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ABSTRACT

This paper applies the isogeometric analysis (IGA) based on unified one-dimensional (1D) models to study static, free

vibration and dynamic responses of metallic and laminated composite straight beam structures. By employing the Car-

rera Unified Formulation (CUF), 3D displacement fields are expanded as 1D generalized displacement unknowns over

the cross-section domain. 2D hierarchical Legendre expansions (HLE) are adopted in the local area for the refine-

ment of cross-section kinematics. In contrast, B-spline functions are used to approximate 1D generalized displacement

unknowns, satisfying the requirement of interelement high-order continuity. Consequently, IGA-based weak-form gov-

erning equations can be derived using the principle of virtual work and written in terms of fundamental nuclei, which

are independent of the class and order of beam theory. Several geometrically linear analyses are conducted to address

the enhanced capability of the proposed approach, which is prominent in the detection of shear stresses, higher-order

modes and stress wave propagation problems. Besides, 3D-like behaviors can be captured by the present IGA-based

CUF-HLE method with reduced computational costs compared with 3D finite element method (FEM) and FEM-based

CUF-HLE method.

Keywords: Isogeometric analysis; Carrera Unified Formulation; Beam structures; B-spline functions; Hierarchical

Legendre expansions
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1 Introduction

Slender structures, known as beams, are vastly utilized as primary and secondary components in various engineer-

ing applications and fields, such as in aircraft wings in aerospace engineering, in girders of long-span bridges in civil

engineering, and in gas pipelines in ocean engineering. During the period of their service, these structures are suscepti-

ble to endure a variety of external loads; e.g., dead loads, impact loads, and cyclic loads. A number of one-dimensional

(1D) structural models have been developed for the optimal and safe design of beam structures. Despite this, the exact

characterization of stress/strain fields and dynamic responses in these structural components still remains an open issue

and more advanced simulation techniques are preferred and needed continuously in many industrial applications.

Euler-Bernoulli Beam Model (EBBM) [1] and Timoshenko Beam Model (TBM) [2] are two well-known classical

beam theories. The former [3] assumed that the cross section remains perpendicular to the neutral layer after deforma-

tion, thus neglecting shear deformation effects. The latter relaxed the normality assumption of plane sections, leading

to a constant shear distribution in the thickness direction. Boley [4] presented series solutions based on EBBM for the

stresses and displacements of rectangular beams in the pure bending state. The results showed that EBBM is sufficiently

accurate for thin beams. Various finite element models were introduced to study free vibration responses of Timoshenko

beams by accounting for the shear deformation and rotary inertia [5–7]. Compared with EBBM, TBM is more suitable

for handling the issue of thick beams and higher-order modes . However, a shear correction factor should be introduced

to satisfy the stress-free conditions on the lateral surfaces. Further applications of EBBM and TBM in the mechanical

analyses of thin-walled and composite beams can be founded in [8–10]. Although fruitful results are obtained using

TBM, questions abound over the determination of the shear correction factor. In order to overcome the drawback of

classical theories, several refined beam models have been proposed, including higher-order shear deformation theo-

ries (HSDT) [11–16], the generalized beam theory (GBT) [17–21], the warping function [22–26] and the variational

asymptotic method (VAM) [27–29].

Although the aforementioned refined beam models can improve the numerical accuracy to some extent, some of

them cannot address non-classical effects; e.g., torsion, warping and in-plane deformations at the same time. From

this standpoint, the Carrera Unified Formulation (CUF) was introduced to solve mechanical problems of various beam

structures in a unified manner. The basic idea of CUF is to degenerate any structural theories into generalized kinematics

by means of arbitrary expansions of unknown variables, e.g., displacement or stress components. Initially, CUF was

exploited for the development of plate and shell (2D) models [30] and extended to beam (1D) models [31]. Depending

on the choice of the polynomials employed in the expansion, 1D CUF can be classified as follows: 1D CUF-TE (Taylor

expansion), -LE (Lagrange expansion), -HLE (hierarchical Legendre expansion) and -CE (Chebyshev expansion). TE

[32] and CE [33] define the cross-section kinematics in a global sense, thus enhancing the solutions through an increase

of the polynomial order. In contrast, LE [34] and HLE [35] make use of discretizations of the cross-section domain,

thus they represent the total surface exactly and can deal with thin-walled and composite sections more accurately.

Besides, the addition of higher-order terms in LE requires the re-allocation of interpolation points and redefinition of

the lower-order terms, leading to a cumbersome work in the pre-processing stage. On the other hand, HLE combines
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the advantage of the hierarchy of the expansion order in TE and the local refinement of cross-section kinematics in

LE, therefore they are more suitable for dealing with beam problems of arbitrarily complex geometric and material

properties. 1D CUF models [33–37] were applied to the linear static and free vibration analysis of isotropic beams with

arbitrary cross-section geometries. By comparing these results, 1D CUF-CE and -TE produced much closer solutions,

which were less accurate than those predicted by 1D CUF-LE and -HLE with reference to 3D solid solutions over highly

deformed zones. Similar mechanical problems of composite beams have also been conducted by these four 1D CUF

models [33, 38–41], showing that the global deformations featured by the complicated coupling of the bending-shear-

torsion due to the heterogeneity of the laminates can be perfectly detected with 10-100 times fewer degrees of freedom

than 3D numerical results provided by commercial software tools.

It should be pointed out that, governing equations of 1D CUF can be solved by closed-form and numerical so-

lutions. Closed-form solutions are represented by Navier-type [42–45] and Dynamic Stiffness Method (DSM) [46].

Although they are error-free mathematically, the former is confined to simply supported boundary conditions and the

latter comes through the resolution of a nonlinear, transcendental eigenvalue problem. Numerical solutions can be dis-

tinguished as the strong-form and weak-form solutions. Classical C0 Finite Element Method (FEM), as a member of

weak-form solutions, provides the convenience to handle arbitrary geometries and loading conditions. Whereas quite

dense mesh is needed in order to analyze the area of high-gradient stresses, capture higher-order modes and describe

wave propagation with high-frequency components. Therefore, the development of efficient weak-form solutions is still

appealing, which is the case of interest for this paper.

Isogeometric analysis (IGA), presented by Hughes et al. [47], has proven itself to be a useful tool in coping

with an array of engineering problems in computational mechanics [48]. The core idea of IGA is to use B-splines or

non-uniform rational B-splines (NURBS) describing geometrical information in computer-aided design (CAD) to ap-

proximate solution fields in FEM, bridging the existing gap between CAD and computer-aided engineering (CAE). This

approach enables the mesh refinement process without interaction with the CAD system. Moreover, Cp−1-continuous

B-spline or NURBS basis functions in IGA are superior to C0-continuous Lagrange basis functions in FEM, leading

to improved solutions without geometrical errors. Up to now, IGA has been widely employed to analyze the behavior

of beam structures, with B-splines for straight beams and NURBS for curved beams. Kiendl et al. [49] established

single-variable formulations for the Timoshenko beam problem based on IGA. Such novel formulations were com-

pletely locking-free and involved only half of degrees of freedom compared to standard Timoshenko formulations.

