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Evaluation of various geometrically nonlinear terms in the
static response of beams and thin-walled shell-like structures

A. Pagani ∗, E. Carrera † and R. Augello ‡

MUL2 group, Department of Mechanical and Aerospace Engineering,
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

This paper investigates the consistency and compatibility of various assumptions and strain

measurements in large displacements/geometric nonlinear analysis of beams and thin-walled

structures. For this purpose, a refined beammodel with enhanced three-dimensional accuracy

is employed, in a total Lagrangian scenario. This model is developed in the domain of the

Carrera Unified Formulation (CUF), which allows to express the nonlinear governing equations

in terms of fundamental nuclei. These nuclei are independent of the theory approximation

order; thus, low- to high-order theories of structures can be implemented with ease. Various

numerical problems are addressed, and solutions are provided by using a classical finite element

method and a Newton-Raphson linearization scheme. Given the intrinsic scalable nature of

CUF, investigating the effects of the various nonlinear strain components is straightforward.

It is demonstrated that the full Green-Lagrange strain tensor produces good approximation

in case of large rotations, post-buckling and nonlinear couplings. In contrast, approximations

may be reasonable asmoderate displacements and simpler problems (e.g., slender beams under

flexure) are considered.

Nomenclature

b = differential operator

Fτ,Fs = cross-sectional functions

KS = secant stiffness matrix

KT = tangent stiffness matrix

Ni,Nj = shape functions

p = loading vector

q = nodal unknowns

u = displacement vector
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δ = virtual variation

ε = strain vector

λ = load parameter

σ = stress vector

Subscripts

ext = external

int = internal

l = linear

nl = nonlinear

ref = reference

I. Introduction
Highly flexible structures are widely used in many engineering fields. These are structures that are designed

to undergo large displacements/rotations without plastic deformations. Applications include, but are not limited to,

inflatable structures, space antennas, parachutes, cables for cable-stayed bridges, helicopter rotor blades, and flexible

wings of high altitude aircraft [1]. In this context, the availability of efficient and reliable numerical tools able to predict

the nonlinear mechanical behaviour of this class of structures, which continues to propose challenging problems, is of

fundamental importance for modern analysts.

First studies about highly flexible beams and cables date back to XVIII century, when Euler [2] proposed the

well-known elastica to address flexural problems and by assuming local curvature as proportional to the bending

moment. In his theory, geometrical nonlinearity was considered and analytical solutions that make use of elliptic

integrals are available and used still today for clamped-free, clamped-clamped, and simply-supported beams (see

[3, 4]). Starting from the original work of Euler, many theories for geometric nonlinear analysis of one-dimensional

(1D) and two-dimensional (2D) structures have been developed. In fact, a review of the modern literature shows a

vivid interest of engineers and researchers on this matter. For example, in a recent work, Sze et al. [5] provided

solutions and benchmarks for different geometric nonlinear analyses of plates and shells by using finite elements

(FE). Ovesy et al. [6] developed two versions of the finite strip method for the post-buckling response of rectangular

symmetric and unsymmetrical laminates subjected to progressive end-shortening as well as normal pressure loading.

Milazzo and Olivieri [7] discussed, on the other hand, a Ritz approach for the analysis of buckling and post-buckling

of stiffened composite panels with through-the-thickness cracks and delaminations. Ma and Wang [8] investigated

large deflections of functionally graded circular plates subjected to mechanical and thermal loadings by employing a

classical nonlinear von Kármán plate theory. Other important and recent contributions addressing geometric nonlinear

2



problems of 2D structures are those by Arciniega et al. [9], who investigated buckling and post-buckling behaviour of

laminated cylindrical shells under axial compression and lateral pressure; Arciniega and Reddy [10], who developed a

tensor-based finite element formulation with curvilinear coordinates and first-order shear deformation theory to analyze

large displacements of functionally graded shells; and Ko et al. [11], who demonstrated the effectiveness of a new shell

element based on MITC (Mixed Interpolation of Tensorial Components) to eliminate locking phenomena in geometrical

nonlinear analysis.

