
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

TAPrec: Supporting the Composition of Trigger-Action Rules Through Dynamic Recommendations / Corno, Fulvio; DE
RUSSIS, Luigi; MONGE ROFFARELLO, Alberto. - STAMPA. - (2020), pp. 579-588. (Intervento presentato al convegno
IUI '20: ACM International Conference on Intelligent User Interfaces tenutosi a Cagliari (Italy) nel 17-20 March, 2020)
[10.1145/3377325.3377499].

Original

TAPrec: Supporting the Composition of Trigger-Action Rules Through Dynamic Recommendations

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3377325.3377499

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2779432 since: 2020-03-30T09:07:07Z

ACM

TAPrec: Supporting the Composition of Trigger-Action Rules
Through Dynamic Recommendations

Fulvio Corno
fulvio.corno@polito.it
Politecnico di Torino

Torino, Italy

Luigi De Russis
luigi.derussis@polito.it
Politecnico di Torino

Torino, Italy

Alberto Monge Roffarello
alberto.monge@polito.it
Politecnico di Torino

Torino, Italy

ABSTRACT
Nowadays, users can personalize the joint behavior of their con-
nected entities, i.e., smart devices and online service, by means
of trigger-action rules. As the number of supported technologies
grows, however, so does the design space, i.e., the combinations be-
tween different triggers and actions: without proper support, users
often experience difficulties in discovering rules and their related
functionality. In this paper, we introduce TAPrec, an End-User De-
velopment platform that supports the composition of trigger-action
rules with dynamic recommendations. By exploiting a hybrid and
semantic recommendation algorithm, TAPrec suggests, at compo-
sition time, either a) new rules to be used or b) actions for auto-
completing a rule. Recommendations, in particular, are computed to
follow the user’s high-level intention, i.e., by focusing on the rules’
final purpose rather than on low-level details like manufacturers
and brands. We compared TAPrec with a widely used trigger-action
programming platform in a study on 14 end users. Results show
evidence that TAPrec is appreciated and can effectively simplify the
personalization of connected entities: recommendations promoted
creativity by helping users personalize new functionality that are
not easily noticeable in existing platforms.

CCS CONCEPTS
• Information systems→ Recommender systems; •Human-
centered computing→Human computer interaction (HCI);
Ubiquitous andmobile devices; User studies; •Computingmethod-
ologies → Knowledge representation and reasoning.

KEYWORDS
Trigger-Action Programming, End-User Development, Recommender
System, Semantic Web, Internet of Things

ACM Reference Format:
Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2020. TAPrec:
Supporting the Composition of Trigger-Action Rules Through Dynamic
Recommendations. In Proceedings of 25th International Conference on In-
telligent User Interfaces (IUI ’20). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IUI ’20, March 17–20, 2020, Cagliari, Italy
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
People are nowadays surrounded by amultitude of smart devices, al-
ways connected to the Internet. With lamps, thermostats, and many
other appliances, including fridges and ovens, that can be remotely
controlled, homes are becoming “smart.” Also other environments,
ranging from workplaces to entire cities, are extensively leveraging
on the Internet of Things (IoT) [6]. Besides physical devices, many
different online services, ranging from social networks to news and
messaging apps, are greatly used by almost everyone. The result
is a complex network of connected entities, be they smart devices
or online services, that can communicate with each other, with
humans, and with the environment. In this scenario, end users can
take advantage of visual programming platforms such as IFTTT1
and Zapier2 to personalize the joint behaviors of their own con-
nected entities, without the need of writing any code. Most of these
End-User Development (EUD) platforms are based on trigger-action
programming [13], i.e., they allow the definition of IF-THEN rules
such as “if I publish a photo on Facebook, then upload it to my Google
Drive”, or “if the security camera detects a movement, then blink the
kitchen lamp.” With such an approach, users can express most of
their desired behaviors [34]. By exploiting wizard-based procedures,
in particular, users can define a rule by directly composing it, i.e.,
by linking a trigger and an action together, or they can reuse a rule
composed and shared by another user.

Unfortunately, contemporary EUD platforms for trigger-action
programming mainly model smart devices and online services on
the basis of the underlying brand ormanufacturer [7]: as the number
of supported technologies grows, so do the design space, i.e., the
combinations between different triggers and actions. To compose
rules, for instance, IFTTT and Zapier are currently forcing users
to browse large menus with more than 1,000 supported connected
entities, each one with its own triggers and actions, displayed in
a meaningless order [8]. Even finding a rule to be reused may be
difficult: the number of rules publicly available on IFTTT exceeded
200,000 back on September, 2016 [35]. Therefore, without proper
support, end users often experience difficulties in discovering rules
and related functionality [35], while trigger-action programming
becomes a complex task for them [21].

In this paper, we introduce TAPrec, an EUD platform that sup-
ports the composition of trigger-action rules with dynamic rec-
ommendations that are continuously adapted in real-time to the
current high-level intention of the user. An intention is defined as
a goal-oriented activity that a user would like to be automatically
executed in her environment of choice under given conditions, e.g.,

1https://ifttt.com/, last visited on September 26, 2019
2https://zapier.com/, last visited on September 26, 2019

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://ifttt.com/
https://zapier.com/

IUI ’20, March 17–20, 2020, Cagliari, Italy Fulvio Corno et al.

(a) Rule Composition (b) Rule Recommendations (c) Action Recommendations

Figure 1: TAPrec is an EUD platform that supports the composition of trigger-action rules with dynamic recommendations.
Users can compose IF-THEN rules in an IFTTT-like web application (a). By analyzing the rules saved by the users, TAPrec is
able to recommend new rules to be used (b) and actions for auto-completing a the rule that is being composed (c).

personalizing the temperature and the lighting of some rooms de-
pending on the time of the day. Since users often have abstract
personalization goals that can be satisfied with multiple trigger-
action rules [7, 9, 35], in particular, we aim at assisting users in the
current personalization session: instead of taking into account the
entire user’s history, the high-level intention of the user is implic-
itly extracted by analyzing the rules that the user is composing,
only, without considering her older rules. Consequently, users can
change their intentions among sessions as the tool recomputes
recommendations based on the rules defined in the current session,
only. Figure 1 shows a sample usage scenario of TAPrec:

a) The user starts a personalization session by composing an IF-
THEN rule in a web-based application modeled after IFTTT.
When the first rule has been saved, TAPrec starts to analyze
the rules the user is defining in the given session to com-
pute recommendations that that follow the implicit user’s
high-level intention, i.e., by taking into account the final
functionality of the rules rather than details like manufac-
turers of brands.

b) As long as the user start composing a new rule, in particular,
TAPrec dynamically visualizes recommendations, if avail-
able. If interested, the user can select a recommendation to
be directly used.

c) Furthermore, if the user compose a rule by selecting a trigger
that is included in the current recommendation set, TAPrec
recommend the related action to auto-complete the rule.