Cottrell et al. [50, 51] developed the concept of IGA to structural vibration and wave propagation problems and investi-

gated the effects of different mesh refinement strategies on the higher-order modes. Wen et al. [52] considered IGA for

transient wave propagation problems with a robust implicit time integration scheme. Elastodynamic problems of beam

structures subjected to moving vehicles were conducted by Van [53] using a NURBS-based formulation. The works

above pay a special attention to the straight beam problems. NURBS-based IGA was introduced by Luu et al. [54] to

investigate in-plane free vibrations of curved beams and rings with the variable curvature. Maurin et al. [55] proposed

a rotation-free isogeometric framework to solve static and dynamic problems of planar beam structures. Furthermore,
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the application of an IGA formulation to laminated structures can be seen in references [56–59] where interlaminar

stress distribution, mid and high-range eigen-frequencies and delamination initiation and propagation phenomena can

be captured accurately.

Although many applications of IGA in beam structures have been implemented successfully, the research about

the synthesis of IGA and CUF is reported less frequently and should be in continuous development. Initially, Alesadi et

al. [60, 61] combined CUF and IGA for free vibration and linearized buckling analyses of composite laminated plates,

where 2D CUF-TE and -HLE was utilized, respectively. Subsequently, IGA was extended for the analysis of thin-walled

beam structures within the framework of 1D CUF-TE [62] Equivalent Single Layer models. According to their results,

higher-order B-spline functions contributed to attenuate the effect of shear locking and higher-order CUF expansions

can overcome the Poisson locking phenomenon. In the present article, 1D CUF-HLE has been used in the combination

of B-splines-based IGA for the geometrically linear analysis of straight beam structures. Such a combination leads

to a high-fidelity computational framework with the convenience in the pre-processing stage, enabling to formulate

Layer-wise models for the analysis of straight multilayered beams.

The rest of the paper is structured as follows: a brief introduction the theoretical basis of CUF formulation is

introduced in Section 2; followed by a description of cross-section kinematics based on HLE in Section 3 and 1D

displacement interpolation functions based on B-spline functions in Section 4. Section 5 focuses on the derivation

procedure of governing equations in terms of fundamental nuclei for static, free vibration and dynamic problems.

Several numerical cases are given in Section 6 to validate the accuracy and robustness of the proposed approach. Finally,

the main conclusions are provided in Section 7.

LO

Figure 1: The global coordinate system.

2 Carrera Unified Formulation (CUF)

A beam is a typical slender structure, whose longitudinal length (L) is primary with respect to the other two

orthogonal dimensions. As shown in Fig. 1, we adopt the Cartesian coordinate system as the global coordinate system

for the beam structure where x − z plane and y−axis (0 ≤ y ≤ L) are parallel and perpendicular to the cross section,

respectively. The displacement vector u(x, y, z; t), strain vector ε(x, y, z; t) and stress vector σ(x, y, z; t) at a specified

5



point of the structure can be expressed as:

u(x, y, z; t) =
{
ux uy uz

}T

ε(x, y, z; t) =
{
εyy εxx εzz εxz εyz εxy

}T

σ(x, y, z; t) =
{
σyy σxx σzz σxz σyz σxy

}T

(1)

where superscript “T” is the transpose operator. t is the time variable, being omitted in the remaining part for conve-

nience.

The geometrical equations fit the linear relation and the constitutive equations obey the Hooke’s law:

ε(x, y, z) = Du(x, y, z)

σ(x, y, z) = Cε(x, y, z)
(2)

where D is a 6× 3 differential operator matrix and C is the matrix of the material coefficient. One can see the references

[31, 63] for their explicit forms.

Classical beam models, such as EBBM and TBM, are well-known for mechanic analysis of slender isotropic

structures with the bending-dominated deformation. However, these theories are less utilized in the modeling of thin-

walled and composite structures due to the poorer cross-section kinematic fields. To address this problem, CUF develops

a unified beam model in which the cross-section kinematic fields can be defined by means of arbitrary functions related

to x and z coordinates, as follows:

u(x, y, z) = Fτ(x, z)uτ(y) τ = 1, 2, ....,M (3)

where uτ(y) is a 1D generalized displacement vector along the axis of the beam. Fτ(x, z) is the arbitrary cross-section

expansion, which determines the type of the beam model. The repeated index τ stands for summation and M for the

number of expansion terms.

3 Hierarchical Legendre expansions (HLE)

Hierarchical Legendre polynomials were initially exploited by Szabó et al. [64] for the construction of p-version

FEM. Inspired from this work, Carrera et al. [35] made use of hierarchical Legendre polynomials as Fτ(x, z), leading

to the so-called CUF-Hierarchical Legendre Expansions (HLE) beam model. In CUF-HLE, the polynomials are de-

fined on the local natural coordinate system and mapped into the global coordinate system through the isoparametric

transformation, enabling Layer-wise kinematics in a natural way. The formulation of 2D Legendre polynomials can be

divided into three groups: vertex, side and internal functions. To be specific, vertex functions are introduced to create
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the first-order expansions, defined as bilinear Lagrange polynomials:

Fτ =
1
4

(1 + rrτ)(1 + ssτ) τ = 1, 2, 3, 4 (4)

where rτ and sτ are the coordinates of four vertexes over the quadrilateral region in the natural coordinate system. r and

s vary over the interval [−1, +1].

Side functions correspond to jth-order ( j ≥ 2) expansions, characterized by the significant deformation of one side

and the vanishing deformation on the other three sides. Their expressions are given as follows:

Fτ(r, s) = 1
2 (1 − s)φ j(r) τ = 5, 9, 13, 18, · · ·

Fτ(r, s) = 1
2 (1 + r)φ j(s) τ = 6, 10, 14, 19, · · ·

Fτ(r, s) = 1
2 (1 + s)φ j(s) τ = 7, 11, 15, 20, · · ·

Fτ(r, s) = 1
2 (1 − s)φ j(s) τ = 8, 12, 16, 21, · · ·

(5)

where φ j(r) indicates 1D Legendre internal functions, see the reference [65] for further information.

