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Abstract

The main objective of this paper is to characterize feedback control laws that are optimal with respect to a quadratic cost
functional in the framework of linear hybrid systems undergoing time-driven periodic jumps, namely the so-called hybrid
Linear-Quadratic Regulator (LQR) problem. The optimal solution to the hybrid LQR problem is determined both in the case
of finite–horizon and infinite–horizon optimal control problems by introducing a hybrid (periodic) extension of the classic
Differential and Difference Riccati Equations, thus leading to the notion of Monodromy Riccati Equation. Interestingly, due
to the periodic nature of the discrete-time events, the computation of the optimal feedback hinges upon the solution of a
differential, rather than algebraic, Riccati equation also in the infinite–horizon case, hence yielding a time-varying, periodic
control law. Necessary and sufficient conditions that ensure asymptotic stability of the closed–loop system are provided and
discussed in detail in the case of infinite–horizon optimal control problems.

1 Introduction

The class of linear or nonlinear models described by hy-
brid dynamics has recently attracted increasing atten-
tion and, as a consequence, several studies have appeared
in the literature concerning the extension or the adap-
tation of classic results on fundamental control prob-
lems to such a class of systems (Sun, 2006; Liberzon,
2012; Goebel et al., 2012). In particular, hybrid sys-
tems are characterized by the peculiar interplay between
continuous–time evolution, according to the so-called
flow dynamics, and discrete–time events, governed by
the jump dynamics. It is then not surprising that the
optimal control problem - which is among the most im-
portant tasks in control theory together with stabiliza-
tion of a desired equilibrium point and output regula-
tion - has immediately become the objective of inten-
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sive research effort in the context of hybrid systems,
even before the introduction of the particularly useful
formalism and results of Goebel et al. (2012), see e.g.
D’Apice et al. (2003); Xu and Antsaklis (2004); Shaikh
and Caines (2007); Yuan and Wu (2015). In particular,
in Sussmann (1999), a version of the Pontryagin max-
imum (or, equivalently, minimum) principle for hybrid
optimal control problems, under weak regularity condi-
tions, is presented. On the other hand, in Cassandras
et al. (2001), a class of optimal control problems is ana-
lyzed for hybrid systems, emphasizing the coupling be-
tween the time–driven and event–driven dynamics gov-
erning the switches.

In this work, the interest lies on a specially structured
class of hybrid systems that has been recently widely
studied (see Menini and Tornambe, 2000, 2002; Cox,
Teel and Marconi, 2011; Cox, Marconi and Teel, 2011;
Galeani et al., 2012; Carnevale, Galeani, Menini and Sas-
sano, 2014b,a and references therein), namely that char-
acterized by linear dynamics and by the presence of a
clock variable, which satisfies a well–defined (periodic)
dwell time between two consecutive jumps and which is
available for feedback. Within the class of hybrid sys-
tems identified by the above features, the optimal con-
trol problem over infinite–horizon and with respect to a
quadratic cost has been dealt with in Carnevale, Galeani
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and Sassano (2014), where only sufficient conditions en-
suring that the optimal control stabilizes the hybrid sys-
tem are given.

The main contribution of this paper is to provide a com-
prehensive characterization of the solution to the Linear-
Quadratic Regulator problem in the presence of hybrid
systems that exhibit periodic time-driven jumps, with
the period and the initial timer a priori known. The op-
timal solution is constructed both in the finite–horizon
as well as in the infinite–horizon cases. Moreover, the
notion of Monodromy Riccati Equation is introduced
and discussed. A preliminary version of this paper has
appeared in Possieri and Teel (2016). With respect to
Possieri and Teel (2016), here we provide the proofs of
the main results, further insights and remarks and the
derivation and use of the Monodromy (algebraic) Ric-
cati equation.

The remainder of the paper is organized as follows: in
Section 2, the considered class of hybrid systems is intro-
duced and some preliminary results are stated. In Sec-
tions 3 and 4, the finite–horizon and infinite–horizon LQ
optimal control problem are dealt with, respectively. In
Sections 4.1 and 4.2, necessary and sufficient conditions
guaranteeing that the infinite–horizon LQ optimal con-
trol stabilizes the closed loop systems are stated. Con-
clusion are drafted in Section 6.