To compute recommendations, TAPrec exploits RecRules [10], a
hybrid recommendation algorithm that addresses semantic-based
information and collaborative user preferences in a graph-based set-
ting to train learning-to-rank techniques. By leveraging a high-level
ontological model of trigger-action programming [9], RecRules is
able to abstract low-level details such as brands and manufacturers
and uncover hidden connections between rules in terms of shared
functionalities: a rule for turning on a lamp, for example, is func-
tionally similar to a rule for opening the blinds, because they share
a common final goal, i.e., to light up a place.

To the best of our knowledge, TAPrec is the first example of an
EUD platform for trigger-action programming that dynamically
recommends rules at composition time to assist users in satisfying
their actual personalization needs. TAPrec is modeled after IFTTT,
and it exploits the same metaphors and the same expressiveness
of the existing platform. This choice was made deliberately, by
considering the popularity of the platform [13], its ease of use and
accuracy in the rule composition process [5], and the availability
of real usage data [35], which we used to define available triggers
and actions.

To understand whether and how TAPrec can simplify the end-
user personalization of connected entities, we ran a controlled ex-
periment with 14 end users with different education levels and back-
grounds. In the study, we challenged participants in personalizing
different scenarios with both TAPrec (i.e., with recommendations)
and a IFTTT-like tool (the baseline, i.e., with no recommendations).
Results shows that TAPrec is appreciated and can effectively sim-
plify the personalization of connected entities. While composing a
rule remains a fundamental mechanism for users that know exactly
the personalization they want, participants stated that recommen-
dations are useful to reduce the composition time and effort, and to
discover new functionality that are otherwise “hidden” in the large
and confused sets of supported entities, triggers, and actions. Com-
pared to the IFTTT-like tool, in particular, TAPrec made users spend
more time in the personalization tasks, and spurred participants to
define more trigger-action rules that covered a larger number of
smart devices and online services.

Summarizing, the main contributions of our work are the fol-
lowing:

• We show how recommendation systems could be adopted
to help users define trigger-action rules for their connected
entities.

• We introduce TAPrec, a visual recommender system for
trigger-action programming that dynamically provides rec-
ommendations at composition time.

• In a study with 14 participants, we show that TAPrec sim-
plifies the definition of trigger-action rules and promotes

TAPrec: a Recommender System for Trigger Action Programming IUI ’20, March 17–20, 2020, Cagliari, Italy

creativity by helping users discover new functionality that
are not easily noticeable in existing platforms.

2 RELATEDWORKS
TAPrec lies at the intersection of research in two related areas:
(i) trigger-action programming in the IoT, and (ii) recommender
systems for the creation of software artifacts.

2.1 Trigger-Action Programming in the IoT
Lieberman et al. [25] defined End-User Development as “a set of
methods, techniques, and tools that allow users of software systems,
who are acting as non-professional software developers, at some point
to create, modify or extend a software artifact.” With the continuous
growth of the IoT and the spread of new online services, EUD is
becoming a fundamental paradigm to enable end users personalize
their connected entities. Starting from iCAP [14], a visual rule-based
system for PC to create context-aware applications, researchers
extensively explored approaches and methodologies for “program-
ming” connected entities in different contexts, e.g., mobile environ-
ments [31], smart homes [3, 12, 34], and web mashups [11, 33].

Meanwhile, IFTTT, Zapier, and several other commercial plat-
forms for personalizing the joint behavior of smart devices and
online services were born. Typically, such EUD platforms adopt a
trigger-action programming approach: by defining IF-THEN rules,
users can connect a pair of connected entities in such a way that,
when an event (the trigger) is detected on one of them, an action is
automatically executed on the second. Multiple studies, including
empirical characterization of usage perfomances [30] and large-
scale analysis of publicly shared rules [35], investigated different
aspects of contemporary platforms like IFTTT. Despite their popu-
larity [13] and apparent simplicity, using such trigger-action pro-
gramming platform is often a complex task for users without any
programming skills [21]. Indeed, while IF-THEN rules can express
most of the behaviors desired by potential users [1, 34], users fre-
quently misinterpret the behavior of trigger-action programs [4],
often deviating from their actual semantics, and errors in trigger-
action rules are very common [20].

Such a complexity is strictly related to the technology-dependent
representation models adopted by contemporary EUD platforms,
which require to manage separately every service and physical
device [7]. Numerous recent works tried to overcome such an ap-
proach by exploring new visual paradigms for composing rules [13],
or by adopting more abstract models that allow the definition of
context-independent rules [9, 17]. In our work, we follow a differ-
ent approach. As suggested by Ur et al. [35], the spread of new
connected entities highlights the need to provide users with more
support for discovering functionality. Rather than acting on the
underlying paradigms and models, we therefore propose to adopt
recommendation techniques to support users in defining trigger-
action rules: recommender systems could be useful to help end users
without programming skills to use EUD systems, and advances in
EUD have expanded the opportunities for offering recommenda-
tions [18]. Since users often have abstract personalization goals
that can be satisfied with multiple trigger-action rules [7, 9, 35], in
particular, we aim at assisting users in the current personalization
session: differently from traditional recommender systems, that

typically take into account the entire user’s history, TAPrec contin-
uously recompute recommendations by considering the rules that
the user is defining in a specific personalization session, only.

2.2 Recommender Systems for the Creation of
Software Artifacts

Using recommendation approaches to support the creation of soft-
ware artifacts, e.g., with feature recommendations [19, 23] or source
code suggestions [29], is a long-standing topic in software engi-
neering. Ye and Fisher [37], for instance, proposed CodeBroker, a
system that promotes software reusing by visualizing different type
of information into the current software development environment.
Malheiros et al. [26], instead, developed a recommender system to
solve change requests in source code. Other recent works focused
on suggesting APIs [15, 16, 32]: Nguyen et al. [32], for example,
presented APIREC, a novel API recommendation approach based
on statistical learning, while D’Souza et al. [15] developed PyReco,
an intelligent code completion system that recommends Python
API.

While all the described recommendation systems are designed
to support professional developers, recommendation opportunities
have not yet been consistently explored to support end-user devel-
opment, especially in the domain of trigger-action programming
for personalizing connected entities. Contemporary platforms such
as IFTTT and Zapier continue to offer limited types of suggestions,
e.g., by promoting the most popular rules, and only few recent
works started to address the problem of recommending new ways
of personalizing the joint behavior of smart devices and online ser-
vices [10, 36]. Yao et al. [36], in particular, developed a probabilistic
framework to suggest relevant smart “things” to be personalized
based on user preferences and interests. Corno et al. [10], instead,
proposed RecRules3, a semantic recommendation system that sug-
gests trigger-action rules on the basis of content-based and col-
laborative information. None of such recommendation algorithms,
however, has been tested with real users, and our understanding
of whether and how recommendation techniques would assist end
users in personalizing their connected entities remains limited.