As for j ≥ 4, a set of internal functions are necessary to be added to the higher-order cross-section kinematics. The

dominant deformation appears internally and vanishes on the edges. Usually, there are j − 3 internal functions for the

jth-order expansions. Their expressions can be written in a compact manner:

Fτ(r, s) = φ j(r)φk(s) j, k ≥ 2; τ = 17, 22, 23, 28, 29, 30, · · · (6)

The formulations above indicate that the complete higher-order kinematics ( j ≥ 4) contain all the lower-order

kinematics, i.e., vertex, side and internal functions, being capable of describing all the reasonable deformation. Due to

the use of Legendre-based interpolating functions to generate the structural theory, the degrees of freedom of the model

are pure displacements and higher-order modes.

4 B-spline functions

The novelty of this paper is the use of B-spline functions to approximate uτ(y). Firstly, the basic concept of B-

spline functions is briefly presented, then the resulting element in the context of IGA is compared with the classical

FEM element in terms of the shape function. These functions are defined recursively with the piece-wise constant

representation at the starting order p = 0, as follows:

N0
i (ξ) =


1 i f ξi ≤ ξ ≤ ξi+1

0 otherwise
(7)

where ξi stands for the i−th knot.
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For p = 1, 2, 3, ..., one obtains:

N p
i (ξ) =

ξ − ξi

ξi+p − ξi
N p−1

i (ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
N p−1

i+1 (ξ) (8)

where both N0
i and N p

i are B-spline functions and p corresponds to the order.

Usually, the knot vector includes a sequence of non-decreasing coordinates in the parametric space, written as:

Ξ =
{
ξ1, ξ2, · · · , ξn+p+1

}
(9)

where n is the number of functions.

The knot vector may be uniformly or non-uniformly distributed in the parametric space, being called uniform or

non-uniform B-splines, respectively. Different from the Lagrange interpolation functions, more than one knot can share

the same value. This feature will play a role in the continuity (C1,C2, · · · ,C∞) of the B-spline functions. For the

given order p, if the first and last knots appear p + 1 times, the knot vector is named as the open one, i.e., endpoints

interpolation. However, if the multiplicity of the internal knot is m, the knot vector has Cp−m continuous derivatives at

that location.

Accordingly, the simple straight line can be constructed by the B-spline functions precisely, as follows:

y =

n∑
i=1

N p
i (ξ) yi (10)

where yi is the coordinate of the control point, which may fall off the curve.

Through the defintion above, uτ(y) in Eq.(3) can be approximated by the weighted linear combination of N p
i (ξ).

By substitution of this approximation into Eq.(3), one can obtain:

u(x, y, z) = Fτ(x, z)N p
i (ξ) qτi τ = 1, 2, ....,M i = 1, 2, ...., n (11)

where weighted coefficient qτi is the generalized nodal displacement vector, the subscript τ implies the summation.

Based on the displacement pattern above, corresponding B-spline elements can be formulated, similar to the pro-

cedure in the FEM. In order to improve the analytical precision, the refinement should be subtly performed on the

original coarse meshes, which can be grouped into three types: h−, p− and k−types. Only h−type will be adopted in

the paper and its mechanism lies on the knot insertion in the knot vector without changing the order of the function and

the geometrical shape. For the other two types, interesting readers can refer to Hughes et al. [47].

Fig. 2 compares the shape functions of B-spline elements in IGA and Lagrange polynomial elements in FEM

(p = 2). Corresponding models are defined by the symbolization: αBβ and αLβ, in which α and β refer to the number

of the elements and control points per single element. B and L stand for B-spline and Lagrange polynomial functions,

respectively. For example, 2B3 means there are two quadratic B-spline elements in the y−axis direction. Each element

has three control points.
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Figure 2: Comparison of the shape functions.

From the figure, some useful information can be obtained. In IGA, less control points are needed. Besides, control

points may not fall into the range of the element to which they belong, giving rise to the C1 continuity condition between

the elements; while in FEM, the interpolation property is satisfied everywhere, thus leading to the C0 continuity of the

inter elements.

5 Governing equations

The governing equations of a generic beam structure in a Cartesian reference frame can be derived via the varia-

tional principle of virtual work. For static, free vibration and dynamic cases, they hold:

δLint = δLext

δLint = −δLine

δLint = δLext − δLine

(12)

where δ denotes the symbol of the virtual variation. Lint is the strain energy, Line indicates the inertial work, Lext repre-

sents the work done by the external force.
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5.1 Stiffness matrix

The virtual variation of strain energy can be written as:

δLint =

∫
V
δεTσdV (13)

where V is the volume.

Consider the geometrical relations and constitutive law under the assumption of small displacements, rotations and

deformations, as follows:

ε = Du, σ = Cε (14)

where D is 6 × 3 differential operator matrices. C is 6 × 6 stiffness matrices of the material. The explicit formulations

of D and C have already been reported in the literature [66].

By substituting geometrical and constitutive equations in Eq. (2) and the displacement assumption in Eq. (3) into

Eq. (13), one has:

δLint = (δqs j)T
∫

V
Rp

j FsDTCDFτR
p
i dV δqτi = (δqs j)TKτsi j

e qτi (15)

where Kτsi j
e is the fundamental nucleus of the element stiffness matrix, which is composed of 3 × 3 matrices.

Kτsi j
e =


Kτsi j

e(11) Kτsi j
e(12) Kτsi j

e(13)

Kτsi j
e(21) Kτsi j

e(22) Kτsi j
e(23)

Kτsi j
e(31) Kτsi j

e(32) Kτsi j
e(33)

 (16)

In the case of laminated structures with orthotropic material, their explicit formulations are given in APPENDIX

A.

The components of the fundamental nucleus in the element stiffness matrix remain unaltered when different types

of the beam model and shape functions are chosen. This form of invariance implies that the global stiffness matrix

of arbitrary types of the beam model can be conveniently implemented by appropriately setting the loop statements

featured by the indexes τ, s, i and j in the code.

Fig. 3 outlines the differences in the assembly process of global stiffness matrices between IGA 1D CUF-HLE and

FEM 1D CUF-HLE. In detail, the same cross-section kinematics (1 × 1HL2) and number of elements are considered

for both models, in which 1 × 1 represents the number of solid cross-section subdomains in the x and z directions and

HL2 means that the order of Legendre polynomials is 2. Alternatively, for the thin-walled structure, we use the notation

θHL2, in which θ stands for the total number of cross-section subdomains.

From this figure, it can be seen that the difference of the assembly process for two models resides in the last

step, i.e., from the element stiffness matrix to global stiffness matrix. Unlike FEM 1D CUF-HLE, the multiplicities of

knot values lead to non-interpolation behavior of node variables in IGA 1D CUF-HLE as there are mode shared nodes

between elements. Such features decrease the size of the global stiffness matrix, and computation costs compared with
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FEM 1D CUF-HLE as well.

