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The hierarchy of channel networks in landscapes displays features
that are characteristic of non-equilibrium complex systems. Here we
show that a sequence of increasingly complex ridge and valley net-
works is produced by a system of partial differential equations cou-
pling landscape evolution dynamics with a specific catchment area
equation. By means of a linear stability analysis we identify the crit-
ical conditions triggering channel formation and the emergence of
characteristic valley spacing. The ensuing channelization cascade,
described by a dimensionless number accounting for diffusive soil
creep, runoff erosion, and tectonic uplift, is reminiscent of the sub-
sequent instabilities in fluid turbulence, while the structure of the
simulated patterns is indicative of a tendency to evolve toward op-
timal configurations, with anomalies similar to dislocation defects
observed in pattern-forming systems. The choice of specific geomor-
phic transport laws and boundary conditions strongly influences the
channelization cascade, underlying the nonlocal and nonlinear char-
acter of its dynamics.
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The spatial distribution of ridges and valleys, including the1

formation of evenly spaced first order valleys as well as2

more complex branching river networks (see Fig. 1), is one of3

the most striking features of a landscape. It has long fascinated4

the scientific community, leading to the development of a rich5

body of work on the statistical, theoretical, and numerical6

analysis of landscape organization. Early works focused on7

the definition of stream ordering systems for the river basin8

characterization (1–3) and the coupled dynamics of water and9

sediment transport to identify stability conditions for incipient10

valley formation (4–6), followed by the statistical description11

of river networks, including scaling laws and fractal properties12

of river basins (7–10), the related optimality principles (9, 11),13

and stochastic models (12–14). These studies have shed light14

on the spatial organization and governing statistical laws of15

developed river networks and explored the linkages to other16

branch-forming systems (13, 15, 16), but have not tackled the17

physical origin of the underlying instabilities and feedback18

mechanisms acting over time in the formation of the observed19

ridge and valley patterns (17). To this purpose, landscape evo-20

lution models have been employed for the analysis of branching21

river networks (18, 19) in relation to the main erosional mech-22

anisms acting on the topography. These works represented23

an important step forward in the study of spatially organized24

patterns of ridges and valleys. However, lacking a rigorous25

formulation of the drainage area equation (20, 21) precluded26

the theoretical investigation of the underlying instabilities in27

relation to the leading geomorphological processes involved.28

In this work, we focus on landscapes characterized by runoff29

erosion, expressed as a function of the specific drainage area30

a (21) to obtain grid-independent solutions without the in-31

Fig. 1. Ridge and valley patters in natural landscapes. 1-meter resolution LiDAR
topographies of (a) the Calhoun Critical Zone landscape in South Carolina and (b)
Gabilan Mesa in California. Panels b and d show three-dimensional surfaces for two
subsets (black rectangles in panels a and c) where regular evenly spaced valleys
are visible. Data were obtained from the National Center for Airborne Laser Mapping
(NCALM) and retrieved from the OpenTopography facility.

troduction of additional system parameters. The resulting 32

system of coupled, nonlinear partial differential equations 33

(PDEs) provides a starting point for the theoretical analysis of 34

channel-forming instabilities and landscape self-organization 35

and allows us to describe the resulting ridge and valley pat- 36

terns as a function of the relative proportions of diffusive soil 37
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creep, runoff erosion, and tectonic uplift. The nonlocal charac-38