Many of the works on nonlinear theories of beam structures are based on the Timoshenko beam theory [12],

which assumes a uniform shear distribution along the cross-section of the beam together with the effects of rotatory

inertia, see for example Refs. [13–15]. In contrast, in the domain of the variational asymptotic method, the general

three-dimensional nonlinear elasticity problem was systematically split into a two-dimensional linear cross-sectional

analysis and a one-dimensional nonlinear beam analysis (including, eventually, transverse shear and warping) in several

works, see for example Yu et al. [16, 17]. Nevertheless, the analysis of more complicated problems, such as thin-walled

beams subjected to local effects and other higher-order phenomena may require the use of refined beam theories. For

example, Genoese et al. [18] implemented a geometrically nonlinear model for homogeneous and isotropic beams with

generic cross-section by employing a three-dimensional linear elastic model which extends the Saint-Venant solution

to non-uniform warping cases. The Generalized Beam Theory (GBT) was extended to the post-buckling analysis of

thin-walled steel frames by Basaglia et al. [19] by using the finite element method and incorporating the influence of

frame joints. Recently, Machado [20] utilized the Ritz method along with the Newton-Raphson linearization scheme

to investigate the buckling and post-buckling of thin-walled beams with the aid of a theory which includes bending

and warping shear deformability. Also, it is worthy to mention the work of Garcea et al. [21], who addressed the

geometrically nonlinear analysis of beams and shells using solid finite elements.

Most of the research articles in the literature, including the aforementioned ones, employ the von Kármán nonlinear

strain approximation to assess the load-carrying capability of highly flexible structures. Carrera and Parisch [22], in the

study of composite shells, demonstrated that von Kármán approximations yield good accuracy in the case of thin elastic

structures when deflections are of the same order of magnitude of the thickness. However, the same authors highlighted

that such accuracy is not confirmed in the case of thick structures. Furthermore, evidently the error made by von Kármán

approximations is higher in the case of shear loadings, where rotations can be considered neither small nor moderate. A

few years earlier, in the analysis of laminated cylindrical panels, also Kim and Chaudhuri [23] underlined that the von

Kármán strains approximation overestimates the transverse displacements, especially in the advanced nonlinear regime.

These remarks can be directly extended to 1D structures. For example, Pacoste and Eriksson [24] investigated different

strain formulations for beam elements in instability analysis and also provided an energetic argument to justify why

certain strain measures are needed to capture certain nonlinear effects. In this domain, this work wants to investigate

the effectiveness of various nonlinear strain assumptions for the analysis of simple 1D to complicated 2D and shell
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problems. The investigation is conducted by utilizing the Carrera Unified Formulation (CUF) [25, 26], according to

which any theory of structures can degenerate into a generalized kinematics that makes use of an arbitrary expansion of

the generalized variables. In other words, the governing equations and the related finite element arrays of beams as well

as shells can be written in terms of fundamental nuclei for both linear [27, 28] and nonlinear [29, 30] problems. Also,

thanks to its intrinsic scalable nature, full to simple von Kármán nonlinear strain approximations can be automatically

and opportunely incorporated by using CUF.

The paper is organized as follows: (i) first, a brief discussion about geometrical nonlinear relations is given in

Section II; then, (ii) CUF and related nonlinear FE approximation are discussed in Section III to give the fundamental

nuclei of the secant and the tangent stiffness matrices accounting for Green-Lagrange to von Kármán strains; (iii)

numerical results are presented in Section IV, where attention is focused on post-buckling of solid cross-section beams

as well as on large-displacement analysis of thin-walled structures; finally, (iv) the main conclusions are drawn in

Section V.

II. Nonlinear geometric relations
When the square of displacement derivatives are finite, as in the case of large displacements and rotations analysis as

well as elastic post-buckling, the problem of characterizing the strain tensor from the initial state is not trivial, see [31].

As a matter of fact, reliable nonlinear analyses require accurate definitions of strains and stresses. In pure geometrically

nonlinear problems, Lagrangian formulations are generally employed because there is a natural undeformed state to

which the structure would return if unloaded. In fact, in contrast to Eulerian formulation, strains are expressed in terms

of the undeformed configuration in the case of Lagrangian approach. This aspect entails a number of advantages when a

Lagrangian formulation is utilized along with an implicit numerical incremental solution scheme. [1]. As an example,

stress and strain components do not need any coordinate transformation at each iteration. Furthermore, large steps can

be used with no loss of accuracy if the implemented method is convergent.

In the domain of total Lagrangian formulations, models employing Green-Lagrange strain measures are well

developed in the literature. The reasons are twofold. First, Green-Lagrange strains vanish for rigid body rotations (this

is not true in the case of engineering strains). Second, these strains are work-conjugate to second Piola-Kirchoff stresses.