Cross section
Beam axis

Fundamental nuclei

Two elements

CUF-HLE  CUF-HLE

The stiffness matrices for the 1st        and 2nd        elements

Global stiffness matrix Global stiffness matrix

o

Figure 3: The assembly process of global stiffness matrices for two models.

5.2 Loading vector

In the case of the concentrated load F =
{
Fx, Fy, Fz

}
acting at the point (xc, yc, zc), the work done by the external

force can be expressed as:

δLext = δuTF (17)

Other types of loading condition, such as line and surface loads, can be treated in a similar way. By substitution of

Eq. (11) into Eq. (17), it reads:

δLext = δqT
τiFτR

p
i F = δqT

τi (18)
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where Fτ and Rp
i are evaluated at the corresponding position (xc, zc) and (yc), Pτi

e is the element nodal load vector.

5.3 Mass matrix

The virtual variation of inertial work can be expressed as:

δLine =

∫
V
δuT

τρüsdV (19)

where superimposed dots denote the second derivative with respect to time, substituting Eq. (11) into Eq. (19), it holds:

δLine =

∫
V
δqT

τi(Ji j / ρFτFs.)I)q̈s jdV = δqT
τiM

τsi j
e q̈s j (20)

where symbols Ji j and / · . can be found in APPENDIX A, I is a 3×3 identity matrix. Mτsi j
e is the element mass matrix.

It should be pointed out that Pτi
e and Mτsi j

e can be analogously assembled into the global nodal load vector and

mass matrix, as already demonstrated in Fig. 3.

5.4 Algebraic expressions of governing equations

The static analysis inquires into the equilibrium between internal and external forces. Considering Eq. (15) and

Eq. (12), the final algebraic system of governing equations as proposed in Eq. (12) is obtained

Kq = P (21)

The free vibration analysis investigates the equilibrium between elastic and inertial forces. As already discussed

in Section 5.1 and 5.3, the principle of virtual displacements in this problem is formulated as

Kq + Mq̈ = 0 (22)

When harmonic motion is taken into account, the solution of q can be resolved into the product of the amplitude

function of the motion Q and the natural frequency (ω)-related function eiωt. Thus, Eq. (22) can be simplified into a

classical eigenvalue problem:

(K − ω2M)Q = 0 (23)

In the more general case, both internal, external and inertial energy contributions are accounted for in the dynamic

problem. Therefore, the algebraic system of governing equations become

Kq + Mq̈ = P (24)

Eq. (24) represents a system of linear differential equations of second order with constant coefficient and can
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be usually solved by two kinds of time integration schemes: explicit and implicit approaches. In this article, the

improved Newmark β-based implicit approach is employed for the temporal discretization of the equations due to its

unconditionally stable. Besides, this method is proved to be superior for the measure of the numerical dispersion and

dissipation [67]. This effective scheme is listed as follows:

Mq̈t+∆t + (1 + γ)Kqt+∆t − γKqt+∆t = Pt+∆t

qt+∆t =
(
K + 1

α∆t2 M
)−1 (

Pt+∆t + M
(

1
α∆t2 qt + 1

α∆t q̇t + ( 1
2α − 1)q̈t

))
q̈t+∆t = 1

α∆t2 (qt+∆t − qt) − 1
α∆t q̇ − ( 1

2α − 1)q̈t

q̇t+∆t = q̇ + (1 − β) ∆tq̈t + β∆tq̈t+∆t

(25)

where ∆t is the time increment. q̇ and q̈ represent the vector of nodal velocities and accelerations. α = 0.25(1−γ)2, β =

0.5 − γ and γ ∈
[
− 1

3 , 0
]
.

With the reduction of γ in the admission range, the numerical dispersion can be eliminated effectively. More details

about its efficiency are discussed in the following numerical examples.

6 Numerical results

In this section, six numerical cases are given to demonstrate the accuracy of the proposed approach for static, free

vibration and dynamic problems. The calculation results are compared with FEM 1D CUF-HLE and 3D FEM solutions

as well as those from the literatures. Without special notification, the order of B-spline functions is 2 and the full

integration is used in all cases.

6.1 Bending analysis

A single-bay composite box beam is considered as the preliminary assessment, as shown in Fig. 4. Its dimensions

are: width b = 24.2 mm, height h = 13.6 mm, Length L = 242 mm, flange and web with the equal thickness

t = 0.762 mm. Different stacking sequences are chosen: [0◦/90◦] for the flange and [−45◦/45◦] for the web, being

[0◦] and [−45◦] laminations on the outside. Each lamina is composed of an orthotropic material with the properties

parallel (L) and perpendicular (T ) to the fibre: Young moduli EL = 69.0 GPa and ET = EZ = 10.0 GPa; Poisson ratio

νLT = νLZ = νTZ = 0.25; Shear moduli GLT = GLZ = GTZ = 6.0 GPa; Material density ρ = 2700 kg/m3. Two point

forces (2 × P = 2 × 50 N) are applied at the upper corners of the cross-section [:, L, :]. The cross-section kinematics are

made of one sub-domain per layer (8HL4).

Table 1 compares the transverse displacement (uz) and axial stress (σyy) and shear stress (σyz) values at differ-

ent evaluation points obtained by FEM 1D CUF-HLE and IGA 1D CUF-HLE. Three- and four-node longitudinal dis-

cretizations are employed for FEM 1D CUF-HLE and the three-node longitudinal discretization for IGA 1D CUF-HLE.

Taking 12L4 as reference, it is possible to see that 16L3 produces more accurate results than 16B3. This interesting
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Figure 4: Geometrical shape, loading condition and layup of the composite box beam.

phenomenon means in the case of the same number of elements for both models, IGA 1D CUF-HLE is superior to FEM

1D CUF-HLE. However, when DOFs of both models are almost equal each other, FEM 1D CUF-HLE shows faster

convergence than IGA 1D CUF-HLE (see 16L3 and 32B3).

Table 1: Displacement and stress results at the evaluation points (8HL4)

Model DOFs uz × 103 [m] σyy × 10−6 [Pa] σyy × 10−6 [Pa] σyz × 10−6 [Pa]

[0, L/2,+h/2] [0, L/2,+h/2] [0, 0,+h/2] [b, L/2, 0]
FEM 1D CUF-HLE

9L3 4560 -7.098 83.706 173.341 -3.837
16L3 7920 -7.109 84.465 178.488 -4.962
8L4 6000 -7.111 83.713 181.887 -4.488
12L4 8880 -7.113 83.727 181.887 -4.487

IGA 1D CUF-HLE
16B3 4320 -7.106 83.719 175.723 -5.014
32B3 8160 -7.114 83.729 183.005 -4.618

Fig. 5 plots the variations of uz andσyy along the line (b/2, :, h/2−t/4) andσyz along the line (b−t/4, :, 0) computed

by different models. It can be found that values of uz, σyy are less sensitive to longitudinal meshes compared to those of

σyz. To be specific, shear stresses provided by quadratic FEM models exhibit prominent oscillatory behaviors, followed

by cubic FEM models oscillating only around both ends. Quadratic IGA models show less oscillations which are

concentrated towards the ends, yielding more precise solutions over the length of the beam. Moreover, due to the use

of C1 continuous B-splines, the continuity of the stresses along the axis is respected. Indeed, the inability of standard

FEM models to compute the right shear stresses is the cause of the well-known shear locking issue.