ter of the equations makes the boundary conditions extremely39

important. On regular (i.e., square and rectangular) domains,40

simulations reveal a sequence of channel instabilities remi-41

niscent of the laminar-to-turbulent transition (22–24). The42

explicit mathematical structure makes it possible to perform a43

linear stability analysis of the coupled PDE system to identify44

the critical conditions for the first channel-forming instabil-45

ity. The subsequent branching sequence towards smaller and46

smaller valleys until soil creep becomes dominant is similar47

to the turbulent cascade with large scale vortices leading to48

smaller ones until viscous dissipation. The formation of net-49

works of ridges and valleys, brought about by the regular50

boundary conditions, also reveals the tendency of the system51

to develop configurations suggestive of optimization principles52

(11) typical of non-equilibrium thermodynamics and complex53

systems (16, 25–32). Our analysis is different from recent in-54

teresting contributions on groundwater-dominated landscapes55

(33, 34), where branching and valley evolution is initiated at56

seepage points in the landscape.57

Landscape evolution in detachment-limited conditions58

The time evolution of the surface elevation z(x, y, t) is de-59

scribed by the sediment continuity equation (17, 18, 35, 36)60

∂z

∂t
= U −∇ · f = U −∇ · (fd + fc) , [1]61

where t is time, U is the uplift rate, and f is the total volumetric62

sediment flux, given by the sum of fluxes related to runoff63

erosion/channelized flow (fc) and soil creep processes (fd). The64

soil creep flux is assumed to be proportional to the topographic65

gradient (37, 38), hence fd = −D∇z, D being a diffusion66

coefficient (here assumed to be constant in space and time).67

In the so-called detachment-limited (DL) conditions (6, 18, 39)68

it is assumed that all eroded material is transported outside the69

model domain, so that no sediment redeposition occurs. Under70

these conditions, the runoff erosion term is approximated as71

a sink term given by (18) ∇ · fc ≈ K′a|∇z|nqm , where K′a72

is a coefficient, q is the discharge per unit width of contour73

line, and m and n are model parameters. As a result, Eq. (1)74

becomes75

∂z

∂t
= D∇2z −K′aqm|∇z|n + U. [2]76

Thus the soil creep flux results in a diffusion term which tends77

to smooth the surface, while the runoff erosion component is78

a sink term which excavates the topography as a function of79

local slope and specific water flux.80

The surface water flux q is linked to the continuity equation81

∂h

∂t
= R−∇ · (qn) [3]82

where h is the water height, n the direction of the flow, and R83

the rainfall rate effectively contributing to runoff production.84

Eq. (3) can be simplified assuming steady-state conditions with85

constant, representative rainfall rate, R0, and (as in previous86

works (40)) constant speed of water flow v0 in the direction87

opposite to the landscape gradient (i.e., n = −∇z/|∇z|). In88

such conditions, it can be shown (21) that the water height,89

h, and the specific water flux, q, are both proportional to the90

specific contributing area, a, i.e. h = q/v0 = aR0/v0. As a91

result, the system of Eqs. (3) - (2) reduces to an equation for 92

the specific catchment area a (21), 93

−∇ ·
(
a
∇z
|∇z|

)
= 1, [4] 94

coupled to the landscape evolution equation 95

∂z

∂t
= D∇2z −Kaa

m|∇z|n + U, [5] 96

with an adjusted erosion constant Ka to account for the pro- 97

portionality between a and q. 98

It is important to observe that the specific drainage area 99

a has units of length and is related to the drainage area 100

A as a = limw→0 A/w; it is thus defined per unit width of 101

contour line w (21). Most landscape evolution models (e.g., 102

9, 18, 41, 42) use the total drainage area A in Eq. (5) instead 103

