devised to work
with a fixed size temporal dimension, we decided to train the
network using the minimum number of images available for
each scene, i.e., 9 images. When more images are available
we select the 9 clearest images according to the masks. For
each scene the clearest image is considered as the reference to
which all the other upsampled LR images are registered. Each
scene is a data-cube of size 9 × 384 × 384, from which we
extracted 200 random patches, resulting in a total of 79200
and 83000 samples of size 9 × 48 × 48 for NIR and RED
band respectively. The network has been trained for around
80 epochs with a batch size of 32. The network has a first
block composed by 8 2D convolutional layers with 64 filters
each (see Fig. 1) and a second block having 4 3D convolu-
tional layers and a last 2D convolutional layer. Each layer is
followed by an Instance Norm layer and a Leaky ReLU non-

linearity, except for the last. Instance Normalization is used
in place of Batch Norm layer to make the network training
as independent as possible of the contrast and brightness dif-
ferences among the input images. Finally, since the network
produces a residual estimate R, we want Ī IRLR and IHR to be
normalized so that their difference gives a unit variance resid-
ual R, thus avoiding any scaling to be performed by the last
layer of the network and improving convergence speed.

4.2. Quantitative and qualitative results
We want to compare the proposed MISR technique, where
image fusion is performed by 3D convolutions in the feature
space, to a fusion method based on averaging SISR images,
referred as SISR+Mean, as well as to a SISR only solution. A
MISR baseline consisting in the averaged bicubic IRLR im-
ages is also included in the comparison. For all these methods
we followed the same steps for the data preparation: bicubic
interpolation and registration by phase correlation algorithm.
The metric chosen for evaluation is a modified version of the
PSNR (mPSNR) used also in the ESA challenge.

mPSNR = max
u,v∈[0,6]

20 log
216 − 1

‖ IHR
u,v − (ISR

crop + b) ‖2

The mPSNR computation is meant only for pixels that are
not concealed both in the target HR image and in the recon-
structed image. This metric has been devised to cope with
the high sensitivity of the PSNR to biases in brightness and
with the relative translation the reconstructed image might



have with respect to the target HR image, in the same way the
loss function does during training. In this case the maximum
mPSNR over all possible shifts is considered for evaluation.
Note that by design of the dataset, the maximum shift in the
horizontal and vertical directions is equal to 6 pixels.

Table 1 shows the mPSNR results on both NIR and RED
test sets for various methods. It can be noticed that the pro-
posed method outperforms all the other methods, confirming
the effectiveness of the 3D fusion network at exploiting the
correlation among the images along the temporal dimension.
As a term of comparison, the SISR+Mean method uses the
same SISR network (with the addition of a final layer project-
ing from the feature space to the image space) of our method
but replaces the whole 3D fusion network with a simple av-
erage across the images. SISR+Mean is outperfomed by our
method by 0.93 dB and 0.73 dB for NIR and RED test sets
respectively. The last MISR method included in the evalua-
tion is the baseline solution that is a simple average across the
bicubic IRLR images, giving worst results than our method.
Indeed, this baseline is the input-output connection in the pro-
posed architecture. The comparison between our method and
the SISR only method is meant to highlight the huge gain
brought by exploiting both the spatial and temporal corre-
lations, even if the LR images of a specific scene are taken
under different conditions and might be wildly different from
one another in terms of contrast, brightness and landscape due
to temporal variations. The SISR only solution is based on a
residual network with 2D convolutional layers and roughly
the same number of learnable parameters with respect to our
method for fair comparison. The choice of a single scene im-
age was made using the masks, taking the clearest image. The
SISR only method is outperfomed by our method by 1.65 dB
and 1.31 dB for NIR and RED testset respectively. This re-
sult shows that exploiting temporal correlation on sub-pixel
shifted images improves the quality of the reconstructed HR
image. These quantitative results are accompanied by a qual-
itative comparison of the super-resolution methods in Fig. 3.
It can be noticed that our proposed method produces visually
more detailed images, recovering finer texture and sharper
edges. All methods are able to reconstruct images with mini-
mal presence of artifacts.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a CNN architecture to deal
with super-resolution applied to multi-temporal images . We
showed that fusing multiple images from the same ground
scene allows better accuracy at increasing spatial resolution,
even when significant temporal variations are present. In the
present work the registration is handled in the preprocessing
stage by the phase correlation algorithm. Future work will
investigate an enhanced solution which account for an inte-
gration of the registration task, as a trainable block, directly
in the proposed CNN architecture in order to exploit its pow-
erful feature representations.
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