6.2 Free vibration analysis

To test the validity of the proposed model on the free vibration problem, we consider a clamped-clamped sandwich

beam consisting of two faces and a soft core. Two faces have the same geometric parameters and material properties.

The geometric parameters of the beam are: width b = 25.4 mm, height h = 25.4 mm, length L = 127 mm, the

thicknesses of the top face ht = 2.54 mm and the bottom face hb = 2.54 mm. Both the face ( f ) and core (c) are assumed
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Figure 5: Distributions of transverse displacement uz and stress componentsσyy andσyz along the longitudinal direction.
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to be isotropic with the following mechanical properties: Young moduli E f = 68.9 GPa and Ec = 179.014 MPa; shear

moduli G f = 26.5 GPa and Gc = 68.9 Mpa; material density ρ f = 2687.3 kg/m3 and ρc = 119.69 kg/m3.

Table 2: The non-dimensional natural frequencies ω∗ from 1 to 5 with 32B3

Mode DOFs mode 1d mode 2e mode 3f mode 4g mode 5h

ABAQUSa 6894 2.038 4.408 6.695 7.365 7.784
ABAQUSb 10263 2.037 4.406 6.684 7.361 7.779
ABAQUSc 178119 2.031 4.391 6.658 7.329 7.769
IGA 1D CUF-1 × 3HL4 4182 2.031 4.391 6.742 7.330 7.776
IGA 1D CUF-1 × 3HL5 5814 2.031 4.391 6.678 7.329 7.772
IGA 1D CUF-2 × 3HL4 7038 2.031 4.391 6.686 7.327 7.772
IGA 1D CUF-2 × 3HL5 9996 2.031 4.389 6.669 7.324 7.769
a: The number of elements is 3 × 26 × 5
b: The number of elements is 4 × 26 × 6
c: The number of elements is 20 × 26 × 26
d: First flexural mode on plane yz; e: Second flexural mode on plane yz; f : First torsional mode
g: Third flexural mode on plane yz; h: First flexural (plane xy) / tosional mode

Different from the last case, this case mainly investigates the influence of HLE variable kinematics on the first

ten non-dimensional natural frequencies ω∗ when keeping the type of longitudinal mesh as 32B3 constantly. All the

non-dimensional results can be achieved through the formulation: ω∗ = (ωL2/b)
√
ρ f /G f , which are listed in Table 2

and 3. ABAQUS models can be classified into three types according to different numbers of elements discretized along

two orthogonal directions lying on the cross-section. Almost all the results obtained with three ABAQUS models show

good convergence with the exception of mode switching between mode 6 and 7 by ABAQUSa and ABAQUSb. IGA 1D

CUF-HLE models are developed by choosing various expansion discretizations and orders. Similar to the phenomena

observing in ABAQUS models, mode switching problems can be solved by increasing the kinematics over the cross-

section while maintaining lower computational costs compared with ABAQUS models. Besides, IGA 1D CUF-1×3HL5

performs better than IGA 1D CUF-2 × 3HL4 in the prediction of torsional and core modes, which demonstrates that

such models with higher-order expansions are more efficient than those with more expansional sub-domains in capturing

non-classical modes.

Table 3: The non-dimensional natural frequencies ω∗ from 6 to 10 with 32B3

Mode DOFs mode 6d mode 7e mode 8f mode 9g mode 10h

ABAQUSa 6894 10.659 10.627 10.732 10.803 11.025
ABAQUSb 10263 10.623 10.614 10.721 10.787 11.019
ABAQUSc 178119 10.539 10.592 10.698 10.754 10.960
IGA 1D CUF-1 × 3HL4 4182 10.861 10.649 10.748 10.828 10.958
IGA 1D CUF-1 × 3HL5 5814 10.612 10.630 10.732 10.809 10.957
IGA 1D CUF-2 × 3HL4 7038 10.637 10.644 10.738 10.791 10.953
IGA 1D CUF-2 × 3HL5 9996 10.581 10.624 10.726 10.785 10.948
a: The number of elements is 3 × 26 × 5
b: The number of elements is 4 × 26 × 6
c: The number of elements is 20 × 26 × 26
d: Second torsional mode; e: First core mode; f : Second core mode; g: First shear mode on plane xz
h: Fourth flexural mode on plane yz; i: Not provided

The contour plots of torsional, shear and core modes provided by 2 × 3HL5 and ABAQUSb are shown in Fig. 6.
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(a1) Second torsional mode, 2 × 3 HL5 (b1) Second torsional mode, ABAQUSb

(a2) First core mode, 2 × 3 HL5 (b2) First core mode, ABAQUSb

(a3) Second core mode, 2 × 3 HL5 (b3) Second core mode, ABAQUSb

(a4) First shear mode on plane xz, 2 × 3 HL5 (b4) First shear mode on plane xz, ABAQUSb

Figure 6: Comparison of non-classical modes by IGA 1D CUF-2 × 3HL5 and ABAQUS models.
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It can be seen that results of the two methods are in high agreement where the torsional and shear modes belong to the

global mode, characterized by the cross-section warping whereas core modes belong to the local mode, characterized

by the cross-section distortion.

6.3 Dynamic analysis

This section extends the application of the proposed method to solve elastodynamic problems of beam structures.

Special attention is given to the impulse and moving loads.

6.3.1 Metallic beam subjected to a lateral impulse load

Figure 7: The computational model for the metallic beam.
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Figure 8: Time history of uz at point A for various NURBS elements.

A cantilever isotropic beam with the rectangular cross section subjected to a step load is analyzed. This step load

is applied at the middle of the cross-section [:, L, :] (see Fig. 7) and can be formulated using the Heaviside function:

P(t) = P0 × H(t − 1.36) with P0 equal to 10 N. The slenderness ratio L/h, the thickness h and width b are 10, 1 m, 1
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Figure 9: Time history of uz at point A for various time steps with 32B3.

m, respectively. The material properties are as follows: Young modulus E = 210 GPa; Poisson ratio ν = 0.3; material

density ρ = 7900 kg/m3.