2 Notation and Preliminaries

Let R, Z, N, and C denote the set of real, integer, natural
and complex numbers, respectively. Define Cg := {s ∈
C : |s| < 1}. Let bac, be the largest integer lower than
or equal to a ∈ R. Given a symmetric, positive semi-
definite matrix M ∈ Rν×ν , let |v|M , v ∈ Rν , be the M–
seminorm, i.e., |v|M := v′Mv. Given v ∈ Cn, let v∗ (resp.
v′) be the complex conjugate (resp. transpose) of v.

Consider the hybrid system governed by the flow dy-
namics

τ̇ = 1, (1a)

ẋ = Ax+BuF , (1b)

when (τ, x) ∈ [0, τM ]× Rn, and by the jump dynamics

τ+ = 0, (1c)

x+ = Ex+ FuJ , (1d)

when (τ, x) ∈ {τM} × Rn, with state x(t, k) ∈ Rn, flow
input uF (t, k) ∈ Rm1 , jump input uJ(k) ∈ Rm2 , and
initial conditions τ(0, 0) = 0, x(0, 0) = x0 (the exten-
sion of the results of this paper to the case τ(0, 0) = τ0,
τ0 ∈ [0, τM ], is discussed in the subsequent Corollaries 1
and 3). In (1), τM is a positive known constant that im-
poses a dwell–time constraint between two consecutive

jumps. Each solution to (1) is then defined on the com-
mon hybrid time domain

T := {(t, k), t ∈ [kτM , (k + 1)τM ], k ∈ N}, (2)

which is therefore a priori fixed. Solutions to system (1)
are hybrid arcs, i.e., locally absolutely continuous func-
tions mapping (t, k) ∈ T in the indicated set. By defini-
tion, ẋ(t, k) = d

dtx(t, k) and x+(kτM , k−1) = x(kτM , k).
Given k ∈ Z, the shortcut tk := kτM is used.

Let EeAτM be the monodromy matrix of system (1).
As discussed in Carnevale et al. (2012a,b), system (1)
is globally asymptotically stable if and only if all the
eigenvalues of the monodromy matrix EeAτM (or, equiv-
alently, of the matrix eAτME) lie in the open unit circle
in the complex plane, i.e. Cg.

Let ϕ(t, k, x0, uF , uJ) be the solution to system (1)
at hybrid time (t, k) ∈ T , with initial condition x0,
τ(0, 0) = 0, and inputs uF (·, ·), uJ(·). System (1) is
strongly reachable if, for each x ∈ Rn, there exist a finite
κ ∈ N such that, for all t ∈ (tκ, tκ+1), there exist inputs
uF (·, ·) and uJ(·) such that ϕ(t, κ, 0, uF , uJ) = x. On
the other hand, system (1) (or, equivalently, the tuple
(A,B,E, F, τM )) is stabilizable if for each x0 ∈ Rn there
exist uF (·, ·), uJ(·) such that limt+k→∞ x(t, k) = 0. By
Medina and Lawrence (2009, 2010); Carnevale, Galeani
and Sassano (2013); Carnevale, Galeani and Sassano
(2014); Carnevale et al. (2016); Possieri and Teel (2017);
Carnevale et al. (2017), system (1) is stabilizable if and
only if

rank[EeAτM − sI F RA,B ] = n, ∀s /∈ Cg, (3)

whereRA,B is the reachability matrix associated to (1b),

RA,B := [B AB · · · An−1B ].

On the other hand, let yF (t, k) ∈ Rq1 and yJ(k) ∈ Rq2
be the measured outputs of system (1), defined as

yF (t, k) := CFx(t, k), (4a)

yJ(k) := CJx(tk, k − 1). (4b)

System (1) (or, equivalently, (A,E,CF , CJ , τM )) is de-
tectable if, for any initial condition x0 ∈ Rn, by us-
ing only measurements of the input functions uF (·, ·),
uJ(·) and of the outputs yF (·, ·), yJ(·), it is possible to
determine an estimate x̂(t, k) of x(t, k) with the prop-
erty that limt+k→∞ x̂(t, k) − x(t, k) = 0 (or, equiva-
lently since (t, k) ∈ T , limt→∞ x̂(t, k) − x(t, k) = 0 and
limk→∞ x̂(t, k) − x(t, k) = 0). System (1) is detectable
if and only if, ∀s /∈ Cg,

rank[ (EeAτM )′ − sI (CJe
AτM )′ O′A,CF

]′ = n, (5)
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where OA,CF
is the observability matrix of (1b)–(4a),

OA,CF
:= [C ′F (CFA)′ · · · (CFA

n−1)′ ]′.

