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AUTHNET: BIOMETRIC AUTHENTICATION THROUGH ADVERSARIAL LEARNING
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Department of Electronics and Telecommunications
Politecnico di Torino, Italy
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ABSTRACT

We present AuthNet: a generic framework for biometric

authentication, based on adversarial neural networks. Dif-

ferently from other methods, AuthNet maps input biometric

traits onto a regularized space in which well-behaved regions,

learned by means of an adversarial game, convey the semantic

meaning of authorized and unauthorized users. This enables

the use of simple boundaries in order to discriminate among

the two classes. The novel approach of learning the mapping

regularized by target distributions instead of the boundaries

further avoids the problem encountered in typical classifiers

for which the learnt boundaries may be complex and difficult

to analyze. With extensive experiments on publicly avail-

able datasets, it is illustrated that the AuthNet performance

in terms of security metrics such as accuracy, Equal Error

Rate (EER), False Acceptance Rate (FAR) and Genuine Ac-

ceptance Rate (GAR) is superior compared to other methods

which confirms the effectiveness of the proposed method.

Index Terms— Biometric authentication, Deep neural

network, Latent mapping

1. INTRODUCTION

In recent years, there has been a growing interest in biometric

authentication systems due to their convenience in providing

access to sensitive data.

Ideally, a good biometric authentication system should

maximize the probability of accepting authorized users while

keeping a negligible probability of accepting wrong users.

This problem has traditionally been addressed by means of

handcrafted feature extraction and distance matching in the

enrollment and verification phases, respectively. However,

the rise of deep learning based models has showed the su-

periority of learned features, see e.g. [1, 2].

Nonetheless, deep learning based classification learns

highly non-linear boundaries with complex shape in order to

partition the feature space. As shown in [3], the geometry of

the decision boundaries heavily affects the robustness of the

classifier, leading to potential errors.

To overcome this, in this paper we propose to learn a com-

pact and meaningful mapping of the input biometric traits

onto the latent (feature) space. This mapping should yield

a latent space that is shaped in a simple and well-behaved

manner so that the region of the space corresponding to the

authorized user is well-separated from that containing all the

other users. More specifically, biometric traits similar to that

of the authorized user should cluster in a region of the la-

tent space and exhibit given statistical properties. In a sim-

ilar way, all the biometric traits of every other possible user

should gather in a region of the space which semantically rep-

resents the non-authorized users. This complex task requires

to map two possibly very different input distributions onto

target distributions having the same shape.

The resulting system, which we will refer to as AuthNet,

employs an adversarial model to regularize the latent space

such that simple threshold-based rules can be employed to

discriminate between the authorized user and everyone else.

1.1. Related work

Even though AuthNet can be used in principle with any bio-

metric trait, in this work we will focus on two of the most

commonly used ones, i.e. faces and fingerprints.

Outstanding progress has been made in face recognition

task with the advent of deep learning methods which, by

learning the most discriminative facial features, reach state-

of-art performance. Examples include Facenet [4], ArcFace

[5], DeepFace [6] and others, see [7]. Other non deep learning

based approaches which rely on low-dimensional represen-

tations of the faces include sparse representations [8] and

manifold [9] representations.

Regarding the fingerprints, we mention [10, 11] in which

the matching is performed on a global descriptor of the whole

fingerprint and [12, 13] in which the matching is made on

the local minutiae information. The performance can be im-

proved when additional information such as shape context

and orientation is included, see e.g. [14]. Deep learning

models have also been proposed, examples include [1] in

which convolutional neural networks (CNN) are used to ex-

tract minutiae from raw fingerprint images and [2] where a



stacked autoencoder is used to classify fingerprints into arch,

left/right loop, and whorl.

To the best of our knowledge, this is the first approach in

which learning a mapping regularized by target distributions

is employed to achieve robust biometric authentication.

2. PROPOSED METHOD

2.1. Adversarial Learning

Adversarial models gained popularity in the context of gen-

erative models, with the introduction of the Generative Ad-

versarial Networks (GANs) [15]. The main goal of a GAN

is to implicitly learn the probability distribution of the input

data in such a way that the network is then able to generate
samples similar to the input data.