In this work, we try to close this gap by integrating the RecRules
algorithm in an EUD platform, and by reporting on the results of a
user study with 14 end users.

3 RECOMMENDING FOR TRIGGER-ACTION
PROGRAMMING

To compute recommendations, TAPrec exploits the RecRules al-
gorithm [10], a hybrid and semantic recommender for suggesting
IF-THEN rules to end users. Through a mixed content and collab-
orative approach, the goal of RecRules is to recommend by func-
tionality, thus suggesting rules on the basis of the final intention
of the user, e.g., personalizing the temperature and the lighting of
some rooms. The algorithm, in particular, enriches trigger-action
rules with semantic information, and it implements a semantic
reasoning process to abstract low-level details such as involved
technologies, brands or manufactures. As a result, RecRules can
compute recommendations for yet unknown or rarely connected
3An implementation of the algorithm is available at https://git.elite.polito.it/public-
projects/recrules, last visited on September 30, 2019

https://git.elite.polito.it/public-projects/recrules
https://git.elite.polito.it/public-projects/recrules

IUI ’20, March 17–20, 2020, Cagliari, Italy Fulvio Corno et al.

Figure 2: The knowledge graph built by RecRules. IF-THEN
Rules are connected to users (collaborative information)
and semantic classes (content-based information). From the
graph, RecRules extracts path-based features able to char-
acterize the interaction between users and rules, and it ex-
ploits learning to rank techniques to compute top-N recom-
mendations.

entities, thus helping users to discover new functionality, starting
from their actual needs.

Let us consider a user (U1) that has already defined a rule for
turning on her Philips Hue lamp in the kitchen, for example:

R1 “if the kitchen Nest Cam recognizesme, then turn on the kitchen
Philips Hue.”

Besides other rules involving the same entities, i.e., Nest Cam and
Philips Hue, RecRules is able to suggest to the user rules that have
been defined by other users and that have identical functionality,
even if they involve different technologies, e.g.:

R2 “if the living room Homeboy Cam detects a movement, then
turn on the bedroom LIFX lamp.”

Moreover, the algorithm can suggest rules that are functionally
similar at high-level terms, i.e., “light up the room when I’m enter-
ing”:

R3 “if I open the SmartThings bedroom door, then open the Hunter
Douglas blinds.”

RecRules is characterized by two main phases, i.e., Knowledge
Graph Construction and Model Training. In the remainder of this
section, we summarize these phases, by highlighting the choices
we made in integrating the algorithm in TAPrec.

3.1 Knowledge Graph Construction
In the first phase of the algorithm, RecRules builds a knowledge
graph that models content-based and collaborative information
in a unique setting. Figure 2 shows a partial view of a knowl-
edge graph that includes the user U1, her defined rule R1, and
her potential recommendations, i.e., R2 and R3. Trigger-action
rules are first enriched with content-based information: they are
linked through type-relationships to the EUPont model [9], an on-
tological semantic representation of trigger-action programming.
EUPont classifies triggers and actions under OWL4 classes, e.g.,
“Presence Detection” and “Turn Lights On”, that abstract the involved

4https://www.w3.org/OWL/, last visited on September 30, 2019

technologies, brands, manufacturers, and user context. By lever-
aging on this, rules that involve a trigger and an action classified
under the same EUPont classes can be considered as functionally
similar, as for R1 and R2 in the example above. Since TAPrec is
based on the same metaphors and expressiveness of IFTTT, we
exploit the instantiation of EUPont for IFTTT5, that offers a hierar-
chical functionality representation of more than 500 triggers and
actions supported by the popular platform.

After linking IF-THEN rules to semantic information, RecRules
enrich the knowledge graph with collaborative information: rules
are linked to users by means of relationships able to discriminate
between relevant items, i.e., rules that are appreciated by the users,
and not relevant items, i.e., rules that are not appreciated and there-
fore should not be recommended. In our integration, we exploited
the dataset of IFTTT rules published by Ur et al. [35]. The dataset
contains more than 250,000 publicly shared on IFTTT as of Sep-
tember, 2016, with the indication of how many times each rule
has been reused by other users. We used this information to ex-
tract relevant/not relevant relationships. In particular, we followed
the procedure described in the original RecRules paper [10], i.e.,
by normalizing the number of reuses through a graded-implicit
feedback [24].

3.2 Model Training
From the knowledge graph, RecRules extracts path-based features
able to characterize the interaction between users and rules. Fea-
tures are defined as acyclic paths in the graph between users and
trigger-action rules. Paths can include both collaborative relation-
ships and content-based relationships. In this way, the feature vector
summarizes both the importance of a rule, i.e., how many times
it has been reused, and its similarity with other rules in terms of
final functionality. To finally compute top-N recommendations,
a ranking model from training data is built using a learning to
rank technique. In our integration, in particular, we use RecRules
to calculate the top-10 recommendations by exploiting the Ran-
dom Forest [2] algorithm, as suggested in in the original RecRules
paper [10].

4 THE TAPREC SYSTEM
TAPrec is an EUD platform that integrates dynamic IF-THEN rule
recommendations. Composing trigger-action rules is a convenient
mechanism to empower users to combine the behavior of their
apps and devices according to their situational needs [13]. TAPrec
supports such a mechanism with recommendations that are updated
in real-time according to the user interaction with the platform.
Suggestions, in particular, are continuously adapted to the cur-
rent high-level intention of the users: the goal is to assist them in
discovering new functionality able to satisfy their actual needs,
thus reducing the complexity introduced by the spread of new sup-
ported technologies. High-level intentions are modeled through
the top-level OWL classes of the EUPont ontology.

We implemented it as a web application consisting of two main
components, i.e., the TAP Server and the TAP GUI.

5http://elite.polito.it/ontologies/eupont-ifttt.owl, last visited on September 30, 2019

https://www.w3.org/OWL/
http://elite.polito.it/ontologies/eupont-ifttt.owl

TAPrec: a Recommender System for Trigger Action Programming IUI ’20, March 17–20, 2020, Cagliari, Italy

Figure 3: The TAPrec architecture. The user interface (TAP GUI) allows users to define trigger-action rules. It exploits, in
particular, a set of RESTful APIs to communicate with the TAP Server, which is in charge of managing rules and computing
recommendations through the RecRules algorithm.