of a, with several notable implications. The value of A is 104

generally evaluated using numerical flow-routing algorithms 105

(e.g., D8, D∞ (43)) which provide grid-dependent values of 106

A. To correct for this, the drainage area A is often modified 107

to account for the channel width (18, 41), but this results in 108

approximations with arbitrary parameters. Conversely, the 109

use of a avoids grid-dependence of the resulting topography. 110

Moreover, re-casting the problem in terms of a consistent cou- 111

pled system of PDEs makes it possible to analyze theoretically 112

the landscape evolution process. As detailed below (see Meth- 113

ods), an analytic solution for the steady state hillslope profile 114

can be derived (44) and then used as a basic state for a linear 115

stability analysis to identify the critical conditions for the first 116

channel formation and the characteristic valley spacing. 117

It is useful to non-dimensionalize the system of Eqs. (4) 118

and (5) to quantify the relative impact of soil creep, runoff 119

erosion, and uplift on the landscape morphology. Using a 120

typical length scale of the domain, l, and the parameters of 121

Eqs. (4) and (5), the following dimensionless quantities can 122

be introduced: t̂ = tD
l2 , x̂ = x

l
, ŷ = y

l
, ẑ = zD

Ul2 , and â = a
l
. 123

With these quantities, Eq. (5) becomes 124

∂ẑ

∂t̂
= ∇̂2ẑ − CI âm|∇̂ẑ|n + 1 [6] 125

where 126

CI = Kal
m+n

DnU1−n . [7] 127

As we will see later, this index describes the tendency to form 128

channels in a way which is reminiscent of the global Reynolds 129

number (defined as the ratio of inertial to viscous forces) in 130

fluid mechanics, as well as of the ratio of flow permeabilities 131

used in constructal theory (45). A similar quantity based on 132

a local length scale (i.e., the mean elevation of the emerging 133

topographic profile) was used in Perron et al. (18). The defi- 134

nition of CI as a function of global variables based on system 135

parameters (e.g., uplift rate U) and boundary conditions al- 136

lows us to directly infer system behavior. For example, when 137

the slope exponent n is equal to 1, the relative proportion of 138

runoff erosion and soil creep can be seen to be independent 139

of the uplift rate; however, if n > 1 the uplift acts to increase 140

the runoff erosion component, while for n < 1 it enhances the 141

diffusive component of the system. As we will see, this results 142

in different drainage-network patterns as a function of uplift 143

rates. 144

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
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Fig. 2. Channelization cascade. Simulation results obtained for m = 0.5 and n = 1. (a-i) Ridge and valley patterns obtained for CI values equal to 20, 40, 62.5, 125, 180,
200, 240, 320, and 340: brown corresponds to ridges and green to valleys. To better highlight the ridge and valley structure we show here the difference between the specific
drainage area a and the specific dispersal area a−z (i.e., the value of a computed over the flipped topography - see ref. 20). (j) Highest Shreve order (red) and number of main
channels on each domain side (blue) for different values of the dimensionless parameter CI . Based on the number of channels and the Shreve order nine regimes can be
identified with distinctively different ridge/valley patterns (shown in panels a-i). (k) Normalized hypsometric curves obtained for CI = 20 (solid black), 125 (dashed gray), and
340 (solid red): when no secondary branching is observed (i.e., CI . 155) the hypsometric curve is concave, while after the first secondary branching is formed it undergoes a
transition to a shape concave for higher elevations and convex at low elevations. Insets in panel k show 3d plots of the steady state topographies for the three cases, the color
code represents surface elevation (red = high, blue = low).