Given a three-dimensional displacement field u(x, y, z) = {ux uy uz}T , (x, y, z) being the Cartesian coordinate system,

the Green-Lagrange strain components can be defined as:

ε = ε l + εnl = (bl + bnl)u (1)

where ε = {εxx εyy εzz εxz εyz εxy}T is the vector of the strain components, and bl and bnl are the linear and nonlinear
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differential operators, respectively. They read:

bl =



∂x 0 0

0 ∂y 0

0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0



, bnl =



1
2
(∂x)

2 1
2
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2 1
2
(∂x)

2

1
2

(
∂y

)2 1
2

(
∂y

)2 1
2

(
∂y

)2

1
2
(∂z)

2 1
2
(∂z)

2 1
2
(∂z)

2

∂x ∂z ∂x ∂z ∂x ∂z

∂y ∂z ∂y ∂z ∂y ∂z

∂x ∂y ∂x ∂y ∂x ∂y



(2)

where ∂x =
∂(·)

∂x
, ∂y =

∂(·)

∂y
, and ∂z =

∂(·)

∂z
. Note that three rows in Eq. (2) are not strictly speaking the Green-Lagrange

shear strains as they have been multiplied by 2 to make them compatible with the typical constitutive relation.

The inclusion of appropriate geometric nonlinearities in large displacements and rotations analysis is of fundamental

importance. The reason is that large displacements and rotations may activate coupling phenomena among bending,

extension, shear and torsion of structures. Equation (2) includes full three-dimensional (3D) Green-Lagrange strains.

Over the last decades, on the other hand, many geometric nonlinear models have been developed for two-dimensional

(2D) and one-dimensional (1D) structures from simplifications of full 3D relations. A famous example is represented by

von Kármán strains for plates, see [32]. In the case of thin flat plates and moderate rotations, von Kármán hypothesizes

that the quadratic terms of Eq. (2) that cannot be neglected are those related to the in-plane partial derivatives of the

transverse displacements. In essence, the aforementioned non-linear geometric relations for von Kármán strains read:

εxxnl =
1
2
(uz,x )2

εyynl =
1
2
(uz,y )2

εxynl = uz,xuz,y

(3)

In the case of 1D beams and according to von Kármán assumptions, the only non-zero component of the nonlinear

strain vector would be:

εyynl =
1
2
(uz,y )2 (4)

In writing Eqs. (3) and (4), notation of Fig. 1 is employed. This figure proposes a qualitative representation of a plate

and a beam subjected to large displacements. Note that the z-axis is placed along the thickness of the plate, whereas

the undeformed beam axis lays along y-axis. It is well known that von Kármán strains do not account for moderate

rotations [1] though.

5



z

x

z
y

�uz
�y

Fig. 1 Flexible plate and beam structures.

The present research work wants to further investigate the effect of different nonlinear strain assumptions in the

large displacements/rotations analysis of flexible structures. To address this objective, the Carrera Unified Formulation

(CUF) is used. Given the scalable nature of CUF, in fact, the nonlinear governing equations of beam, plate and shell

structures can be formulated with ease and in a unified manner. Moreover, geometric relations accounting for full 3D

Green-Lagrange strains (Eq. (2)) to von Kármán strains (Eqs. (3) and (4)) can be addressed by eventually nullifying or

adding the corresponding nonlinear terms into the CUF fundamental nuclei, which represent the basic building blocks

of the secant and tangent stiffness matrices.

III. Adopted refined beam theory

A. CUF and finite element approximation

CUF assumes that the three-dimensional displacement field u(x, y, z) can be expressed as a general expansion of the

primary unknowns. In the case of one-dimensional theories, one has:

u(x, y, z) = Fs(x, z)us(y), s = 1,2, ....,M (5)

whereFs are the functions of the coordinates x and z on the cross-section, us is the vector of the generalized displacements

which lay along the beam axis, M stands for the number of the terms used in the expansion, and the repeated subscript s

indicates summation. The choice of Fs determines the class of the 1D CUF model that is required and subsequently to

be adopted.

In this paper, Lagrange polynomials are used as Fs cross-sectional functions. The resulting beam theories are

known as LE (Lagrange Expansion) CUF models in the literature [26]. LE models utilize only pure displacements as

primary unknowns and they have been recently used for the component-wise analysis of aerospace and civil engineering

constructions as well as for composite laminates and box structures, see [33–38]. Lagrange polynomials as used in
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this paper can be found in [39]. In the domain of CUF, linear three- (L3) and four-point (L4), quadratic six- (L6) and

nine-point (L9), as well as cubic 16-point (L16) Lagrange polynomials have been used to formulate linear to higher-order

kinematics beam models. For a further improvement of the beam kinematics and a geometrically correct (isoparametric)

description of complex cross-section beams, a combination of Lagrange polynomials can be used in a straightforward

manner by employing CUF. For more details about LE beam theories, the readers are referred to the original paper by

Carrera and Petrolo [40].