The main idea behind adversarial models is to reach the

minimum of a functional defined as a minimax game where

two entities have adversarial (opposite) goals. Within the

deep learning framework, the two entities called generator

and discriminator are modeled as neural networks and the

minimax game is introduced in the loss function in order to

make the two networks compete against each other during

the training process. In more detail, the discriminator should

be able to correctly discriminate between generated and real

samples, while the generator should be able to generate sam-

ples which are realistic enough to fool the discriminator.

In AuthNet, as described in detail in the following, sam-

ples of the data distribution are mapped onto a latent represen-

tation which follows a target distribution. This can be consid-

ered as the inverse mapping of a conventional GAN, in which

samples of a fixed distribution are mapped onto the captured

distribution of the data.

2.2. Latent Mapping

In the following we formalize the main concept of AuthNet.

Let B = {Ba=0,Ba=1} denote the set of all possible bio-

metric traits and a ∈ {0, 1} an indicator variable such that

a = 1 represents the authorized user and a = 0 represents all

other unauthorized users. Moreover, let us define as x ∈ R
n a

generic biometric trait in B and as z ∈ R
d its latent represen-

tation with d < n. The goal is to learn an encoding function

of the input biometric trait z = H(x) such that z ∼ P1 if

x ∈ Ba=1 and z ∼ P0 if x ∈ Ba=0, with P1 and P0 the target

distributions in the latent space. If the distributions P1 and P0

are well-behaved, a simple distance-based thresholding ap-

proach can be employed to determine whether the biometric

trait x corresponds to authorized user or not.

Let us set P1 = N (μ1, σ1I) and P0 = N (μ0, σ0I) to be

Gaussian, this amounts to enclosing the energy of the latent

representation of authorized and unauthorized users within

hyperspheres whose radius depends on both d and the dis-

tribution parameters. For the sake of simplicity and without

loss of generality, we set E[||z1||2] < E[||z0||2] with z1 ∼ P1
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Fig. 1: AuthNet architecture at enrollment phase. Training

biometric traits are given as input to the encoder which con-

sists of 23 convolutional layers followed by a fully connected

layer. The output of the encoder, together with a one-hot vec-

tor and samples of the target distributions, is given as input to

the discriminator which is made of 6 fully connected layers.

and z0 ∼ P0. Then, the authentication is performed on the

basis of the decision rule: if ||H(x)||2 ≤ τ the user is authen-

ticated; otherwise the user is rejected.

During the enrollment phase, the network is trained to

learn the mapping for the specific user to be enrolled. In

the verification phase, a threshold decision rule is applied on

the latent representation of the input biometric trait computed

through the trained encoding function H(x), in order to out-

put a decision.

2.3. Enrollment

During the enrollment phase we want to learn an encoding

function H(x) which maps the users onto the target distri-

butions. This optimal H(x) should be the one for which a

distance metric between H(x) : x ∈ Ba=1 and P1, and be-

tween H(x) : x ∈ Ba=0 and P0 is minimized. To achieve

this goal we employ an adversarial model whose optimum is

reached when the Jensen Shannon (JS) divergence between

the latent mapping and target distribution is minimized [15].

The general AuthNet architecture at enrollment phase is

depicted in Fig. 1. It consists of two competing neural net-

works: an encoding function H(x,θh) having parameters θh
and a discriminator D(p,θd) with parameters θd. For the

sake of readability, unless needed, we will drop the param-

eters in the notation of the encoding and discriminator net-

works. The biometric traits x are given as an input to H(·)
which encodes them to their latent representation z. The dis-

criminator D(p) takes as input the vector p ∈ {s, z}, namely

it is given in an alternate fashion, either a sample from one of

the target distributions s or the encoded latent representation

z. The vector s ∈ R
d contains samples randomly drawn from

the target distributions P1 or P0 if x ∈ Ba=1 or x ∈ Ba=0 re-

spectively. The labelled information a of the user (as one-hot

vector) is also given to the discriminator; this acts as a switch

to select a “sub-discriminator” function for either authorized

or unauthorized users. The output of D(p) is a scalar repre-

senting the probability that the given input is coming either

from the encoding function or the target distribution.



d GAR@10−2FAR%
1 99.998

2 89.884

3 53.351

Table 1: GAR comparison of a randomly selected user of

Yale DB2 when considering different dimensionality of the

latent space d. The best case is obtained for d = 1.