Results145

Organized ridge and valley patterns. Simulation results ob-146

tained by numerically solving Eqs. (4)-(5) over square domains147

with m = 0.5 and n = 1 (see Methods for details) are shown148

in Fig. 2. The emerging ridge/valley patterns are classified in149

terms of Shreve order (used here as a measure of branching150

complexity - see ref. 3), and number of channels formed on151

each side of the domain. As can be seen from Eq. (7), for n = 1152

the dimensionless parameter CI is independent of the uplift153

rate, so that the spatial patterns of Fig. 2 are only a function154

of the relative proportions of the soil creep and runoff erosion155

components. For low CI values (i.e., . 30) no channels are156

formed and the topography evolves to a smooth surface domi-157

nated by diffusive soil creep (Fig. 2a). As the runoff erosion158

coefficient is increased the system progressively develops one,159

three, and five channels on each side of the square domain for160

30 . CI . 58, 58 . CI . 97, and 97 . CI . 155, respectively161

(Fig. 2b-d). When CI is increased above ≈ 155 the central162

channels develop secondary branches, with the main central163

channel becoming of Shreve order three (Fig. 2e). As CI is164

further increased seven channels can be observed originating165

on each side of the domain, and the main central channel166

further branches (Fig. 2f-i) becoming of order nine for the167

highest CI used for this configuration.168

As the resulting landscape changes from a smooth topog-169

raphy to a progressively more dissected one, the shape of the170

hypsometric curve varies from concave (i.e., slope decreases171

along the horizontal axis) to one with a convex portion for172

low elevations (Fig. 2k). In particular, channel formation173

(with no secondary branching) causes the hypsometric curve174

to progressively lower as a result of the lower altitudes ob- 175

served in the topography, while maintaining a concave profile. 176

As secondary branches develop, the hypsometric curve shifts 177

to a concave/convex one, with the convex portion at lower 178

altitudes becoming more evident as CI increases (see red line 179

for CI = 340 in Fig. 2k). 180

The striking regularity of the drainage and ridge patterns 181

induced by the simple geometry of the domain is reminiscent 182

of regular pre-fractal structures (e.g., Peano basin (8, 9, 46– 183

48)) and is indicative of the fundamental role of boundary 184

conditions due to the highly non-local control introduced by 185

the drainage area term. The introduction of noise and irregular 186

boundaries quickly breaks the regularity of the patterns (see 187

results from numerical simulations obtained over progressively 188

more irregular boundaries in the SI Appendix, Fig. S10). 189

The ridge and valley networks of Fig. 2 highly resemble Fig. 190

5 in ref. 31, where optimized tree-shaped flow paths were 191

constructed to connect one point to many points uniformly 192

distributed over an area. We further highlight similarities with 193

the patterns obtained in ref. 30 by means of an erosion model 194

where the global flow resistance is minimized. 195

Effect of runoff erosion laws. The effect of different runoff 196

erosion laws has been discussed in the literature (42) also 197

in relation to climate, vegetation cover, and soil properties 198

(49, 50). Their role was analyzed here by changing the values 199

of the exponents n and m, as shown in Fig. 3. 200

When the value of n is different from unity, the result- 201

ing ridge/valley patterns depend on the uplift rate U , as per 202

Eq. (7). When n is increased the system displays channel- 203

ization and secondary branching for higher values of CI (i.e., 204



DRAFT
Fig. 3. Effect of runoff erosion laws. Simulation results obtained for different values of the slope and runoff exponents (i.e., n and m): (a) maximum Shreve order and (b)
number of channels on each domain side as a function of CI . Colored dash-dotted lines mark the CI values at which the first secondary branching is observed for each set
of m and n values, and the corresponding ridge/valley patterns are highlighted in panels c-r. (c-r) Examples of two-dimensional ridge (brown) and valley (green) patterns
for scenarios with (c-f) increased slope exponent (n = 1.3, m = 0.5, and CI = 189.7, 389.6, 594.5, 1897.4), (g-j) decreased slope exponent (n = 0.7, m = 0.5, and
CI = 41.1, 46.2, 51.4, 56.6), (k-n) increased water flux exponent (n = 1, m = 0.7, and CI = 100.5, 150.7, 175.8, 185.9), and (o-r) decreased water flux exponent (n = 1,
m = 0.3, and CI = 87.6, 222.9, 254.8, 318.5).