For the sake of generality, the Finite Element Method (FEM) is adopted to discretize the structure along the y-axis.

Thus, the generalized displacement vector us(y) is approximated as follows:

us(y) = Nj(y)qs j j = 1,2, . . . , p + 1 (6)

where Nj stands for the j-th shape function, p is the order of the shape functions and j indicates summation.

qs j = {qxs j qys j qzs j }
T is the vector of the FE nodal parameters. For the sake of brevity, the shape functions Nj are not

reported here. They can be found in many reference texts, for instance in Bathe [39]. However, it should be underlined

that the choice of the cross-section polynomials sets for the LE kinematics (i.e. the selection of the type, the number and

the distribution of cross-sectional polynomials) is completely independent of the choice of the beam finite element to be

used along the beam axis. In this work, classical one-dimensional finite elements with four nodes (B4) are adopted, i.e.

a cubic approximation along the y-axis is assumed.

B. Nonlinear governing equations

According to the principle of virtual work, the sum of the virtual variation of internal strain energy (δLint) and the

virtual variation of the work of external loadings (δLext) must be null for any arbitrary infinitesimal virtual displacement

satisfying the prescribed geometrical constraints. In essence,

δLint − δLext = 0 (7)

Large deflection analysis of elastic systems results in complex nonlinear differential problems. Nevertheless, the

equilibrium condition of the structure can be expressed as a system of nonlinear algebraic equations if FEM and CUF

are utilized.

The virtual variation of the strain energy, for example, can be expressed as

δLint =< δεTσ > (8)

where < (·) >=
∫
V
(·) dV and σ is the stress vector. Under the hypothesis of small deformations, V = Ω× L is the initial
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volume of the beam structure. The strain vector ε in Eq. (1) can be written in terms of the generalized nodal unknowns

qs j by employing Eqs. (5) and (6).

ε = (Bs j
l
+ Bs j

nl
)qs j (9)

where Bs j
l

and Bs j
nl
are the two following matrices:

Bs j
l
= bl(Fs Nj) =



Fs,x Nj 0 0

0 FsNj,y 0

0 0 Fs,z Nj

Fs,z Nj 0 Fs,x Nj

0 Fs,z Nj FsNj,y

FsNj,y Fs,x Nj 0



(10)

and

Bs j
nl
=

1
2



ux,x Fs,x Nj uy,x Fs,x Nj uz,x Fs,x Nj

ux,y FsNj,y uy,y FsNj,y uz,y FsNj,y

ux,z Fs,z Nj uy,z Fs,z Nj uz,z Fs,z Nj

ux,x Fs,z Nj + ux,z Fs,x Nj uy,x Fs,z Nj + uy,z Fs,x Nj uz,x Fs,z Nj + uz,z Fs,x Nj

ux,y Fs,z Nj + ux,z FsNj,y uy,y Fs,z Nj + uy,z FsNj,y uz,y Fs,z Nj + uz,z FsNj,y

ux,x FsNj,y + ux,y Fs,x Nj uy,x FsNj,y + uy,y Fs,x Nj uz,x FsNj,y + uz,y Fs,x Nj



(11)

In Eqs. (10) and (11), commas denote partial derivatives. Note that Eq. (11) is valid for the full 3D Green-Lagrange

strains of Eq. (2). It can be easily modified to account for different geometric nonlinearities assumptions. For example,

in the case of von Kármán strains of Eq. (4), the nonlinear (but algebraic) geometric operator would hold

Bs j1DVK

nl
=

1
2



0 0 0

0 0 uz,y FsNj,y

0 0 0

0 0 0

0 0 0

0 0 0



(12)
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If these geometric relations are substituted into Eq. (8) along with the Hooke’s law and CUF (Eqs. (5) and (6)), one has:

δLint = δqT
τi <

(
Bτi
l + 2 Bτi

nl

)T
C

(
Bs j
l
+ Bs j

nl

)
> qs j = δqT

τi Ki jτs
S

qs j (13)

where τ and i are the CUF summation indexes over the variations’ primary unknowns (i.e., δu(x, y, z) = Fτ(x, z)Ni(y)qτi);