4.1 TAP Server
The TAP Server has been implemented in Spring6, an open source
framework to develop web applications on top of the Java Enter-
prise Edition platform. It exposes a set of REST APIs that can be
used by a user interface, e.g., the TAP GUI, to manage rules and
get recommendations. By interacting with a MySQL database, in
particular, the server offers the features needed to manage collec-
tions of trigger-action rules, i.e., to create, read, update, and delete
rules. Furthermore, it integrates the RecRules algorithm to dynami-
cally compute top-10 rule recommendations. To this end, whenever
a rule is created, updated, or deleted, the server instantiates the
following recommendation process:

(1) the underlying knowledge graph, modeling content-based
and collaborative information, is updated in real-time;

(2) the updated graph is used to recompute the path-based fea-
tures;

(3) the recomputed path-based features are used to train the
Random Forest algorithm and recalculate recommendations.

The recommendation process is carried out in a separate thread:
when new recommendations are available, the TAP Server saves
them and makes them available through a dedicated REST API,
without blocking the interaction with the user interface. The time
needed to complete the recommendation process depends on the
size of the underlying knowledge graph, mainly, i.e., how many
users, rules, and connected entities are considered. In our evaluation,
described in next session, it lasted 32 seconds on average (𝑆𝐷 = 13).

4.2 TAP GUI
TAP GUI is the web-based user interface of TAPrec that interacts
with the TAP Server through the provided RESTAPIs.We developed
it with Angular7, a TypeScript-based open-source web application
framework.

To compose a rule, users can exploit an IFTTT-like interface to
separately compose the trigger (this) and the action (then). They
have to complete, in particular, the following composition process:

6https://spring.io, last visited on September 30, 2019
7https://angular.io, last visited on September 18, 2018

Figure 4: First step of the rule composition process: users
have to select a supported connected entity on which instan-
tiating the trigger.

(1) select a supported smart device or online service on which
instantiating the trigger (Figure 4), e.g., Homeboy Cam;

(2) select the specific trigger to be used, e.g., “movement de-
tected” for Homeboy security cams;

(3) fill in any additional information required by the trigger, e.g.,
which specific Homeboy cameras they want to use;

(4) repeat steps 1 to 3 for composing the action, e.g., to turn on
a specific LIFX lamp in the bedroom.

When users start composing a rule, TAP GUI performs a REST
request to the TAP Server to get the current top-10 recommenda-
tion set. If available, recommendations are dynamically displayed
as shown in Figure 5: when selected, recommended rules can be
directly completed and saved without the need of following the
entire composition process.

Besides using a recommended rule, users can click on the “this”
button to start a new composition process. If they select a trig-
ger that is included in the current recommendation set, however,
TAPrec recommends possible actions to auto-complete the rule, as
shown in Figure 6.

https://spring.io
https://angular.io

IUI ’20, March 17–20, 2020, Cagliari, Italy Fulvio Corno et al.

Figure 5: Recommendations of new trigger-action rules to
be used.

Figure 6: Recommendations of actions for auto-completing
a rule.

5 USER STUDY
To understand to what extent TAPrec can simplify the end-user
personalization of connected entities we performed a user-centered
online evaluation by running a user study with 14 participants.
Offline evaluations of recommender systems, in fact, may not give
the same outcome as online evaluations [27]. Furthermore, even
when testing online, higher accuracy does not always mean higher
satisfaction [28]. To understand and improve the user experience of
recommender systems, instead, it is necessary to conduct empirical
evaluations that consider the entire process of how the user expe-
rience comes about [22]. This is even more important in the EUD
domain for connected entities, where recommendation opportuni-
ties have not yet been consistently explored, and our understanding
of whether and how recommendation techniques would assist end
users in personalizing their connected entities is still limited.

5.1 Participants
The study involved 14 participants (7 females and 7 males) with
a mean age of 25.43 years (𝑆𝐷 = 3.74, 𝑟𝑎𝑛𝑔𝑒 : 19 − 32). In partic-
ular, we balanced our sample population by recruiting a) 7 users

with previous experience in computer science and programming
(2 female and 5 males, experts group), and b) 7 users without any
programming skills (5 females and 2 males, non experts group). To
this end, we sent emails to students enrolled in different university
courses and private messages to our social circles.

Expert participants included 3 PhD students and 4 master’s de-
gree students in Computer Engineering. On a Likert-scale from 1
(Very Low) to 5 (Very High), they stated their level of technological
savviness (𝑀 = 4.43, 𝑆𝐷 = 0.49), programming skills (𝑀 = 4.43,
𝑆𝐷 = 0.49), and familiarity with the trigger-action programming
approach (𝑀 = 3.86, 𝑆𝐷 = 0.83). One of them habitually used
IFTTT, 3 of them used IFTTT a few times, sporadically, while the
remaining 3 experts never used any EUD platform.

Non-expert participants, instead, included a medical student, 4
primary education science students, a middle school teacher, and a
salesperson. Their level of technological savviness (𝑀 = 3.14, 𝑆𝐷 =

0.99), programming skills (𝑀 = 1.71, 𝑆𝐷 = 0.69), and familiarity
with the trigger-action programming approach (𝑀 = 1.14, 𝑆𝐷 =

0.34) were substantially lower comparing to the experts group. Only
a non-expert participant had used IFTTT a few times, while the
remaining 6 had never used any EUD platform.

5.2 Procedure
We devised a within-subject study during which participants were
requested to personalize 2 different scenarios, one with an IFTTT-
like tool only (i.e., without recommendations), and one with TAPrec
(i.e., with recommendations). Both tools shared the same user in-
terface: the only difference was the absence or the presence of
recommendations. We brought each participant to our lab for a
45-minute session using the 2 tools on a Macbook Pro connected
to an external 22-inch monitor. At the beginning of the study, par-
ticipants were introduced to the trigger-action programming for
personalizing connected entities. Furthermore, before using a tool,
i.e., the IFTTT-like interface or TAPrec, participants saw a demon-
strative video that highlighted the main functionality of the given
interface.

Each scenario described a list of 34 devices and online services
that participants could personalize in a given context. While online
services (like Facebook and Gmail) and personal devices (like smart-
phones) were in common, each scenario included other specific
devices and systems:

Free-time. The first scenario included a set of smart devices and
systems installed in the user’s home, e.g., a washer, a refriger-
ator, an irrigation system, smart thermostats, and connected
lamps. Participants were free to combine the joint behavior
of their hypothetical online services, personal devices, and
home devices and systems to personalize their free time.

Work-time. The second scenario included a set of smart devices
and systems installed in the user’s personal office, e.g., a
coffemaker, an air purifier, a PC, a printer, smart heaters,
and connected lamps. Participants were free to combine the
joint behavior of their hypothetical online services, personal
devices, and office devices and systems to personalize their
work time.