Fig. 8 shows the influence of the number of B-spline elements, being the cross-section kinematics fixed as 1×1HL2

and the time step as 0.002 s. ABAQUS and analytical solutions are given for comparison purposes. The type, number

and time step of the ABAQUS model are C3D20, 2 × 20 × 2 and 0.002 s, respectively, and the analytical solution is

derived based on the Euler-Bernoulli beam model:

uz(t) =

[
1 − cos(

2π
T

t)
]

4P0L3

Ebh3 (26)

where T = 2π
1.8752

√
12ρL4

Eh2 is the structural natural vibration period.

As indicated in Fig. 8, the analytical solution and 8B3 model lead to less accurate estimations in comparison

with other models, but only by a small margin. In the subsequent analysis, 32B3 model is employed to guarantee the

accuracy with reference to the ABAQUS model. It should be noted that the analytical solution performs worst due to

less cross-section kinematics.

Accordingly, Fig. 9 compares the displacement-time curve of point A (b/2, L, 0) considering various time steps.

Again, the analytical solution and the solution with a larger time step 0.01 s are not able to provide the curve closer to

the ABAQUS solution. The time step 0.002 s is chosen for further investigation.

Fig. 10 and 11 plot the variation of uz and σyy along the y-axis varying the cross-section kinematics at different

times. It can be observed that, when uz of point A is in the large amplitude condition, the cross-section kinematics have

almost no impact on the values of these two variables. However, when uz of point A is in the small amplitude condition,

1 × 1HL2 cannot give good approximations for both variables.
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Figure 10: Distributions of uz and σyy along the beam axis for different cross-section kinematics at t = 0.18 s with
32B3.
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6.3.2 Stress wave propagation in a metallic bar

Figure 12: The geometrical shape for the clamped bar.

This case deals with a classical 1D wave propagation problem. The blast pressure is perpendicularly acted on

the cross section at free end of the beam structure, which can be also represented using Heaviside function: P(t) =

P0 × H(t − 3.88 × 10−5) with P0 equal to1 × 105 Pa. The width, b and height, h are b = h = 0.2 m with the slenderness

ratio L/h = 5. The material properties are considered as isotropic: Young modulus E = 207 GPa; Poisson ratio ν = 0.3;

material density ρ = 7800 kg/m3. Concerning the boundary conditions, the cross-section at the left end is fully clamped

and all the lateral edges are partially clamped, namely, ux = uz = 0, as shown in Fig. 12.

Fig. 13- 15 compare the distributions of uy, σyy and vy along the line (x, y, z) = (b, :, h/2) attained with the

proposed model and ABAQUS model for three typical times. In our model, the cross-section kinematics and time step

are 1 × 1HL2 and 1.5×10−7 s, while in ABAQUS model, the C3D20 solid element with the number 3 × 65 × 3 is

employed and the time step of 1.5×10−7 s is determined. Both models are solved by the implicit scheme based on the

improved Newmark β. The first selected time denotes the wave in the forward-propagating stage, the second selected

time denotes the superposition of the incident wave and reflected wave near the clamped end and the third selected

time denotes the wave in the backward-propagating stage. Inspecting these figures, uy is only slightly influenced by

the number of elements and parameter γ, which yet have deleterious effects on σyy and vy. An insufficient number of

elements will give rise to the numerical dispersion error. For instance, σyy and vy cannot be approximated to zero near

the pressure-carrying end (see Fig. 14 and Fig. 15). In the meanwhile, inappropriate γ value will result in spurious

oscillations of the wave front. Specifically, model 256B3, γ = −0.05 can suppress spurious oscillations in a great

manner with respect to model 256B3, γ = 0. Besides, the ABAQUS model cannot achieve the same effect due to C0

continuity condition of the interelement even if γ is equal to -0.05.

Fig. 16 reports the axial displacement- and velocity-time relations at the point A (b, L/2, h/2) for different time

steps. Again the results demonstrate that the time step is not an important factor in the description of the axial

displacement-time curve, but plays a certain role in the description of the axial velocity-time curve within a certain

range, i.e., ∆t ≥ 1.5 × 10−7. Out of this range, shorter time step will not damp out the spurious oscillations and reduce

numerical dispersion errors. The underlying reason is that quadratic IGA models with limited elements can simulate the

lower frequency components. It is true that the wave spectrum during the propagation process not only includes lower

frequency components, but also higher frequency components. By adjusting the value of parameter γ, correspond-
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Figure 13: Through-the-length variation of uy at (x, y, z) = (b, :, h/2).
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Figure 14: Through-the-length variation of σyy at (x, y, z) = (b, :, h/2).
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Figure 15: Through-the-length variation of vy at (x, y, z) = (b, :, h/2).
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ing higher frequency components can be dissipated and the oscillation behaviour will be eliminated to a great extent.

Therefore, the increase of the order of the elements makes sense instead of the reduction of the time step counterpart.

Fig. 17 shows the 3D plot of σyy at three typical times. From this figure, we can understand the propagation

process better with special attention to the interactions between the incident wave and reflected wave. The minimum

value at t = 1.8 × 10−4 s is more or less twice that of the other two times.

6.3.3 A metallic beam subjected to a moving load

Figure 18: A metallic beam under the moving load.

To test the applicability of the proposed models on the structure under the moving load condition, we consider a

simply supported aluminum beam with the following geometric sizes and material properties: length L = 10 m, width

b = 0.4 m, height h = 0.5 m; Young modulus E = 72.4 GPa, Poisson ratio ν = 0.33, material density ρ = 2770 kg/m3.

The load can be perceived as a line load over the entire width which travels along the y-axis direction on the upper

surface. The explicit formulation is given as: p(t) = p0 × δ(y − vyt) with p0 equal to 1250 N/m, constant velocity vy

equal to 40 m/s and δ(.) is the Dirac function, as shown in Fig. 18. The analytical solution of uz is derived based on the

Euler-Bernoulli beam model from Tao et al. [68], which can be written as:

uz =

∆∑
i=1

2p0

I0

1(
iπvy

)2
− ω2

i

(
sin

iπvy

L
t −

iπvy

Lωi
sinωit

)
sin

iπ
L

t (27)

where ωi =
(

iπ
L

)2
√

Eh2

12ρ .

第五章 一维 CUF 弱格式控制方程的等几何分析
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支 铝 梁 ， 几 何 尺 寸 为 ： 10 ,  0.4 ,  0.5L m b m h m   ； 材 料 参 数 为 ：

372.4 GPa, 0.33,  2770 kg/mE     。上表面受沿宽度方向线性均布横向移动

荷载 0p( ) p ( )yt v t ，其中，荷载强度 0p 1250 /N m ，移动速度 40 /yv m s ， (.)