points are shifted to the right in Fig. 3a,b), with a more dis-205

sected planar geometry characterized by narrower valleys and206

smaller junction angles (Fig. 3c-f). A decrease in n leads to207

smoother geometries with wider valleys and the first secondary208

branching developing when only three channels per each side209

of the domain are present (see Fig. 3g-j). This results in210

a hypsometric curve with a more pronounced basal (i.e., at211

low altitudes) convexity for n > 1, as a consequence of the212

progressively more dissected topography (see SI Appendix,213

Fig. S2).214

As m is increases (Fig. 3k-n) the system develops sec-215

ondary branching when only three channels are present on216

each side of the domain, with the formation of less numerous217

but wider valleys with higher junction angles, and a reduced218

basal convexity in the hypsometric curve (see SI Appendix,219

Fig. S2). Conversely, a decrease in m results in a more dis-220

sected landscape, with narrower valleys (Fig. 3o-r) and a more221

pronounced transition of the hypsometric curve to a convex222

shape for low altitudes (see SI Appendix, Fig. S2).223

Wide rectangular domains. To assess boundary-condition ef-224

fects on branching patterns we also considered very wide225

rectangular domains (CI is constructed using the distance226

between the longest sides). Besides numerical investigation, in227

this case an analytical solution is possible for the unchannel-228

ized case (for m = 1 and n = 1, see Methods), around which229

we also performed a linear stability analysis. In our analogy230

with turbulent flows, the case of wide rectangular domains231

corresponds to the flow of viscous fluids between parallel plates232

(23, 24).233

Results from the linear stability analysis are shown in Fig. 234

4. A critical value CI,c ≈ 37 for the first channel instability is 235

identified, corresponding to a characteristic valley spacing λc 236

of approximately 42 m, in line with observations (an analysis 237

of five landscapes in the continental US from ref. 51 provides 238

values of valley spacing ranging between approximately 30 239

and 300 m). As CI further increases (i.e., runoff erosion in- 240

creases with respect to diffusion) the predicted valley spacing 241

is reduced (see Fig. 4c), with the formation of progressively 242

narrower valleys. Results from the linear stability analysis 243

are in line with predictions from numerical experiments con- 244

ducted over large rectangular domains, where the first channel 245

instability occurs at CI,c ≈ 32 with a valley spacing λc ≈ 33 246

m. Analogously to the Orr-Sommerfeld problem for plane 247

Poiseuille flow, the system here presents a Type I linear in- 248

stability (52). Insight on the role of the m and n exponents 249

on the critical channelization index CI,c and related valley 250

spacing was obtained from numerical experiments. As shown 251

in the SI Appendix (Fig. S9), as the water flow exponent m 252

decreases, the value of CI at which the first channel forming 253

instability occurs increases and the valley spacing decreases. 254

This is in agreement with results obtained over square domains 255

(Fig. 3) where a decrease in the value of m resulted in a more 256

dissected landscape with narrower valleys. 257

The numerical simulations confirm the results of the linear 258

stability analysis and are in agreement with those of ref. 18. 259

Fig. 5 compares the drainage patterns obtained as a function of 260

CI for rectangular domains of size 100 m by 500 m. As for the 261

square domain, for small CI values the soil creep component 262

dominates resulting in an unchannelized smooth topography 263

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
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Fig. 4. Linear stability
analysis. (a) Growth
rate σ as a function of
wavenumber k for differ-
ent values of the dimen-
sionless number CI , (b)
marginal stability curve
(the solid line marks the
instability of the basic
state to channel initia-
tion), and (c) character-
istic valley spacing λ as
a function of the dimen-
sionless number CI . The
linear stability analysis
predicts a critical value
CI,c ≈ 37 for the first
channel instability (with
valley spacing λc ≈ 42
m). The inset in panel
(a) shows the geome-
try assumed as a basic
state for the linear stabil-
ity analysis and for the
derivation of the theoreti-
cal hillslope profiles (see
also Methods).