TAPrec: a Recommender System for Trigger Action Programming IUI ’20, March 17–20, 2020, Cagliari, Italy

To explore whether and how recommendations assisted users
in defining personalizations, we deliberately designed a constraint-
free procedure: participants could use all the connected entities
described in a given scenario, and they were free to define as many
trigger-action rules as they want. In particular, we explicitly told
participants to stop using a given tool when they were satisfied with
their defined trigger-action rules. Scenarios and evaluated tools
were fully counterbalanced between participants. All the sessions
were audio recorded.

5.3 Measures
To collect measures, we followed the framework proposed by Knij-
nenburg et al. [22], i.e., a user-centric approach to recommender
system evaluation. According to the authors, it is important to
distinguish the following aspects:

• Objective System Aspects (OSA), i.e., the recommendation
algorithm;

• Subjective System Aspects (SSA), i.e., the users’ perception
of the objective system aspects;

• User Experience (EXP), i.e., users’ evaluation of their inter-
action with the system; and,

• Interaction (INT), i.e., users’ behaviors.
Since the exploited recommendation algorithm, i.e., RecRules,

had already been evaluated offline, in terms of precision and re-
call [10] (OSA), we focused on SSA, EXP, and INT aspects. Table 1
describes the measures we collected during the study, with the
indication of the related aspects, and the modality with which they
have been collected. Participants answered Likert-scale questions
immediately after using TAPrec, while the debriefing session was
carried out at the end of the study. Logs, instead, were used to
record the interaction between participants and both evaluated
tools.

Some measures, e.g., the total number of defined rules and the
time participants spend to personalize a given scenario, were avail-
able for both the evaluated tools: we used them to compare TAPrec
with the IFTTT-like baseline tool. Other measures, e.g., PRQ and
PRV, were instead specifically collected to evaluate the users’ per-
ception, experience, and interaction with TAPrec.

6 RESULTS AND DISCUSSION
Results are organized as follow. First, we investigate to what extent
TAPrec can simplify the end-user personalization of connected
entities with respect to contemporary EUD platforms. To this end,
we compare our tool with the IFTTT-like tool, i.e., the baseline.
Then, we analyze the measures we specifically collected for TAPrec
to further understand whether and how recommendations help
users define trigger-action rules.

6.1 TAPrec vs. the Baseline
To understand whether and how TAPrec can simplify the processes
needed by end users to define trigger-action rules, we compared the
usage of TAPrec and the IFTTT-like tool in the scenario personaliza-
tions. To this end, we analyzed the interaction between participants
and the exploited tools, i.e., the first 4 measures reported in Table 1.
Table 2 reports the average results of such a comparison.

On average, the usage of TAPrec resulted in a higher scenario
duration (𝑀 = 695.55 s, 𝑆𝐷 = 324.85 s) with respect to the IFTTT-
like tool (𝑀 = 532.63 s, 𝑆𝐷 = 173.01 s). A paired t-test confirmed
that this difference was statistically significant (𝑝 < 0.05). Such a
behavior was more evident for non-expert participants: on average,
they used TAPrec for 820.81 seconds (𝑆𝐷 = 245.12), and the IFTTT-
like tool for 551.17 seconds (𝑆𝐷 = 158.21), with a difference in the
scenario duration of 269.64 seconds. For expert participants, instead,
such a difference was of 82.88 seconds, only: they used TAPrec for
601.61 seconds (𝑆𝐷 = 359.90), and the IFTTT-like tool for 518.73
seconds (𝑆𝐷 = 192.86). However, a two-way mixed ANOVA with
a post-hoc analysis with Bonferroni correction did not reveal a
significant effect of the participant group on the scenario duration
(𝑝 > 0.05): as shown in Figure 7a, both experts and non experts
spent more time in personalizing a scenario when they used TAPrec.

By spending more time with TAPrec, participants personalized
the given scenario with a significantly higher number of rules
(𝑝 < 0.05): on average, participants defined 6.36 rules when they
can see and exploit recommendations (𝑆𝐷 = 2.84), while they de-
fined 4.85 rules (𝑆𝐷 = 1.29) with the IFTTT-like tool. Also in this
case, we did not find any significant differences between the partic-
ipants’ groups: as shown in Figure 7b, this behavior was common
across experts and non experts users. When using TAPrec, in par-
ticular, participants selected and directly used 2.53 rules on average
from the recommendations (𝑆𝐷 = 1.26). None of the participants,
instead, selected a recommended action to auto-complete a rule.
This suggests that recommendations are more useful at the begin-
ning of the composition process. When users deliberately decide to
compose a rule, indeed, they already know the personalization they
want: by analyzing the audio recordings of the studies, we found
that, before starting to compose a rule, the majority of the partici-
pants reasoned out loud about the specific triggers and actions to
be used.

To analyze whether and how the usage of TAPrec influenced the
features of the defined rules, we analyzed the number of unique con-
nected entities used in each scenario personalization. By defining
more trigger-action rules, in particular, participants also covered
a larger number of smart devices and online services: on average,
they used 10.43 different entities with TAPrec (𝑆𝐷 = 3.48), while
they personalized 8.5 different entities with the IFTTT-like tool
(𝑆𝐷 = 1.65). Despite not significant (𝑝 = 0.091), Figure 7 (c) shows
that such a trend characterized both experts and non experts par-
ticipants. This suggests that TAPrec helped all the participants
discover new functionality that were otherwise “hidden” in the
menus characterizing the composition process.

Key Takeaway: Compared with the baseline tool, TAPrec pro-
moted creativity by making users spend more time in the personal-
ization tasks. Recommendations, in particular, spurred participants
to define more trigger-action rules that covered a larger number of
smart devices and online services.

6.2 Recommendations Evaluation
To further understand whether and how recommendations helped
participants in personalizing the scenarios, we investigated the
participants’ perception and experience with TAPrec, i.e., the last 4
measures reported in Table 1.

IUI ’20, March 17–20, 2020, Cagliari, Italy Fulvio Corno et al.

Table 1: The measures we collected during our user study. Through different logs, we recorded the interaction between par-
ticipants and both the evaluated tools. Likert-scale questions and a final debriefing session were instead used to measure
Subjective System Aspects (SSA) and User Experience (EXP) with TAPrec.

Measure Description Collection Type IFTTT TAPrec Aspect

Rules Features The entities, triggers, and actions involved in the defined rules Logs ✓ ✓ INT
Scenario Duration The time participants spend to personalize a given scenario Logs ✓ ✓ INT
Defined Rules The total number of defined rules Logs ✓ ✓ INT
Selected Rules The number of rules selected from the recommendations Logs ✗ ✓ INT
PRQ The Perceived Recommendation Quality of the proposed suggestions Likert-scale questions ✗ ✓ SSA
PRV The Perceived Recommendation Variety of the proposed suggestions Likert-scale questions ✗ ✓ SSA
PEF The Perceived Effectiveness and Fun in using the recommender system Likert-scale questions ✗ ✓ EXP
Usefulness The perceived usefulness of the visualized recommendations Debriefing ✗ ✓ EXP

(a) Scenario Duration (b) Defined Rules (c) Rules Features

Figure 7: Independently of the participant groups, the usage of TAPrec increased (a) the time spent by the participants in
personalizing a given scenario, (b) the total number of defined rules, and (c) the number of different connected entities involved
in the define rules.