2.3.1. Loss Function

The loss function we consider to address the above-defined

adversarial setting is given by

V (H,D) = E
s∼P

[log(D(s, a))]+ E
x∼B

[log(1−D(H(x), a))] ,

(1)

which is optimized as a minimax two-player game according

to minθh
maxθd

V (H,D), where the optimization is carried

over the networks parameters θh and θd in an alternate fash-

ion.

2.4. Authentication

The authentication phase, which directly translates to the test-

ing phase of the neural network, only requires the use of the

encoder network. Indeed, given a trained encoder network it

is possible to compute the latent representation related to the

input biometric trait. Then, a threshold is applied on the �2
norm of the latent representation in order to output a decision.

The decision step can be formalized as follows:{
accept if ||z||2 ≤ τ,

reject if ||z||2 > τ .

Selecting τ : τ is an adjustable threshold that can be varied

to obtain the desired trade-off between false acceptance rate

(FAR) and false rejection rate (FRR). The results presented

in the following section are obtained by fixing a metric value

FAR, obtaining the corresponding τ and computing the other

metrics i.e. Genuine Acceptance Rate (GAR) at that thresh-

old. The same applies to the Equal Error Rate (EER): we

compute the value of τ at the intersection of FAR and FRR

values. Additionally, we also compute the maximum accu-

racy achieved by considering different values of τ .

3. TRAINING AND IMPLEMENTATION DETAILS

As previously discussed, the AuthNet architecture is made of

two neural sub-networks: the encoder and the discriminator.

Since the encoder takes as input images and it is supposed

to learn discriminative features, we employ a CNN. Start-

ing from the input layer we use 23 convolutional layers with

ReLU activations followed by a final fully connected layer.

The first convolutional layer is made of 32 filters with a kernel

size of 7×7. At layers 1, 3 and 7 we progressively increase the

number of filters and decrease the size of the kernels; at the
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Fig. 2: Accuracy, kurtosis and skewness comparison of a

randomly selected user from CMU-MultiPIE having P0 =
N (k, 1) where k = [0.5, 90], and P1 = N (0, 1). If the means

of the two distribution are too far apart the training process

gets unstable, hence it effects the accuracy, kurtosis and skew-

ness of the imposed distributions.

same time we perform downsampling by using a stride factor

of 2. The last convolutional layer is made of 256 filters of size

of 3×3. This layer is then followed by a fully connected layer

having output of size corresponding to the latent space dimen-

sionality d. It is important to notice that in this last layer we

do not use any non-linear activation as the output should be-

have as a sample coming from one of the target distributions.

In our tests we fixed the hyperparameter d = 1, since in our

experiments this choice gave us better results as can be seen

in Table 1. As d increases, under the same FAR, the GAR de-

creases. The highest GAR is obtained for d = 1. Intuitively,

as the latent space grows in dimensionality, a larger number of

training samples is required to avoid overfitting. The datasets

we consider have a rather small number of samples per user,

thus it is not surprising that a smaller d achieves better results.

The discriminator is a fully connected network consisting of 6
layers. The first layer has the input of size d+2 since it is the

concatenation of the latent representation vector with a one

hot vector indicating the class the corresponding user belongs

to. The size progressively increases to a maximum of 1000
which is decreased in the further layers to the final output of

size equal to 1 with sigmoid activation.

Preprocessing and training parameters The network is

trained using Adam optimizer using an iterative algorithm as

discussed in [15]; the optimization is carried out one step for

encoder and one for the discriminator. Weight decay is set to

be 0.0004 and a dropout of 0.7 is used. Initially, the learn-

ing rate is set to be 0.01 for first 5000 iterations, and is then

decreased by a factor of 10 after every 5000 iterations. In

total, the network is trained for 30000 iterations. The only

pre-processing we perform on all the considered datasets is

an energy normalization of the input images.