(Fig. 5a). After the first channelization, valleys tend to264

narrow as CI increases until the first secondary branching265

occurs (Fig. 5b,c). Further increasing the runoff erosion266

component provides progressively more dissected landscapes267

with the emergence of secondary branching (Fig. 5d-f). As268

in turbulent flows larger Reynolds numbers produce smaller269

and smaller vortices, here increasing CI leads to finer and finer270

branching (the resolution of which becomes quickly prohibitive271

from a computational standpoint).272

The mean elevation profiles, computed as average elevation273

values along the x axis and neglecting the terminal parts of274

the domain to avoid boundary effects, are shown in Fig. 5g-l.275

As the topography becomes progressively more dissected with276

increasing CI , the mean elevation profile tends to become more277

uniform (Fig. 5g-l). Such a behavior of the mean elevation278

profiles for increasing CI is similar to the flattening of turbulent279

mean velocity profiles with increasing Reynolds number (24).280

The transition from a smooth to a channelized topography281

with increasing CI is reflected in the behavior of the quantity282

DS∗/Ul = f(CI ,m), which describes the ratio of the outgoing283

diffusive flux and the incoming uplift sediment flux at the hill-284

slope base, S∗ being the slope of the mean elevation profile at285

the hillslope base (see Methods for details). Fig. 5p shows the286

relationship between DS∗/Ul and CI obtained from numerical287

simulations for n = 1 and different values of the exponent m.288

For small CI values the numerical results match the analytic289

relationship for the smooth surface (Eq. (11)) and deviate290

from it at CI,c ≈ 32 where the first channel-forming instability291

occurs. Continuing our analogy with turbulence, the behavior292

of DS∗/Ul as a function of CI closely resembles that of the293

friction factor with increasing Reynolds number (see Methods294

as well as figure 7.3 in ref. 53).295

The effect of boundary conditions on the spatial regularity296

of ridge and valley patterns becomes especially apparent when297

comparing simulations with different aspect ratios. As can be298

seen in Fig. 5m-o, when the domain size is slightly changed,299

the spatial organization of ridges and valleys is modified (see,300

e.g., the more regular pattern obtained for β = 4.6 compared to 301

β = 5.1), while the mean elevation profiles remain practically 302

invariant (see SI Appendix, Fig. S8). This suggests that 303

some optimal domain length is needed to accommodate the 304

formation of regular ridge and valley patterns (this is also 305

evident from an analysis of cross-sections along the longer 306

sides of the domain, see Figs. S3-S7 in the SI Appendix). This 307

results in the formation of dislocation defects, as highlighted 308

in the example of Fig. 5m-o, as it is typical in nonlinear 309

pattern-forming PDEs (52). 310

Discussion and conclusions 311

A succession of increasingly complex networks of ridges and 312

valleys was produced by a system of nonlinear PDEs serving 313

as a minimalist model for landscape evolution in detachment- 314

limited conditions. The sequence of instabilities is reminiscent 315

of the subsequent bifurcations in fluid dynamic instabilities 316

(23, 24, 52) and is captured by a dimensionless number (CI) 317

accounting for the relative importance of runoff erosion, soil 318

creep, and uplift in relation to the typical domain size. Tan- 319

talizing analogies with fluid turbulence, and in general with 320

other driven non-equilibrium systems in which a hierarchical 321

pattern develops toward finer scales, can also be observed in 322

the competition between runoff erosion and soil creep (which 323

resembles the competition between viscous and inertial forces), 324