Table 2: Paired t-tests comparing TAPrec with the IFTTT-
like tool in terms of scenario duration, defined rules, and
rules features.

IFTTT
M (SD)

TAPrec
M (SD) p

Scenario Duration [s] 532.63 (173.01) 695.55 (324.85) .049
Defined Rules 4.85 (1.29) 6.36 (2.84) .034
Rules Features [# Entities] 8.5 (1.65) 10.43 (3.48) .091

Table 3 reports the results of the analysis of the Likert-scale
questions participants answered after personalizing a scenario with
TAPrec.

On a Likert-scale from 1 (absolutely no) to 5 (absolutely yes),
participants evaluated the perceived effectiveness and fun in using
TAPrec (PEF measure) by stating that:

a) they would recommend the tool to other users (𝑀 = 4.57,
𝑆𝐷 = 0.62), and

b) having recommendations available was convenient (𝑀 =

4.64, 𝑆𝐷 = 0.48).
Participants, in particular, perceived the visualized recommen-

dations as accurate (PRQ metric): on a Likert-scale from 1 (abso-
lutely no) to 5 (absolutely yes), they liked the proposed suggestions
(𝑀 = 4.07, 𝑆𝐷 = 0.96), and they found that the recommended

Table 3: The analysis of the Likert-scale questions partici-
pants answered after personalizing a scenario with TAPrec.
Results show that TAPrec was appreciated in terms of Per-
ceived Effectiveness and Fun (PEF), Perceived Recommenda-
tion Quality (PRQ), and Perceived Recommendation Variety
(PRV).

M (SD) Measure

I would recommend TAPrec to others 4.57 (0.62) PEF
TAPrec is convenient 4.64 (0.48) PEF
I liked the recommendations 4.07 (0.96) PRQ
Recommendations fitted my preferences 3.86 (0.74) PRQ
Recommendations contained a lot of variety 3.71 (1.03) PRV

rules and actions fitted their preferences in most cases (𝑀 = 3.86,
𝑆𝐷 = 0.74). Furthermore, they agreed that, in many cases, recom-
mendations contained a lot of variety (𝑀 = 3.86, 𝑆𝐷 = 0.74, PRV
metric).

In the debriefing session, we measured the usefulness of TAPrec.
7 out of 14 (50%) participants pointed out that the major advantage
of having recommendations is related to the time needed for defin-
ing trigger-action rules. P6, for example, said that “TAPrec made
you save time by proposing to you the most common rules”, while

TAPrec: a Recommender System for Trigger Action Programming IUI ’20, March 17–20, 2020, Cagliari, Italy

P2 asserted that, with recommendations, “you don’t have to think
about anything else, just if you need the rule.”

6 participants (42.85%), instead, recognized that TAPrec reduces
the effort needed to discover new functionality. P1 and P4, for
example, said:

“I found recommendations useful to personalize the sce-
nario: the tool showed to me rules I hadn’t thought of,
and also rules that I didn’t know could be done. I never
thought I’d use my car to detect that I got home!” (P1)

“Yes, recommendations were useful because they made
me think of new possible connections between triggers
and actions.” (P4)

Besides helping users in discovering new functionality, the rec-
ommendations provided by TAPrec were also useful for “refining”
the rules already defined by the users:

“In one case, I have already composed a rule to auto-
matically turn on the kitchen lamp when I was near
home. Then, I received a recommendation of a rule for
the same behavior, but with a more precise trigger that
detected that I was entering the kitchen. So I think rec-
ommendations are also useful to improve your rules.”
(P1)

Participants, in particular, liked the novel characteristic of TAPrec,
i.e., helping users in the current personalization session, with rec-
ommendations that are updated in real-time to follow the user’s
high-level intention. P5, for example, noted that “recommendations
fitted my personalization needs”, while P13 acknowledged that “the
tool analyzed my preferences and then recommended proper trigger-
action rules.” Furthermore, P9 explicitly said that “recommendations
focused on the specific situation I was trying to personalize.”

Finally, P13 confirmed that, despite recommendations have proven
to be extremely useful, composing a rule remains a fundamental
mechanism, especially when users know exactly the personalization
they want:

“Yes, recommendations can help you save time, but they
often don’t reflect exactly your needs. I prefer to commit
myself in composing rules.” (P13)

Key Takeaway: Participants appreciated the recommendations
provided by TAPrec, and they liked the novel characteristics of the
tool by stating that suggestions reflected their current personaliza-
tion needs. They pointed out that recommendations were useful
to reduce the time needed for defining trigger-action rules, and to
reduce the effort needed to discover new functionality.

7 LIMITATIONS
The main limitation of our study is that it involved the definition
of trigger-action rules in a lab setting; a more ecologically-valid
study would be to deploy and test TAPrec in-the-wild, where users
could define and execute trigger-action rules on their (real) smart
devices and online services. As such, our results suggests that rec-
ommending trigger-action rules at composition time is a viable way
of simplifying trigger-action programming.

8 CONCLUSIONS AND FUTUREWORKS
Given the spread of connected entities, be they novel smart devices
or online services, trigger-action programming becomes a complex
task for end users. In this paper, we presented TAPrec, an end-user
development tool that supports the composition of trigger-action
rules with dynamic recommendations of new rules to be used or
actions to auto-complete a defined trigger. By exploiting a hybrid
and semantic recommendation algorithm, the tool assist the user
in the current personalization session, with suggestions that are
updated in real-time to follow the high-level intention of the user,
e.g., personalizing the temperature and the lighting of her rooms.
Results of a user study with 14 participants highlight that TAPrec
can effectively simplify the personalization of connected entities.
Participants found recommendations useful to reduce the time for
defining trigger-action rules and to discover new functionality. Fur-
thermore, compared to an IFTTT-like tool (i.e., a tool with the same
interface but without recommendations), TAPrec promoted creativ-
ity by making participants to a) spend more time in personalizing
scenarios tasks, and b) define more trigger-action rules that covered
a larger number of smart devices and online services.

Future works will include an in-the-wild study of the proposed
system involving real devices and online services, with the aim of
further understanding how much the computed recommendations
effectively map users’ intentions over a long period of usage.