C is the matrix of the material elastic coefficients; Bτi
l is the matrix of the linear geometric relations; Bτi

nl is the matrix

of the nonlinear geometric relations (Eqs. (11) or (12) or any variation of thereof); and Ki jτs
S

is the Fundamental

Nucleus (FN) of the secant stiffness matrix. Note that, in Eq. (13), we take for granted that δε = (Bτi
l + 2Bτi

nl)δqτi . The

FN of the secant stiffness matrix is not given here for the sake of brevity. However, the formal calculation of Ki jτs
S

can be found in the work of Pagani and Carrera [29]. It is a 3 × 3 matrix that, given the cross-sectional functions

(Fτ = Fs, for τ = s) and the shape functions (Ni = Nj , for i = j), can be expanded by using the indexes τ, s = 1, ...,M

and i, j = 1, ..., p + 1 in order to obtain the elemental secant stiffness matrix of any arbitrarily refined beam model. In

other words, by opportunely choosing the beam kinematics (i.e., by choosing Fτ as well as the number of expansion

terms M) classical to higher-order beam theories and related secant stiffness arrays can be implemented in an automatic

manner by exploiting the index notation of CUF. Moreover, it is evident that Ki jτs
S

can be modified to contain different

geometrical nonlinear approximations, from full 3D Green-Lagrange strains of Eq. (2) to simple von Kármán strains of

Eq. (4), by opportunely varying Bτi
nl . Once the elemental secant stiffness matrix is obtained according to the desirable

approximation order and for the generic nonlinear strains approximation, it can be assembled as conventional FEM [26].

The nonlinear algebraic governing equations can be, thus, obtained from Eq. (7) after the virtual variation of the

external work is also formalized (conservative problems are addressed in this work).

KS q − p = 0 (14)

where KS , q, and p are global, assembled finite element arrays of the final structure. For more details about the

calculation of the work of external loadings and the related vector of generalized forces p, interested readers are referred

to Carrera et al. [26].

C. Linearization

Equation (14) constitutes the starting point for finite element calculation of geometrically nonlinear systems, and it

is usually solved through an incremental linearized scheme, typically the Newton-Raphson method (or tangent method).

According to the Newton-Raphson method, the governing equations are written as:

ϕres ≡ KS q − p = 0 (15)
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where ϕres is the vector of the residual nodal forces (unbalanced nodal force vector). Equation (15) can now be

linearized by expanding ϕres in Taylor’s series about a known solution (q,p). Omitting the second-order terms, one has

ϕres(q + δq,p + δp) = ϕres(q,p) +
∂ϕres

∂q
δq +

∂ϕres

∂p
δλ pre f = 0 (16)

where
∂ϕres

∂q
= KT is the tangent stiffness matrix, and −

∂ϕres

∂p
is equal to the unit matrix I. In Eq. (16) it has been

assumed that the load varies directly with the vector of the reference loadings pre f and has a rate of change equal to the

load parameter λ, i.e. p = λ pre f . Also, note that, as the load-scaling parameter λ is taken as a variable, an additional

governing equation is required to Eq. (16) and this is given by a constraint relationship c(δq, δλ) to finally give



KT δq = δλ pre f − ϕres

c(δq, δλ) = 0

(17)

Depending on the constraint equation, different incremental schemes can be implemented. For example, if the constraint

equation is δλ = 0, Eq. (17) corresponds to a load-control method. On the other hand, the condition c(δq, δλ) = δq = 0

represents a displacement-control method. In this paper, a path-following method is employed in which the constraint

equation is a function of both displacement and load parameter variations. In detail, an arch-length method as proposed

by Crisfield [41, 42] and later modified by Carrera [43] is utilized in this work.

For completeness reasons, it is important to underline that the tangent stiffness matrix is derived from the linearization

of the equilibrium equations [44]. This corresponds to linearizing the virtual variation of the strain energy in the case of

conservative problems:

δ(δLint) =< δ(δεTσ) >= δqT
τiK

i jτs
T δqs j (18)

As in the case of the secant matrix, Ki jτs
T represents the 3 × 3 FN and it is the basic building block to be used for the

formulation of the tangent stiffness matrix for any higher-order refined beam elements accounting for Green-Lagrange

nonlinear strains or any other nonlinear strains approximation. The detailed formulation of the tangent matrix is not

straightforward and is not given in this paper. Nonetheless, a comprehensive formulation of the geometrical nonlinear

problem in the domain of CUF is provided in the work of Pagani and Carrera [29].
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Fig. 2 Reference system and displacement notation (a) and cross-section discretization (b) for the square
cross-section beam.