the reduction of the minimum branching scale with CI , and 325

the flattening of the mean hypsometric curves as the channel- 326

ization is increased. 327

Characteristic spatial configurations were shown to emerge 328

over both square and rectangular domains from the trade- 329

off between diffusion and erosion. The striking regularity 330

of the ridge and valley networks, with the characteristics 331

of regular pre-fractals (e.g., the Peano basin (8, 46–48)), is 332

quickly lost as effects of noise and irregular boundaries are 333

introduced (see SI Appendix, Fig. S10). The shape of the 334

hypsometric curve depends on the level of channelization and 335
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Fig. 5. Rectangular domains. Ridge/valley networks obtained for m = n = 1 over rectangular domains with (a-f) β = 5 (CI = 14, 32, 96, 312, 1000, and 10000), (m)
β = 5.1 (CI = 200), (n) β = 4.8 (CI = 200), and (o) β = 4.6 (CI = 200). β is a shape factor defined as the ratio between the two horizontal length scales ly and lx, namely
β = ly/lx. Examples of dislocation defects are shown by the red dashed rectangles in panels m-o. (g-l) Normalized elevation profiles along the x axis for the six simulations
of panels a-f: black lines are the mean elevation profiles, red lines show the ensemble of all the profiles along x, blue dashed lines are analytical elevation profiles for the
unchannelized case – Eq. (9). Mean elevation profiles along the x axis were computed as average values of the elevation profiles neglecting the extremal parts (100 m length)
of the domain. (p) Slope of the mean elevation profile S∗ as a function of CI for simulations with n = 1 and m = 0.25, 0.5, 0.75, and 1. The solid red line represents the
analytical solution for m = 1 (Eq. (11)) for the unchannelized case. The schematic in the inset shows the definition of S∗ and l used in the vertical axis of the chart.

branching (54) and thus on the dominant erosional mechanisms336

acting on the landscape (i.e., interplay between runoff erosion,337

soil creep, and uplift) and the various landscape properties338

affecting diffusion and erosion coefficients, such as soil type,339

vegetation cover, and climate. When diffusion dominates,340

hypsometric curves display a less pronounced basal convexity341

(54). A systematic analysis of real topographies in terms of342

statistics of hypsometry, branching angles, and characteristic343

spacing would help infer values of CI and the non-linearity344

exponents m and n of natural landscapes, and possibly link345

them to the abiotic and biotic properties of the landscape346

under consideration.347

It will also be interesting to explore the differences in tran-348

sient dynamics between the hypsometry of juvenile and old349

landscapes. It is likely that, during the early stages of the350

basin development when the drainage network is formed, the351

hypsometric curve presents a more pronounced basal convexity352

(2) regardless of the value of CI , progressively transitioning 353

toward its quasi-equilibrium form during the “relaxation phase” 354

(55). Such slow relaxations (e.g., Fig. 5), often towards slightly 355

irregular configurations rather than perfectly regular networks, 356

are reminiscent of the presence of defects in crystals and the 357

amorphous configurations originating in glass transition (56). 358

Materials and Methods 359

360

Analytical solutions for m = n = 1. To derive one-dimensional 361

steady state solutions of the coupled PDE system (Eqs. (4)-(5)) we 362

consider a symmetric hillslope of length l in the x-direction, with 363

divide at x = 0 (see inset in Fig. 4a). Assuming a fixed elevation 364

z = 0 at x = ±l/2, the steady steady solution of the coupled system 365
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of Eqs. (4) and (5) for m = n = 1 reads (44)366

a0 = |x| [8]367

z0 =
U

2D

[(
l

2

)2
H

(
1, 1;