REFERENCES
[1] B. R. Barricelli and S. Valtolina. 2015. End-User Development: 5th International Sym-

posium, IS-EUD 2015,Madrid, Spain,May 26-29, 2015. Proceedings. Springer Interna-
tional Publishing, Cham, Germany, Chapter Designing for End-User Development
in the Internet of Things, 9–24. https://doi.org/10.1007/978-3-319-18425-8_2

[2] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (Oct. 2001), 5–32.
https://doi.org/10.1023/A:1010933404324

[3] Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber, and Florian Schaub.
2017. Exploring End User Programming Needs in Home Automation. ACM
Transaction on Computer-Human Interaction 24, 2, Article 11 (April 2017), 35 pages.
https://doi.org/10.1145/3057858

[4] A.J. Bernheim Brush, Bongshin Lee, Ratul Mahajan, Sharad Agarwal, Stefan
Saroiu, and Colin Dixon. 2011. Home Automation in the Wild: Challenges and
Opportunities. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’11). ACM, New York, NY, USA, 2115–2124. https:
//doi.org/10.1145/1978942.1979249

[5] Danilo Caivano, Daniela Fogli, Rosa Lanzilotti, Antonio Piccinno, and Fabio Cas-
sano. 2018. Supporting end users to control their smart home: design implications
from a literature review and an empirical investigation. Journal of Systems and
Software 144 (2018), 295–313. https://doi.org/10.1016/j.jss.2018.06.035

[6] Vint Cerf and Max Senges. 2016. Taking the Internet to the Next Physical Level.
IEEE Computer 49, 2 (Feb 2016), 80–86. https://doi.org/10.1109/MC.2016.51

[7] F. Corno, L. De Russis, and A. Monge Roffarello. 2017. A Semantic Web Ap-
proach to Simplifying Trigger-Action Programming in the IoT. Computer 50, 11
(November 2017), 18–24. https://doi.org/10.1109/MC.2017.4041355

[8] F. Corno, L. De Russis, and A. Monge Roffarello. 2019. EUDoptimizer: Assisting
End Users in Composing IF-THEN Rules Through Optimization. IEEE Access 7
(2019), 37950–37960. https://doi.org/10.1109/ACCESS.2019.2905619

[9] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019. A high-
level semantic approach to End-User Development in the Internet of Things.
International Journal of Human-Computer Studies 125 (2019), 41 – 54. https:
//doi.org/10.1016/j.ijhcs.2018.12.008

[10] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019. RecRules:
Recommending IF-THEN Rules for End-User Development. ACM Trans. Intell.
Syst. Technol. 10, 5, Article 58 (Sept. 2019), 27 pages. https://doi.org/10.1145/
3344211

[11] Florian Daniel and Maristella Matera. 2014. Mashups: Concepts, Models and
Architectures. Springer Publishing Company, Incorporated.

[12] Luigi De Russis and Fulvio Corno. 2015. HomeRules: A Tangible End-User
Programming Interface for Smart Homes. In Proceedings of the 33rd Annual ACM
Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA
’15). ACM, New York, NY, USA, 2109–2114. https://doi.org/10.1145/2702613.
2732795

https://doi.org/10.1007/978-3-319-18425-8_2
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3057858
https://doi.org/10.1145/1978942.1979249
https://doi.org/10.1145/1978942.1979249
https://doi.org/10.1016/j.jss.2018.06.035
https://doi.org/10.1109/MC.2016.51
https://doi.org/10.1109/MC.2017.4041355
https://doi.org/10.1109/ACCESS.2019.2905619
https://doi.org/10.1016/j.ijhcs.2018.12.008
https://doi.org/10.1016/j.ijhcs.2018.12.008
https://doi.org/10.1145/3344211
https://doi.org/10.1145/3344211
https://doi.org/10.1145/2702613.2732795
https://doi.org/10.1145/2702613.2732795

IUI ’20, March 17–20, 2020, Cagliari, Italy Fulvio Corno et al.

[13] G. Desolda, C. Ardito, and M. Matera. 2017. Empowering End Users to Customize
Their Smart Environments: Model, Composition Paradigms, and Domain-Specific
Tools. ACM Transaction on Computer-Human Interaction (TOCHI) 24, 2, Article
12 (April 2017), 52 pages. https://doi.org/10.1145/3057859

[14] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. 2006. iCAP:
Interactive Prototyping of Context-aware Applications. In Proceedings of the 4th
International Conference on Pervasive Computing (PERVASIVE’06). Springer-Verlag,
Berlin, Heidelberg, 254–271. https://doi.org/10.1007/11748625_16

[15] A. R. D’Souza, D. Yang, and C. V. Lopes. 2016. Collective Intelligence for
Smarter API Recommendations in Python. In 2016 IEEE 16th International
Working Conference on Source Code Analysis and Manipulation (SCAM). 51–60.
https://doi.org/10.1109/SCAM.2016.22

[16] Ekwa Duala-Ekoko and Martin P. Robillard. 2011. Using Structure-Based Rec-
ommendations to Facilitate Discoverability in APIs. Springer Berlin Heidelberg,
Berlin, Heidelberg, 79–104. https://doi.org/10.1007/978-3-642-22655-7_5

[17] G. Ghiani, M. Manca, F. Paternò, and C. Santoro. 2017. Personalization of Context-
Dependent Applications Through Trigger-Action Rules. ACM Transactions on
Computer-Human Interaction (TOCHI) 24, 2, Article 14 (April 2017), 33 pages.
https://doi.org/10.1145/3057861

[18] Will Haines, Melinda Gervasio, Aaron Spaulding, and Bart Peintner. 2010. Rec-
ommendations for End-User Development. In Proceedings of the ACM RecSys
2010 Workshop on User-Centric Evaluation of Recommender Systems and Their
Interfaces (UCERSTI).

[19] Mostafa Hamza and Robert J. Walker. 2015. Recommending Features and Feature
Relationships from Requirements Documents for Software Product Lines. In
Proceedings of the Fourth International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE ’15). IEEE Press, Piscataway, NJ, USA,
25–31.