为狄拉克函数，如图 5.30 所示。文献[216]给出了横向位移基于 EBBM 的解析表达

式：

  2 21 0

2 1
( , ) sin sin sin

/

y y
i

i i
p i

i v i vP i
w x t t t x

I L L Li v L

  
 





 
  

 
       (5.24) 

其中，

2 2

,    1, 2, ...,
12i

i Eh
i

L




    
 

                 (5.25) 

图 5.30 横向移动荷载的力学模型

图 5.31 和图 5.32 研究了单元数目，时间步长和参数对跨中位移-时间历程

曲线的影响，从图中可以看出，参数和时间步长的影响可以忽略，16N3 即可达

到收敛。

图 5.31 不同单元数的跨中位移-时间历程曲线

B
B
B
B

B
B
B
B

Figure 19: The mid-span displacement-time curve for different numbers of elements and γ.
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图 5.32 不同时间步长的跨中位移-时间历程曲线 

5.7.5 移动荷载作用下复合材料梁的动力响应 

最后一个算例模拟两层复合材料梁在移动荷载作用下的响应，几何形状同

5.7.4 节相同，材料参数同 3.5.1 节的算例相同。铺层为反对称铺设：[ 0 015 ,15 ]，

边界条件为两端固支，荷载形式为 0p( ) p sin( ) ( )yt t v t  ，其中，荷载强度

0p 1250 /N m ，激励频率 10 /rad s  ，移动速度 40 /yv m s 。 

图 5.33 研究了单元数目，时间步长对横向位移沿着 y轴分布的影响，从图中

可以看出，两者的影响皆不大，8N3、16N3 和Δt = 1e -3s 的结果精度稍差，因此，

单元数目的影响稍大于时间步长的影响。后续的分析采用 32N3 和Δt = 5e - 4s。 

图 5.33 横向位移 , ( , , )=( ,:,0)zu x y z b 沿着 y轴的分布， 0.125 st   

Figure 20: The mid-span displacement-time curve for different time steps with 16B3.

Fig. 19 and 20 show the graphs of the mid-span uz against the time considering different numbers of elements, time

steps and parameters γ. It is shown that the time step and parameter γ factors have a negligible effect on the solutions,

reaching the desired values gradually with 16B3 model.

6.3.4 A composite beam subjected to a moving load

In the last section, further study is extended to the case of a two-layer laminated beam subjected to a moving

load. The geometric shape is the same as that in the previous case. Its material properties are listed in Table 4. An

antisymmetric [−15◦/15◦] lamination scheme is taken into account. The structure is clamped at both ends and subjected

to a moving pressure on the upper surface, which can be expressed as:p(t) = p0 × sin(ωt) × δ(y − vyt) with p0 equal to

1250 N/m, constant velocity vy equal to 10 m/s and excitation frequency ω equal to 10 rad/s.

Table 4: Material properties

EL ET , EZ νLT , νLZ , νTZ GLT ,GLZ GTZ

250.0 GPa 10.0 GPa 0.25 5.0 GPa 2.0 GPa
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图 5.32 不同时间步长的跨中位移-时间历程曲线

5.7.5 移动荷载作用下复合材料梁的动力响应

最后一个算例模拟两层复合材料梁在移动荷载作用下的响应，几何形状同

5.7.4 节相同，材料参数同 3.5.1 节的算例相同。铺层为反对称铺设：[ 0 015 ,15 ]，

边界条件为两端固支，荷载形式为 0p( ) p sin( ) ( )yt t v t  ，其中，荷载强度

0p 1250 /N m ，激励频率 10 /rad s  ，移动速度 40 /yv m s 。 

图 5.33 研究了单元数目，时间步长对横向位移沿着 y轴分布的影响，从图中

可以看出，两者的影响皆不大，8N3、16N3 和Δt = 1e -3s 的结果精度稍差，因此，

单元数目的影响稍大于时间步长的影响。后续的分析采用 32N3 和Δt = 5e - 4s。

图 5.33 横向位移 , ( , , )=( ,:,0)zu x y z b 沿着 y轴的分布， 0.125 st   

8B3,
16B3,
32B3,
32B3,
32B3,

8B3,
16B3,
32B3,
32B3,
32B3,

Figure 21: The variation of uz along the line (x, y, z) = (b, :, 0) at t = 0.125 s.

Fig. 21 analyzes the effect of the number of elements and the time step on the uz distribution along the y-axis at

t = 0.125 s. It can be concluded that 8B3, 16B3 and ∆t = 1.0 × 10−3 perform marginally worse than other models.
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Enabling a tradeoff between the accuracy and computational cost, 32B3, together with ∆t = 5.0× 10−4 is selected in the

subsequent analysis.
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Figure 22: Through-the-thickness variation of of σyy at t = 0.125 s with 32B3.

Fig. 22 shows the through-the-thickness distribution of σyy on the line (x, y, z) = (b/2, L/2, :) at t = 0.125 s. The

convergent results can be obtained by a gradual degree elevation of cross-section kinematics, leading to the determina-

tion of 1 × 2HL3 in the following analysis straightforwardly.

The parametric study is a necessary step in the structural design. In the light of this factor, great efforts are

devoted to study the effect of the fiber orientation angle, moving velocity and excitation frequency on the maximum

dynamic deflection (umax
z ) at point (x, y, z) = (b/2, L/2, 0) under two different boundary conditions, as shown in Fig.

23. The results in Fig. 23(a) indicate that umax
z increases with a growing number of the fiber orientation angle, being

more prominent for the hinged-hinged boundary condition. In Fig. 23(b), the approximate parabolic variation of

umax
z versus the excitation frequency is depicted for both boundary conditions. Obviously, excitation frequencies of

extreme values (ω ≈ 70rad/s for “Hinged-Hinged” and ω ≈ 165rad/s for “Clamped-Clamped”) are in the vicinity of

natural frequencies of the structure, thus causing results with larger values. On the other hand, the variation of umax
z

can be divided into two stages. In the first stage, before the excitation frequency reaches 120 rad/s, the hinged-hinged

boundary condition leads to larger umax
z , while in the second stage, the trend is reversed. In Fig. 23(c), umax

z converges

to the same value monotonously with the increase of the moving velocity except for a slight drop in the initial stage.

7 Conclusions

This paper develops a computational framework of geometrically linear isogeometric analysis for solving the

weak-form governing equations based on 1D refined beam models. The resulting model is used to solve static, free

vibration and dynamic problems of beam structures. The Carrera Unified Formulation (CUF) is used to construct

the hierarchical beam model. In the framework of CUF, the cross-section kinematics are defined using hierarchical
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Figure 23: The parametric study.
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Legendre polynomials, thus obtaining a Layer-wise description of the section without making any ad hoc assumptions.