IV. Numerical results

A. Post-buckling of square cross-section beam

In the first analysis case, a cantilever beam with a square cross-section is considered. The beam is made of an

aluminum alloy with Young modulus E equal to 75 GPa and Poisson ratio ν = 0.33. The aspect-ratio ratio L/w is

equal to 100, where L is the beam length and w is the side width. The loading condition is depicted in Fig. 2(a) and

involves an axial load P to investigate buckling and post-buckling behavior of the structure, and a small load defect

d at the free end of the beam to activate the stable branch along the nonlinear path. The load defect d is equal to

0.2% of the critical buckling load. Also, according to Pagani and Carrera [29], quadratic kinematics describes well the

post-buckling behavior for the problem addressed. Thus, one single L9 Lagrange polynomial was used to approximate

the displacement field, see Fig. 2(b). On the other hand, 20 cubic beam elements are used along the longitudinal axis.

Results of the proposed static response analysis are depicted in Fig. 3. Different analyses are considered and they

differ in the approximation of the nonlinear geometrical relations. In essence, each analysis makes use of a different

operator bnl . Each curve of Fig. 3 is marked by a number, which refers to a specific set of nonlinear parameters specified

by the respective matrix, shown in the top left of the figure. Black dots denote the nonlinear terms of matrix bnl which

are active in the current analysis. For instance, the first matrix corresponds to the nonlinear analysis with all parameters

involved (i.e., full Green-Lagrange strains are considered). On the contrary, case number 4 denotes a linear analysis.

Results of analysis case number 1 show that nonlinearities in the x (or u) direction have no influence in the overall

behavior of the structure. The analysis case number 2 in Fig. 3 utilizes the von Kármán assumptions to 1D beams,

presented in Section II. This nonlinear matrix produces an almost horizontal line after the buckling load is reached and

it varies from the full nonlinear solution around the displacement value of 0.2. It is important to notice that higher-order

models including shear effects are employed in this work. This means that translational and rotary mechanics are
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decoupled in the present beam analysis. Thus, one must include nonlinear effects on shear strains along with bending in

order to fulfill the compatibility between the von Kármán strains and the model kinematics (analysis number 3 in Fig. 3,

where both 1/2
(
∂yuz

)2 and 1/2
(
∂zuy

)2 are included). Similar considerations can be drawn by energetic analysis, see

for example the work of Pacoste and Eriksson [24]. In the final analysis, the fifth curve has the purpose to show how the

solution can change if different nonlinear parameters are chosen. From the third matrix of the first analysis,
∂uz
∂z

is

neglected from the nonlinear strain tensor: the result shows a trend more similar to the full nonlinear solution until the

displacement reaches the value of 0.4. Table 1 shows the different values of loads for the first, third, fourth, fifth and

sixth cases for three levels of uz/L.
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Fig. 3 Equilibrium curves of the cantilever beam subjected to compression and for various geometrical nonlin-
ear approximations. Pcr =

4L2

π2EI

B. Bending and twisting of a thin-walled beam

The second analysis case concerns a cantilever thin-walled beam. The material properties are the same as in the first

analysis case. The geometry of the cross-section is described in Fig. 4(a), and the aspect ratio L/h is equal to 20, and

L/w = 5. A vertical load P is acting at the corner of the section of the beam, as shown in Fig. 4. The employed beam

model utilizes a quadratic kinematics (1L9 on the cross-section) and 20B4 elements along the beam axis.
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Table 1 Representative equilibrium states of the cantilever beam in post-buckling and for various geometrical
nonlinear approximations. P is expressed in kN.

−uzA/L P
0.2 61.42 63.58 61.61

0.4 62.38 67.62 62.43

0.6 63.70 76.27 64.24

x,ux y,uy

z,uz

h

b

P

A

Fig. 4 Rectangular cross-section beam subjected to flexure and torsion.

Fig. 5 shows equilibrium curves (transverse displacements at point A vs. load P) for various strain assumptions.