On the other hand, system (1) is observable if, for any
initial condition x0 ∈ Rn, there exists a hybrid time
(θ, κ) ∈ T such that, by using only measurements of the
input functions uF (·, ·), uJ(·) and of the outputs yF (·, ·),
yJ(·, ) up to time (θ, κ), it is possible to determine x0.
By Possieri and Teel (2017), system (1) is observable if
and only if (5) holds ∀s ∈ C.
Remark 1. The framework considered in this paper has
few similarities with the so-called lifting approach (see
Heemels et al., 2016), hence a comparison is in order.
By employing the framework proposed in Bamieh et al.
(1991); Chen and Francis (2012), a lifting procedure can
be applied to periodic continuous-time systems to de-
rive equivalent discrete-time models. These model in-
volve, however, infinite-dimensional operators between
the (lifted) inputs and the state of the plant. On the other
hand, the approach proposed here just involves finite-
dimensional matrix multiplications leading to a simpler
representation of the process being analyzed. 4

3 Finite–Horizon LQ optimal control

Let x be a solution to system (2), with continuous-time
input uF and discrete-time input uJ . Define the cost
function

Jx0
(uF , uJ) =

∫ T

0

(|x(t, k)|QF
+ |uF (t, k)|RF

) dt+

+

K∑
k=1

(|x(tk, k − 1)|QJ
+ |uJ(k)|RJ

) + |x(T,K)|Z , (6)

with T ∈ R, T > 0,K = bT/τMc,QF , QJ , Z are positive
semidefinite symmetric matrices in Rn×n, RF and RJ
are positive definite symmetric (hence invertible) matri-
ces in Rm1×m1 and Rm2×m2 , respectively. Note that, the
cost function J in (6) is the extension of classical cost
functions for continuous–time and discrete–time linear
systems. In fact, we are assuming that the matrices QF ,
QJ andZ are positive semidefinite, whence the cost func-
tion J penalizes the transient and final state deviation,
both for continuous time and for discrete time. On the
other hand, the matrices RF and RJ are assumed to be
positive definite; therefore, the cost function J penalizes
also the control effort. Consider the following problem.
Problem 1. Let system (1) and the cost function (6)
be given. Find, if any, u? = (u?F , u

?
J) that minimizes J

from initial condition (0, x0), x0 ∈ Rn, of (1). �

For each 0 6 θ 6 T and 0 6 κ 6 K, with κ ∈ N being
such that (θ, κ) ∈ T , define the cost–to–go function from

state x at (θ, κ) ∈ T by

V (θ, κ, x) := inf
u(·,·)

{∫ T

θ

(|x(t, k)|QF
+ |uF (t, k)|RF

) dt

+

K∑
k=κ+1

(|x(tk, k − 1)|QJ
+ |uJ(k)|RJ

) + |x(T,K)|Z
}
,

with x(t, k) initialized at x(θ, κ) = x and satisfying
the dynamics given in (1). Computing the cost–to–go
V (0, 0, x0) corresponds to obtaining a solution to Prob-
lem 1. Thus, we consider two different cases: K 6= T/τM
and K = T/τM . The subsequent Theorem 1 gives a so-
lution to Problem 1 for both cases, while Corollary 1 ex-
tends it to any initial condition (τ0, x0) ∈ [0, τM ]× Rn.

3.1 Case K 6= T/τM

In this section, we assume that K 6= T/τM . The value
of the cost–to–go function at (T,K) is

V (T,K, x) = |x|Z .

Let t ∈ [tK , T ], which is a non-empty interval since K 6=
T/τM . Computing the value of the cost–to–go function
V (t,K, x) corresponds to finding a solution to:

V (t,K, x) = inf
u(·,K)

{∫ T

t

(|x|QF
+ |u|RF

) + |x(T,K)|Z
}
,

(7)
subject to the dynamics given in (1b). By Dorato et al.
(1994), sinceRF is positive definite, there exists a unique
solution to the problem given in (7) that is

u?F (t,K) = −R−1
F B′P (t,K)x,

where P (t,K) is the (symmetric) solution to

−Ṗ = A′P + PA+QF − PBR−1
F B′P, (8)

with final condition P (T,K) = Z. By Theorem 3.14
of Athans and Falb (2007), the ordinary differential
equation (8) admits a unique solution P (t,K) such that
P (T,K) = Z, for all t ∈ [tK , T ]. In addition, the value of
the cost–to–go function V for any t ∈ [tK , T ] is given by