[20] Justin Huang and Maya Cakmak. 2015. Supporting Mental Model Accuracy in
Trigger-action Programming. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp ’15). ACM, New
York, NY, USA, 215–225. https://doi.org/10.1145/2750858.2805830

[21] Ting-Hao K. Huang, A. Azaria, and J. P. Bigham. 2016. InstructableCrowd:
Creating IF-THEN Rules via Conversations with the Crowd. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems
(CHI EA ’16). ACM, New York, NY, USA, 1555–1562. https://doi.org/10.1145/
2851581.2892502

[22] Bart P. Knijnenburg, Martijn C. Willemsen, Zeno Gantner, Hakan Soncu, and
Chris Newell. 2012. Explaining the user experience of recommender systems.
User Modeling and User-Adapted Interaction 22, 4 (01 Oct 2012), 441–504. https:
//doi.org/10.1007/s11257-011-9118-4

[23] Jacob Krüger. 2018. When to Extract Features: Towards a Recommender Sys-
tem. In Proceedings of the 40th International Conference on Software Engineer-
ing: Companion Proceeedings (ICSE ’18). ACM, New York, NY, USA, 518–520.
https://doi.org/10.1145/3183440.3190328

[24] Lukas Lerche and Dietmar Jannach. 2014. Using Graded Implicit Feedback for
Bayesian Personalized Ranking. In Proceedings of the 8th ACM Conference on
Recommender Systems (RecSys ’14). ACM, New York, NY, USA, 353–356. https:
//doi.org/10.1145/2645710.2645759

[25] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End User
Development. Springer Netherlands, Dordrecht, Netherlands, Chapter End-User
Development: An Emerging Paradigm, 1–8. https://doi.org/10.1007/1-4020-5386-

X_1
[26] Y. Malheiros, A. Moraes, C. Trindade, and S. Meira. 2012. A Source Code Rec-

ommender System to Support Newcomers. In 2012 IEEE 36th Annual Computer
Software and Applications Conference. 19–24. https://doi.org/10.1109/COMPSAC.
2012.11

[27] Sean M. McNee, Istvan Albert, Dan Cosley, Prateep Gopalkrishnan, Shyong K.
Lam, Al Mamunur Rashid, Joseph A. Konstan, and John Riedl. 2002. On the
Recommending of Citations for Research Papers. In Proceedings of the 2002 ACM
Conference on Computer Supported Cooperative Work (CSCW ’02). ACM, New
York, NY, USA, 116–125. https://doi.org/10.1145/587078.587096

[28] Sean M. McNee, John Riedl, and Joseph A. Konstan. 2006. Being Accurate is Not
Enough: How Accuracy Metrics Have Hurt Recommender Systems. In CHI ’06
Extended Abstracts on Human Factors in Computing Systems (CHI EA ’06). ACM,
New York, NY, USA, 1097–1101. https://doi.org/10.1145/1125451.1125659

[29] Kim Mens and Angela Lozano. 2014. Source Code-Based Recommendation Systems.
Springer Berlin Heidelberg, Berlin, Heidelberg, 93–130. https://doi.org/10.1007/
978-3-642-45135-5_5

[30] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. 2017. An Empirical
Characterization of IFTTT: Ecosystem, Usage, and Performance. In Proceedings
of the 2017 Internet Measurement Conference (IMC ’17). ACM, New York, NY, USA,
398–404. https://doi.org/10.1145/3131365.3131369

[31] A. Namoun, A. Daskalopoulou, N. Mehandjiev, and Z. Xun. 2016. Exploring Mo-
bile End User Development: Existing Use and Design Factors. IEEE Transactions
on Software Engineering 42, 10 (Oct 2016), 960–976. https://doi.org/10.1109/TSE.
2016.2532873

[32] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily
Mast, Eli Rademacher, Tien N. Nguyen, and Danny Dig. 2016. API Code Rec-
ommendation Using Statistical Learning from Fine-grained Changes. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE 2016). ACM, New York, NY, USA, 511–522.
https://doi.org/10.1145/2950290.2950333

[33] K. T. Stolee and S. Elbaum. 2013. Identification, Impact, and Refactoring of Smells
in Pipe-Like Web Mashups. IEEE Transactions on Software Engineering 39, 12
(Dec 2013), 1654–1679. https://doi.org/10.1109/TSE.2013.42

[34] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. 2014.
Practical Trigger-action Programming in the Smart Home. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’14). ACM, New
York, NY, USA, 803–812. https://doi.org/10.1145/2556288.2557420

[35] B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard, D. Schulze,
and M. L. Littman. 2016. Trigger-Action Programming in the Wild: An Analysis
of 200,000 IFTTT Recipes. In Proceedings of the 34rd Annual ACM Conference
on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA,
3227–3231. https://doi.org/10.1145/2858036.2858556

[36] Lina Yao, Quan Z. Sheng, Anne H.H. Ngu, Helen Ashman, and Xue Li. 2014.
Exploring Recommendations in Internet of Things. In Proceedings of the 37th
International ACM SIGIR Conference on Research & Development in Information
Retrieval (SIGIR ’14). ACM, New York, NY, USA, 855–858. https://doi.org/10.
1145/2600428.2609458

[37] Y. Ye and G. Fischer. 2002. Supporting reuse by delivering task-relevant and
personalized information. In Proceedings of the 24th International Conference on
Software Engineering. ICSE 2002. 513–523. https://doi.org/10.1109/ICSE.2002.
1007995

https://doi.org/10.1145/3057859
https://doi.org/10.1007/11748625_16
https://doi.org/10.1109/SCAM.2016.22
https://doi.org/10.1007/978-3-642-22655-7_5
https://doi.org/10.1145/3057861
https://doi.org/10.1145/2750858.2805830
https://doi.org/10.1145/2851581.2892502
https://doi.org/10.1145/2851581.2892502
https://doi.org/10.1007/s11257-011-9118-4
https://doi.org/10.1007/s11257-011-9118-4
https://doi.org/10.1145/3183440.3190328
https://doi.org/10.1145/2645710.2645759
https://doi.org/10.1145/2645710.2645759
https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1109/COMPSAC.2012.11
https://doi.org/10.1109/COMPSAC.2012.11
https://doi.org/10.1145/587078.587096
https://doi.org/10.1145/1125451.1125659
https://doi.org/10.1007/978-3-642-45135-5_5
https://doi.org/10.1007/978-3-642-45135-5_5
https://doi.org/10.1145/3131365.3131369
https://doi.org/10.1109/TSE.2016.2532873
https://doi.org/10.1109/TSE.2016.2532873
https://doi.org/10.1145/2950290.2950333
https://doi.org/10.1109/TSE.2013.42
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1145/2600428.2609458
https://doi.org/10.1145/2600428.2609458
https://doi.org/10.1109/ICSE.2002.1007995
https://doi.org/10.1109/ICSE.2002.1007995

	Abstract
	1 Introduction
	2 Related Works
	2.1 Trigger-Action Programming in the IoT
	2.2 Recommender Systems for the Creation of Software Artifacts

	3 Recommending for Trigger-Action Programming
	3.1 Knowledge Graph Construction
	3.2 Model Training

	4 The TAPrec System
	4.1 TAP Server
	4.2 TAP GUI

	5 User Study
	5.1 Participants
	5.2 Procedure
	5.3 Measures

	6 Results and Discussion
	6.1 TAPrec vs. the Baseline
	6.2 Recommendations Evaluation

	7 Limitations
	8 Conclusions and Future Works
	References