Analysis number 1 in Fig. 5 makes use of the full nonlinear Green-Lagrange strain tensor. The first analysis also

demonstrates that neglecting the higher-order derivatives of the displacement component ux (first column of the matrix

bnl) does not affect the accuracy of the solution. Contrary to the results of the previous case, the derivatives along the x

coordinate have some influence on the results. In fact, the second analysis leads to a slightly different curve than the

previous two, being a less conservative solution than the full nonlinear case; the nonlinearities due to cross-sectional

deformation needs to be included because the beam is subjected to torsion. Analysis number 3 in Fig. 5 shows that

classical Kármán approximations lead to linear solution, despite the nonlinear terms. As in the previous analysis case,

and because the proposed model inherently incorporates shear effects, the nonlinear strain tensor must include both

1/2
(
∂yuz

)2 and 1/2
(
∂zuy

)2 to satisfy consistency requirements. This has been done in the fourth and fifth analyses,

which lead to solutions that are similar to the full nonlinear solution, with the 2D von Kármán being closer. Analysis

number 6 in Fig. 5 shows another nonlinear approximation, which is less conservative during the overall analysis. Some

of the most relevant deformed configurations are depicted in Fig. 5 to show the differences of the proposed solutions,

and Tables 2 and 3 show the shapes for all the curves in two planes, for the displacement near to u = 1 m.
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Fig. 5 Equilibrium curves of the cantilever rectangular beam subjected to flexure and torsion.

Table 2 Deformed configurations of the cantilever rectangular cross-section beam for nonlinear relations 1, 2,
and 3.

uz = 0.982 m uz = 1.075 m uz = 1.07 m
P = 0.124 × 107 N P = 0.141 × 107 N P = 0.1 × 107 N
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Table 3 Deformed configurations of the cantilever rectangular cross-section beam for nonlinear relations 4,
and 6.

uz = 1.041 m uz = 1.024 m
P = 0.147 × 107 N P = 0.329 × 107 N

C. Thin-walled unsymmetric beam

This section focusses on a cantilever unsymmetric channel section beam, which geometry is shown in Fig. 6(a)

and has b = 100 mm, h1 = 48 mm, h2 = 40 mm and t = 10 mm. The length of the beam is L = 1 m. The material

properties are the same as in the previous cases. In Fig. 6, the loading condition is also depicted, and a P load is acting

in the mid-span of the upper side in the z direction. The 7L9 polynomial set has been employed to approximate the

beam kinematics on the cross-section, see Fig. 6(b), and 20 cubic elements are used to discretize the beam axis. Some

analyses have been conducted to investigate the effects that the parameters of the nonlinear matrix bnl have on the

static solution of the problem, and equilibrium curves are shown in Fig. 6(b), which gives the evolution of transverse

displacement at point A against applied load P.

The full nonlinear solution has been highlighted in Fig. 7 and it corresponds to the first analysis, where all the spots

in the bnl matrix are black. In this analysis case, quadratic terms of the derivatives of the displacement component ux

have a strong influence. The curves from the second analysis is completely different from the first one, due to the fact

that the beam is subjected to coupled bending and torsion. As a matter of fact, the torsion suggests that the nonlinear

strains coming from large ux displacements are of fundamental importance in this analysis case.

Curve of analysis number 4 in Fig. 7 shows the solution from classical 1D von Kármán approximation. Again,

analysis number 5 suggests the importance to include shear terms. This solution is comparable with the nonlinear

solution from case IV.B, because we are dealing with this case as it is a 1D problem, neglecting all local effects that

may occur in cross-section, especially near the clamped side. The same discussion can be extended to 2D von Kármán
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Fig. 6 Reference system and displacement notation (a) and cros-section discretization (b) for the thin-walled
unsymmetric cross-section beam.
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Fig. 7 Equilibrium curves of the cantilever thin-walled unsymmetric beam subjected to flexure and for various
geometrical nonlinear approximations.
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approximation, but to reproduce the right curve, it is not enough to include the same terms which have been included in

the example IV.B for the curve 5. In fact, approximations 4 and 7 in Fig. 7 lead to curves that completely differs from

the nonlinear analysis. It is necessary to take into account the rotation of the cross-section depicted in Fig. 6 and this

leads to the set of nonlinear parameters of the matrix 8. The curve associated follows with an high accuracy the full

nonlinear solution until the displacement reaches the value of 0.7 mm. Then, the displacement for the 2D von Kármán

theory keeps increasing, while the full nonlinear solution describes a structure with greater stiffness. Curve 6 represents

another nonlinear solution, which is less conservative from the other nonlinear sets.

D. Pinched thin-walled cylinder

The final result analysis case concerns a pinched cylinder. Material and geometrical data comes from Flügge [45].