V (t,K, x) = |x|P (t,K). (9)

By the structure of J , the cost–to–go function is
greater than or equal to zero. Therefore, by (8) and (9),
P (t,K) is symmetric and positive semidefinite for any
t ∈ [tK , T ].
Remark 2. It is possible to relax the hypothesis on
the matrix RF , dealing with matrices that are positive
semidefinite. Different techniques have been proposed in
the literature to solve such a problem (see, for instance,
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Saberi and Sannuti, 1987; Kalaimani et al., 2013 and
references therein). In particular, in Hautus and Silver-
man (1983); Willems et al. (1986) it is shown that, by
including distributions in the allowable controls, there
still exists a solution to the LQ problem and that the
regular part of the optimal LQ control can still be writ-
ten as a state feedback (Ferrante and Ntogramatzidis,
2016). Furthermore, the results given in Cobb (1983)
and Bender and Laub (1987b) could be used to deal
with systems in descriptor form. 4

In (9), an expression valid also for the cost–to–go func-
tion V (tK ,K, x) is obtained. Hence, the two cases K 6=
T/τM and K = T/τM can be now considered jointly.

3.2 Case K = T/τM

The cost–to–go function V for (tK ,K) is given by

V (tK ,K, x) = |x|Z̄ ,

with Z̄ = Z, if K = T/τM , or, by the discussion in the
previous section, Z̄ = P (tK ,K), if K 6= T/τM . Note
that the matrix Z̄ is symmetric and positive semidefinite
in both cases. By the Dynamic Programming Algorithm
(Bertsekas, 1995), the function V (tK ,K − 1, x) can be
computed by solving the following problem:

V (tK ,K − 1, x) = inf
u
{|x|QJ

+ |u|RJ
+ |Ex+ Fu|Z̄} .

By Anderson and Moore (2007), since RJ is positive
definite, there exists a unique solution to this problem,
given by

u?J(K) = −(RJ + F ′Z̄F )−1F ′Z̄Ex,

and the cost–to–go function is given by

V (tK ,K − 1, x) = |x|P (tK ,K−1), (10)

where P (tK ,K − 1) is the (symmetric) solution to

P (tK ,K − 1) =

QJ + E′Z̄E − E′Z̄F (RJ + F ′Z̄F )−1F ′Z̄E. (11)

Since RJ is positive definite and Z̄ is positive semidefi-
nite, the matrix (RJ+F ′Z̄F ) is positive definite, whence
invertible. Moreover, by (10), the matrix P (tK ,K − 1)
is symmetric and positive semidefinite, because V is
greater than or equal to zero.
Remark 3. It is possible to relax the hypothesis on
the matrix RJ , dealing with matrices that are positive
semidefinite. In Ferrante and Ntogramatzidis (2013,
2014), resorting to the so–called Constrained General-
ized Discrete Algebraic Riccati equation, a solution to
the discrete–time optimization problem is given for ma-
trices RJ that are positive semidefinite. Furthermore,
the results given in Bender and Laub (1987a) could be
used to deal with systems in descriptor form. 4

Let t ∈ [tK−1, tK ] and consider the cost–to–go function
V (t,K − 1, x). Computing the value of such a function
for all t ∈ [tK−1, tK ] corresponds to finding a solution to:

V (t,K − 1, x)

= inf
uF (·,K−1)

{∫ tK

t

(|x|QF
+ |uF |RF

) dt

+ |x(tK ,K − 1)|P (tK ,K−1)

}
, (12)

subject to the dynamics in (1b). Such a problem is wholly
similar to the one given in (7). Hence, there exists a
unique solution to the problem given in (12), that is

u?F (t,K − 1) = −R−1
F B′P (t,K − 1)x,

where P (t,K − 1) is the unique symmetric and posi-
tive semidefinite solution to (8), with the final condition
P (tK ,K − 1) computed in (11). Additionally, for any
t ∈ [tK−1, tK ], the value of the cost–to–go function V is

V (t,K − 1, x) = |x|P (t,K−1). (13)

Note that, by (13), the value of the cost–to–go func-
tion at (tK−1,K) is V (tK−1,K−1, x) = |x|P (tK−1,K−1).
Therefore, by repeating the procedure given in this sec-
tion backwards, one can obtain the cost–to–go V (0, 0, x),
that is the lower bound to the cost function J given in (6).
Additionally, this procedure provides a feedback control
input u? that achieves such a minimum. Hence, u? is a
solution to Problem 1. The next theorem and corollary
formalize the results given in Sections 3.1 and 3.2.
Theorem 1. Let system (1) and the cost function (6) be
given. There is a unique solution to Problem 1, given by

u?F (t, k) = −R−1
F B′P (t, k)x, (14a)

u?J(k) = −(RJ + F ′P (tk, k)F )−1F ′P (tk, k)Ex,
(14b)

where P (t, k) is the solution to the hybrid system de-
scribed by the flow dynamics