3
2
, 2;−

Ka
(
l
2

)2

D

)
368

− x2H
(

1, 1, ;
3
2
, 2;−

Kax2

D

)]
[9]369

where subscript 0 denotes the basic steady state, and H(., .; ., .; .) is370

the generalized hypergeometric function (57). In these conditions,371

the local slope S0 = dz0/dx can also be derived analytically as (44)372

S0 =

√
2UD

(√
Kax√
2D

)
√
DKa

[10]373

where D(.) is the Dawson’s integral (57).374

Linear stability analysis. We studied the stability of the basic state375

(Eqs. (8)-(9)) to perturbations ã and z̃ in the y-direction. Boundary376

conditions are zero sediment and specific drainage area at the377

hilltop (ã = dz̃/dx = 0 at x = 0) and fixed elevation at the domain378

boundary (z̃ = 0 at x = l/2). We use normal mode analysis379

and write perturbations in the classical form ã = φ(x)eiky+σt and380

z̃ = ψ(x)eiky+σt (plus complex conjugate), where k and σ are the381

wavenumber and the growth rate of the perturbations, respectively.382

The perturbed system can be re-cast in terms of a third order383

non-constant coefficient differential eigenvalue problem of the form384

γ1(x)φ′′′(x) + γ2(x)φ′′(x) + γ3(x)φ′(x) + γ4(x)φ(x) = σγ5(x)φ′(x).385

Solutions to the stability problem are obtained by means of a spectral386

Galerkin technique with numerical quadrature (58, 59). Among the387

discrete set of eigenvalues obtained, we tracked the behavior of the388

least stable (i.e., with largest real part). The stability analysis was389

performed here for unitary exponentsm and n due to the availability390

of an analytical form of the basic state. Numerical results for a391

wider range of m and n values are reported in the SI Appendix (Fig.392

S9).393

Numerical simulations. Numerical simulations were performed using394

forward differences in time and centered difference approximations395

for the spatial derivatives, considering regular square grids of lateral396

dimension l, as well as on rectangular domains with shape factor397

β, defined as the ratio between the domain dimensions in the y398

and x direction (i.e., β = ly/lx). Specifically, in the simulations399

over rectangular domains we fixed the length in the x direction (i.e.,400

lx = 100 m), and varied only the length ly in the y direction. The401

total drainage area A was computed at each grid point with the D∞402

algorithm, while a was then approximated as A/∆x (43, 60), with403

∆x the grid size. Simulations were run assuming ∆x = 1 m (addi-404

tional numerical experiments, shown in the SI Appendix (Fig. S1),405

were performed for different grid sizes to validate the independence406

of the resulting patterns on the grid resolution). Convex profiles407

were used as initial condition. Over wide rectangular domains for408

CI ≥ 320 a white noise with standard deviation equal to 10−6 m409

was also added in the initial condition. A sensitivity analysis was410

conducted over square domains (not shown) to make sure that the411

resulting spatial organization of ridges and valleys at steady state412

was robust to the choice of initial conditions. We considered a wide413

range of CI values (from 100 to 105) constructed by using literature414

values of the system parameters, which are generally estimated in415

terms of time-averaged values from experimental hillslope shapes416

(61) or high resolution topographies (18, 19).417

Dimensional analysis of the channelization transition. We proceed418

similarly to the analysis of turbulence transition in pipes and chan-419

nels. There the relationship between the friction factor ξ and the420

Reynolds number Re can be obtained by first relating the wall421

shear stress τ = µdu/dx∗|x∗=0, where u is the streamwise mean422

velocity profile and x∗ is the distance from the wall, to its governing423

quantities as τ = Ξ(V, L, µ, ρ, ε), where ρ is the density, µ the vis-424

cosity, V the mean velocity, L the characteristic lateral dimension,425

and ε the roughness height. The Pi-Theorem then may be used to426

express the head loss per unit length (g is gravitational acceleration)427

as Sh = 4τ
gρL

= V 2

2gL ξ
(
Re, ε

L

)
, see ref. 62. Analogously, here we428

can relate the slope of the mean elevation profile at the hillslope 429

base S∗ = dz/dx|x=l/2 to the parameters and characteristics of the 430

landscape evolution model as S∗ = Φ(D,Ka,m, U, l) (we consider 431

here n = 1). Choosing l, U , and D as dimensionally independent 432

variables, the Pi-Theorem yields DS∗/Ul = ϕ(CI ,m), where the 433

quantity DS∗ quantifies the diffusive outgoing sediment flux per 434

unit width (along the x-axis) at the boundary, while the term Ul 435

represents the incoming sediment flux by tectonic uplift per unit 436

width. Such a functional relationship can be analytically derived 437

for the unchannelized case when m = 1 from Eq. (10) as 438

DS∗

Ul
=
(CI

2

)−1/2
D
[(CI

8

)1/2
]
. [11] 439

In the numerical simulations, S∗ was computed as the slope of the 440

linear fit to the mean elevation profile in the first 3 meters at the 441

hillslope base (see inset in Fig. 5p). 442

Data and code availability. 1-meter resultion LiDAR data for Cal- 443

houn and Gabilan Mesa can be dowloaded from the OpenTopog- 444

raphy facility (https://opentopography.org). The code used for the 445

numerical simulations is described in ref. 63 and available on GitHub 446

(https://github.com/ShashankAnand1996/LEM). 447
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