The material is isotropic with Young modulus E = 3 × 106 psi and Poisson ratio ν = 0.3. The geometry is shown in

Fig. 8(a), with length L = 600 in, radius r = 300 in and thickness t = 3 in. The displacement field over the cross-section

has been evaluated through 30L16 Lagrange polynomials, because in Carrera et al [46] has been shown that this kind of

theory can describe with accuracy the displacements of the structure. The method adopted can be seen in Fig. 8(b), and

the elements over the cross-section have been distributed linearly in order to refine the discretization in proximity to the

loading point (so that A1/A2 = 10).

P
L 2

L 2

r

t

x,ux

y,uy

z,uz

(a)

A1

A2

B
C

(b)

Fig. 8 Reference system and displacement notation (a) and cros-section discretization (b) for the thin-walled
pinched cylinder.

Figure 9 shows the trends of the z component of the displacement of the B point (Fig. 8(b)) for different kinds of

nonlinear analyses. The first curve corresponds to the full nonlinear analysis, and it is shown that the same result can

also be obtained neglecting the first or the second column of the nonlinear matrix bnl . Curve 2 represents the linear

solution, as this analysis does not include any nonlinear term. Solutions 3 and 4 represent two different sets of nonlinear
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parameters, which lead to a shallow curve with high displacements at low loadings, and to a curve very close to the

linear one, respectively. Regarding the von Kármán theories, curves 5 and 7 represent the solution for the traditional 1D

and 2D sets of approximations, with the 2D one being very close to the nonlinear one. It is interesting to note that

including or not other nonlinear terms to adapt the von Kármán approximations to the higher-order kinematic theory (as

it has been done in the previous analyses cases) leads to the same static solution (for the 2D instance, the solution is

the same, while for the 1D solution the difference - between curve 5 and 6 - is slight), which is a consequence of the

3D nature of the problem under consideration. In Fig. 9 some deformations are also depicted. For the same analysis

case, Fig. 10 shows the transverse displacement of the point C. From this figure, similar conclusions can be drawn.

Tables 4 and 5 finally show some values of the displacement of the two points analyzed for the cases studied (each value

is obtained by a linear interpolation between two nearest nonlinear steps solution, due to the fact that an arc-length

method has been utilized to evaluate the nonlinear behavior of the structure).
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Fig. 9 Equilibrium curves evaluated at point B of the pinched thin-walled cylinder and for various geometrical
nonlinear approximations.
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Fig. 10 Equilibrium curves evaluated at pointC of the pinched thin-walled cylinder and for various geometrical
nonlinear approximations.

Table 4 Representative equilibrium states of the pinched thin-walled cylinder and for various geometrical
nonlinear approximations. P is expressed in lb ×103, u in inches.

P −uzB −uzB −uzB −uzB −uzB
250.0 22.83 15.18 22.91 13.98 -

750.0 39.10 45.53 38.37 42.56 -

1800 54.03 109.3 54.86 108.3 -
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Table 5 Representative equilibrium states of the pinched thin-walled cylinder and for various geometrical
nonlinear approximations. Values of uzC are shown. P is expressed in lb ×103, u in inches.

P uzC uzC uzC uzC uzC
250.0 2.304 1.575 2.530 1.424 -

750.0 4.247 4.724 4.603 3.775 -

1800 5.378 11.34 6.020 6.978 -
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V. Conclusions
The present study introduces a refined beam formulation with scalable nature, able to provide classical beam

results with von Kármán strains approximation to full nonlinear 3D solutions. In fact, by using the principle of virtual

work along with the Carrera Unified Formulation (CUF), the nonlinear governing equations and the related finite

element approximation have been expressed in terms of few fundamental nuclei, which are independent of the theory

approximation order and the strain measurements to be adopted.

The resulting methodology has been employed to investigate the consistency of various geometrical nonlinear strain

measurements, without changing its mathematical formalism and in a unified scenario. Several sets of nonlinear terms

have been analyzed, including the well known 1D and 2D von Kármán approximations. As general recommendations

for the geometrical nonlinear analyses of solid and thin-walled structures, it has been further demonstrated that:

1) The proposed method, based on CUF, represents a tool for comparing different kinematics and strains assumptions

in an automatic and efficient way.

2) The geometrical nonlinear relations must be consistent with the kinematics of the theory of structure employed.

3) As known from the previous literature, simplifications of the full Green-Lagrange strain tensor are feasible and

may provide acceptable results in the regimes of small and moderate displacements/rotations.

4) von Kármán approximations can be used for the analysis of slender beams under flexure, column buckling

initiation, and pinched cylinders. On the other hand, they are discouraged for the analysis of thin-walled beams

subjected to bending-torsion-shear couplings.
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