−τ̇ = 1, (15a)

−Ṗ = A′P + PA+QF − PBR−1
F B′P, (15b)

when (τ, P ) ∈ [0, τM ]×Rn×n, and by the jumps dynamics

τ+ = 0, (15c)

P = QJ + E′P+E − E′P+FΛ−1F ′P+E, (15d)

when (τ, P ) ∈ {τM} × Rn×n, where Λ = RJ + F ′P+F ,
with terminal conditions τ(T,K) = T − KτM ,
P (T,K) = Z. Furthermore, letting x0 be the initial con-
dition of the system (1), the minimum of J is given by

J? = |x0|P (0,0). �
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Note that, as usual, (15) need to be solved backwards
in time starting from the given boundary condition at
(T,K), and then the possible singularity of E does not
create any problem in computing P from P+ in (15d)
(whereas going forward in time, the computation of P+

from P might be impossible for singular E).
Corollary 1. Let system (1) be given. Consider the cost

J̄θ,κ =

∫ T

θ

(|x(t, k)|QF
+ |uF (t, k)|RF

) dt+

+

K∑
k=κ+1

(|x(tk, k − 1)|QJ
+ |uJ(k)|RJ

) + |x(T,K)|Z ,

with (θ, κ) ∈ T . The control input u? = (u?F , u
?
J) given

in (14) minimizes the cost function J̄θ,κ for any (τ0, x0) ∈
[0, τM ]×Rn such that τ(θ, κ) = τ0 := θ−κτM , x(θ, κ) =
x0. Moreover, the minimum of the cost function J̄θ,κ is

J̄?θ,κ = |x0|P (θ,κ). �

3.3 The monodromy Riccati equation

Following the same idea employed in Possieri and Sas-
sano (2018), the Hybrid Riccati equation (15) can be in-
terpreted in a monodromy sense, thus obtaining a mon-
odromy Riccati equation (briefly, MRE ). Namely, define[

ψ1,1(t) ψ1,2(t)

ψ2,1(t) ψ2,2(t)

]
:= exp

([
−A BR−1B′

Q A′

]
t

)
,

and let

Φ(τ, Z̄) = (ψ2,1(τ) + ψ2,2(τ)Z̄)(ψ1,1(τ) + ψ1,2(τ)Z̄)−1.

By classical results about LQ optimal control, the flow
dynamics of system (15) are such that Φ(tf−t0, Z̄) is the
solution to system (15b) at time t0 with final condition
P (tf) = Z̄. Thus, by using a construction wholly simi-
lar to the one employed in Possieri and Sassano (2018),
letting Pk := P (tk, k − 1), one has that

Pk−1 = QJ + E′Φ(τM , Pk)E − E′Φ(τM , Pk)F ·
· (RJ + F ′Φ(τM , Pk)F )−1F ′Φ(τM , Pk)E, (16)

where PK = Z if T = tK+1, or PK = QJ + E′Φ(T −
KτM , Z)E − E′Φ(T − KτM , Z)F (RJ + F ′Φ(T −
KτM , Z)F )−1F ′Φ(T −KτM , Z)E, otherwise.

Thus, consider the following theorem which guarantees
existence of solutions to the MRE (16).
Theorem 2. For each positive semidefinite Z ∈ Rn×n,
each (T,K) ∈ T , and each k ∈ N, k 6 K, there exists a
unique solution to the MRE (16). �

Proof. Since system (1) is linear, the solution x(t, j) cor-
responding to uF = 0 and uJ = 0 satisfies

|x(t, k)| 6 %k exp(λ(t− tk))|x0|,

for some %, λ ∈ R and for all (t, k) ∈ T (see Carnevale
et al., 2012b). By Corollary 1, this implies that, for each
x0 ∈ Rn, each positive semidefinite Z ∈ Rn×n, each
(T,K) ∈ T , and each k ∈ N, k 6 K, one has

|x0|P (tk,k−1) = J̄?tk,k−1 6 c
%2(k+1) − 1

%2 − 1
|x0|2,

where

c =
1

2λ
|QF |(e2λτM − 1) + |QF |e2λτM , (17)

and hence the solution to the MRE (16), which by con-
struction satisfies Pk = P (tk, k−1), does not blow up in
finite time. Uniqueness of the solution Pk follows by clas-
sical arguments about discrete-time LQ optimal control
and by Theorem 1.