4. EXPERIMENTS

In biometric authentication systems it is common to assume

that the user puts him/herself in a controlled condition for the



Biometry Method EER% GAR@10−1FAR% GAR@10−2FAR% Max accuracy
AuthNet 0.426 99.903 99.890 99.615

AuthNet enc. classifier 0.961 99.310 99.310 99.252

FaceNet 1.286 98.819 98.712 98.782Face - Yale B
ArcFace 0.893 99.159 99.108 99.229

AuthNet 0.044 100.0 100.0 99.983
AuthNet enc. classifier 0.279 100.0 100.0 99.818

FaceNet 0.930 99.368 99.201 99.163Face - Multi-PIE
ArcFace 1.811 98.811 98.125 98.738

AuthNet 0.414 100.0 99.908 99.630
AuthNet enc. classifier 1.454 99.497 99.108 98.603

Verifinger 0.758 100.0 99.796 99.398Fingerprint FVC 2006
Hybrid approach [14] 3.200 98.182 94.854 96.906

Table 2: Performance comparison of AuthNet with respect to other biometric authentication schemes.

biometric traits acquisition. In this regard, the datasets we

consider are among the biggest ones acquired in such condi-

tions.

4.1. Datasets

For the face authentication task we employ two commonly

used datasets. The first dataset we employ is the CMU Multi-

PIE dataset [16]. It consists of samples with different poses

illumination and expressions. In total it has 337 subjects ac-

quired in 4 different sessions. We consider the frontal poses

of 129 subjects which are common in all 4 sessions. For each

user enrollment 75% of the samples are used for training and

the remaining 25% are left for testing. For unauthorized users

out of 128 users, 96 users samples are used for the training

and remaining 32 users samples are left for the testing. Keep-

ing the aspect ratio, we resize the images to 144x192x3. Fur-

ther to create more diverse samples, we employ the mixup

strategy as described in [17]: positive and negative training
samples are mixed through convex combination.

The second dataset we consider is the extended Yale Face
Database B [18] (the cropped version). In total it has 38 sub-

jects, with varying illumination conditions. The dataset is fur-

ther split into train and test for each enrollment. For each

authorized user enrollment 75% of the samples are used for

training and the remaining 25% are left for testing. For unau-

thorized users, 31 users samples are used for training and 6
users samples are left for the testing. Further, the dataset is

augmented by employing the crops of size 184 × 160 by an

augmentation factor of F = 81 and F1 = 25 for authorized

and unauthorized users respectively. Further to create more

diverse samples we employ mixup strategy as explained for

CMU Multi-PIE dataset.

For fingerprint authentication, we evaluate our method

on Fingerprint Verification Competition (FVC 2006) DB2
[19] dataset that consists of 150 users. Maintaining the aspect

ratio the images are resized to 202×149. For each authorized

user enrollment, 75% of the samples are used for the training

and the remaining 25%are left for the testing. For the case of

unauthorized users, 124 users samples are used for the train-

ing and 25 are left for the testing. The dataset is augmented

to a factor of F = 289 and F1 = 25 by cropping the images

of sizes 186× 133 pixels. Lastly, mixup data augmentation is

employed as explained for the face datasets.

4.2. Parameters of authorized and unauthorized users
distributions

In AuthNet the authorized and unauthorized target distribu-

tions are set to be Gaussian. This choice comes from the

fact that the output of a (large enough) fully connected layer,

by the central limit theorem, will naturally tend to a Gaus-

sian distributed output [20]. We set the distributions to be

P1 = N (0, 1) and P0 = N (20, 1). We choose μ1 = 0 and

μ0 = 20 to be different enough to keep the distributions far

apart from each other. In more detail, in Fig. 2 we show

the maximum accuracy obtained by AuthNet, together with

skewness and kurtosis of the latent representation as a func-

tion of of μ0 for a randomly selected CMU-MultiPIE user. It

can be seen that the region for which the accuracy is maxi-

mum, corresponds roughly to 15 ≤ μ0 ≤ 45; in this region,

skewness is close to 0 and kurtosis is approximately equal to

3, showing that the training indeed converges to Gaussian dis-

tributions. Further, if the difference between μ0 and μ1 is too

large (e.g. μ0 > 50), the training process becomes unstable

and the distributions are far from Gaussian.