The generalized displacements in the axial domain are interpolated through B-spline functions. Subsequently, the weak-

form governing equations are derived via the principle of virtual work. This kind of models can improve the numerical

accuracy over various mechanical problems. Through the numerical investigation of beam-like structures, composed of

isotropic or anisotropic material properties, the following conclusions can be drawn:

1. For the static problem, IGA 1D CUF-HLE can guarantee the continuity of the displacements, strains and stresses

along the axial direction. This phenomenon is more prominent in the detection of the shear stress, which exhibits

oscillatory behaviors obtained by FEM 1D CUF-HLE.

2. For the free vibration problem, IGA 1D CUF-HLE can reach a compromise between the computational efficiency

and accuracy in the simulation of non-classical modes, which cannot be attained in 3D FEM. Moreover, as

regards natural frequencies a narrow frequency spectrum, HLE models with higher-order expansions and more

expansional sub-domains are recommended.

3. For the dynamic problem, the time steps and element numbers are two key factors, having an influence on the

results at different times with varying degree. Particularly, in the process of stress wave propagation, the lack of

enough elements both in IGA 1D CUF-HLE and 3D FEM will give rise to non-negligible spurious oscillations

and numerical dispersion errors in terms of the stress and velocity variables. Besides, IGA 1D CUF-HLE with an

appropriate γ value can overcome this drawback perfectly, while 3D FEM with the same γ value should increase

the element continuously to fulfill similar inhibitive effect.

Although in this first development only straight beams are considered, the validity and generality of the method

are not compromised. Further extensions of the model will deal with the analysis of curved geometries, for instance

making use of the Frenet-Serret reference frame, as in [69]. Besides, more complex nonlinear problems, e.g., large

displacements and rotations can be completed using a total Lagrangian approach [70].
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APPENDIX A Fundamental nucleus

3 × 3 fundamental nucleus of the stiffness matrix are defined as:

Kτsi j
e(11) = Ji,y j / FτC46Fs,z . +Ji,y j / FτC26Fs,x . +Ji,y j,y / FτC66Fs . +

Ji j / Fτ,zC44Fs,z . +Ji j / Fτ,zC24Fs,x . +Ji j,y / Fτ,zC46Fs . +

Ji j,y / Fτ,xC26Fs . +Ji j / Fτ,xC24Fs,z . +Ji j / Fτ,xC22Fs,x.

Kτsi j
e(12) = Ji,y j / FτC66Fs,x . +Ji,y j / FτC56Fs,z . +Ji,y j,y / FτC36Fs . +

Ji j / Fτ,xC26Fs,x . +Ji j / Fτ,xC25Fs,z . +Ji j / Fτ,zC46Fs,x . +

Ji j / Fτ,zC45Fs,z . +Ji j,y / Fτ,zC34Fs . +Ji j,y / Fτ,xC23Fs.

Kτsi j
e(13) = Ji,y j / FτC46Fs,x . +Ji,y j / FτC16Fs,z . +Ji,y j,y / FτC56Fs . +

Ji j / Fτ,zC44Fs,x . +Ji j / Fτ,zC14Fs,z . +Ji j / Fτ,xC24Fs,x . +

Ji j / Fτ,xC12Fs,z . +Ji j,y / Fτ,zC45Fs . +Ji j,y / Fτ,xC25Fs.

Kτsi j
e(21) = Ji j,y / Fτ,xC66Fs . +Ji j,y / Fτ,zC56Fs . +Ji,y j / FτC34Fs,z . +

Ji,y j / FτC23Fs,x . +Ji,y j,y / FτC36Fs . +Ji j / Fτ,xC46Fs,x . +

Ji j / Fτ,xC26Fs,x . +Ji j / Fτ,zC45Fs,z . +Ji j / Fτ,zC25Fs,x.

Kτsi j
e(22) = Ji j / Fτ,xC66Fs,x . +Ji j / Fτ,xC56Fs,z . +Ji j / Fτ,zC56Fs,x . +

Ji j / Fτ,zC55Fs,z . +Ji j,y / Fτ,xC36Fs . +Ji j,y / Fτ,zC35Fs . +

Ji,y j / FτC36Fs,x . +Ji,y j / FτC35Fs,z . +Ji,y j,y / FτC33Fs.

Kτsi j
e(23) = Ji j / Fτ,xC46Fs,x . +Ji j / Fτ,xC16Fs,z . +Ji j / Fτ,zC45Fs,x . +

Ji j / Fτ,zC15Fs,z . +Ji j,y / Fτ,xC56Fs . +Ji j,y / Fτ,zC55Fs . +

Ji,y j / FτC34Fs,x . +Ji,y j / FτC13Fs,z . +Ji,y j,y / FτC35Fs.

Kτsi j
e(31) = Ji,y j / FτC45Fs,z . +Ji,y j / FτC25Fs,x . +Ji,y j,y / FτC56Fs . +

Ji j / Fτ,xC44Fs,z . +Ji j / Fτ,xC24Fs,x . +Ji j / Fτ,zC12Fs,x . +

Ji j / Fτ,zC14Fs,z . +Ji j,y / Fτ,xC46Fs . +Ji j,y / Fτ,zC16Fs.

Kτsi j
e(32) = Ji,y j / FτC56Fs,x . +Ji,y j / FτC55Fs,z . +Ji,y j,y / FτC35Fs . +

Ji j / Fτ,zC16Fs,x . +Ji j / Fτ,zC15Fs,z . +Ji j / Fτ,xC46Fs,x . +

Ji j / Fτ,xC45Fs,z . +Ji j,y / Fτ,xC34Fs . +Ji j,y / Fτ,zC13Fs.

Kτsi j
e(33) = Ji,y j / FτC45Fs,x . +Ji,y j / FτC15Fs,z . +Ji,y j,y / FτC55Fs . +

Ji j / Fτ,xC44Fs,x . +Ji j / Fτ,xC14Fs,z . +Ji j / Fτ,zC14Fs,x . +

Ji j / Fτ,zC11Fs,z . +Ji j,y / Fτ,xC45Fs . +Ji j,y / Fτ,zC15Fs.

(A.1)

where / · . =
∫

Ω
dΩ is a cross-section moment parameter, whereas

Ji j =
∫ 1

0 Rp
i Rp

j y,ξ dξ, Ji j,y =
∫ 1

0 Rp
i Rp

j,ξ
dξ

Ji,y j =
∫ 1

0 Rp
i,ξ

Rp
j dξ, Ji,y j,y =

∫ 1
0 Rp

i,ξ
Rp

j,ξ
/y,ξ dξ

(A.2)
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, and the suffix after the comma means the derivatives. It should be pointed out that the integration above is performed

over the parametric space [0, 1]. In order to implement Gauss quadrature smoothly, the mathematical transformation of

integration variables serves as an alternative tool, as elaborated in [48].
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