4.3. Results

Face authentication. In the case of face authentication for

benchmarking with state-of-the-art deep learning techniques

we compare AuthNet with FaceNet [4] and ArcFace [5]. Re-

garding FaceNet and ArcFace, since it is not possible to train

them from scratch because of the data scarcity, we compute

the 512-dimensional embeddings of the input images given

a pre-trained network on the CASIA WebFace dataset [22].

Then, a classifier is independently trained on the embeddings

of each user. In order to assess the benefits of the adversarial

scheme employed in AuthNet, we also include a comparison

with a classifier based on the same network architecture as the

AuthNet encoder, but trained with sigmoid cross entropy loss

instead of the adversarial loss. In the following, this will be

denoted as AuthNet encoder classifier.

The results in Table 2 show that AuthNet achieves high

performance in all the considered metrics. We highlight that,

even though the AuthNet encoder classifier shares the same
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Fig. 4: ROC comparison on overall results of 32 users for faces (a)-(b) and fingerprint (c) datasets. AuthNet is compared with

the AuthNet encoder classifier, FaceNet [4] and ArcFace [5] in (a)-(b); with AuthNet encoder classifier, VeriFinger [21] and the

hybrid approach [14] in (c). AuthNet (red) achieves highest GAR at different values of FAR.

architecture as AuthNet, it achieves an EER which is an order

of magnitude larger than the one of AuthNet, especially at

low FAR, (see Fig. 4(a)-(b)). This suggests that the chosen

target distributions impose well-defined decision regions in

the latent space yielding a more robust classification scheme.

Indeed, as can be seen in Fig. 3(a), AuthNet effectively

separates authorized and unauthorized users. A good sepa-

ration is also achieved by other methods, see Fig. 3(b)-(d);

however they fail to assign to all the unauthorized users a cor-

rect score, yielding some “leakage” into the wrong distribu-

tion. This behavior can indeed be more clearly noticed in the

Receiver Operating Characteristic (ROC) comparison in Fig.

4(a)-(b). The well-separated distributions obtained from Au-

thNet lead to highest GAR even at small values of FAR com-

pared to other benchmarking methods. Indeed, it can also be

noticed that the proposed approach consistently outperforms

other methods over the full range of FAR values.

At this point it is also interesting to notice that AuthNet is

able to achieve higher performance when tested on the Multi-

PIE dataset. Even though this dataset is more complex with

respect to the Yale B dataset because of the less constrained

acquisition, it has more samples. For this reason, complex

mappings are easier to learn.

Fingerprint authentication. For fingerprint authentica-

tion we compare AuthNet with AuthNet encoder classifier,

Verifinger [21], and the hybrid approach described in [14]

in which a minutiae based template synthesis and matching

is employed. Note that Verifinger achieves state-of-the-art

performance without using deep learning approach. AuthNet

outperforms all the other approaches in terms of EER by

achieving an EER of 0.414%. At fixed small values of FAR,

the resulting GAR of the proposed method is higher with re-

spect to AuthNet encoder classifier and the hybrid approach,

while achieving comparable performance with Verifinger.

Lastly, in Fig. 4(c) the ROC comparison of AuthNet with re-

spect to other fingerprint authentication schemes is depicted.

It can be seen that AuthNet outperforms all other methods by

achieving highest values of GAR at different FAR.

5. CONCLUSIONS

We presented a novel biometric authentication scheme based

on deep learning which learns a mapping onto target distri-

butions by means of an adversarial game. All the above re-

sults support the idea of AuthNet to move from learning the

classification boundaries to learning a mapping onto a space

regularized by target distributions. Our intuition behind this

behavior is that the non-linear boundaries learnt by standard

deep learning classifiers indeed become very complex as they

try to closely fit the training data, leaving room for misclassi-

fication. Conversely, the adversarial learning of AuthNet en-

ables much simpler boundaries to be used as it does not learn

how to partition the space but rather how to map the input

space into the latent one.
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