3.4 Comparison with LQ optimization over time scales

In Satco and Turcu (2013), a method to study hybrid
systems with the analysis carried out on a time scale is
given. Let T be a time scale, i.e., a nonempty closed sub-
set of R (Hilscher and Zeidan, 2004). Define the opera-
tors ς : T→ T,

ς(t) := inf{s ∈ T : s > t},

and $ : T→ T,

$(t) := sup{s ∈ T : s < t}.

Thus, t ∈ T is right–dense, left–dense, right–scattered,
and left–scattered if ς(t) = t, $(t) = t, ς(t) > t, and
$(t) < t, respectively. The ∆–derivative of f : T→ R is

f∆ := lim
s→t,s∈T\{ς(t)}

f(ς(t))− f(s)

ς(t)− s .

Note that, if t is right–dense, f∆(t) = ḟ(t) is the usual
time derivative, while if t is right–scattered and ς(t) =
t+1, then f∆ = f(t+1)−f(t). A property is said to hold
∆–almost everywhere on T if it holds for every t ∈ T,
except for t in some ∆–measurable subset ofT of measure
0. Let Φ : T× Rn → Rn. A solution x : T→ Rn to

x∆(t) = Φ(t, x(t)) (18)

is a function x that is absolutely continuous and (18)
holds ∆-almost everywhere. In Hilscher and Zeidan
(2012), a solution to the LQR problem with respect to
system (18), where Ψ(t, x(t)) = A(t)x + B(t)u, with
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A : T → Rn×n and B : T → Rn×m being piecewise
right dense-continuous functions (Hilscher and Zeidan,
2012), is given in terms of a time scale Riccati equation.
Theorem 1 and Corollary 1 translate the results given in
Hilscher and Zeidan (2012) for dynamical systems over
time scales to the hybrid setting considered in this pa-
per. Namely, following Satco and Turcu (2013), define
the time scale T :=

⋃
k∈N[k + kτM , k + (k + 1)τM ], and

Ψ(t, x) :=

{
Ax+BuF , if ς(t) 6 t,

Ex+ FuJ , if ς(t) > t,
(19)

the dynamics given in (15) reads as the time scale Ric-
cati equation (namely, equation (R) in Hilscher and Zei-
dan, 2012) on the hybrid setting of this paper. More-
over, Theorem 1 and Corollary 1 can be extended to deal
with unbounded hybrid domains, as detailed in the sub-
sequent Section 4.

4 Infinite–horizon LQ optimal control

Let x be a solution to system (1), with continuous-time
input uF and discrete-time input uJ . Consider the cost
function

J∞ =

∫ ∞
0

(|x(t, k)|QF
+ |uF (t, k)|RF

) dt+

+

∞∑
k=1

(|x(tk, k − 1)|QJ
+ |uJ(k)|RJ

) , (20)

where the matrices QF , RF , QJ , RJ satisfy the same as-
sumptions stated for (6). The main objective of this sec-
tion is formalized in the following problem.
Problem 2. Let the system (1) and the cost func-
tion (20) be given. Find, if any, a control input
u?∞ = (u?F,∞, u

?
J,∞) that minimizes the cost J∞ from

initial condition (0, x0), x0 ∈ Rn, of (1). �

Consider the following assumption.
Assumption 1. The system (1) is stabilizable. ◦

As shown in the remainder of this section, Assumption 1
is sufficient (but not necessary) to guarantee the exis-
tence of a solution to Problem 2 (see the subsequent Ex-
ample 1). However, Assumption 1 is clearly necessary to
guarantee that the control input u?∞ that minimizes the
cost function J∞ stabilizes the system (the stabilization
properties of a solution u?∞ to Problem 2 are investigated
in subsequent Section 4.1).
Example 1. Consider the hybrid system (1) and the
cost function (20), with RF = 1, RJ = 1,

A =

[
−1 0

0 2

]
, B =

[
0

0

]
, QF =

[
1 0

0 0

]
,

E =

[
0.1 0

0 2

]
, F =

[
0

0

]
, QJ =

[
1 0

0 0

]
.

This hybrid system is not stabilizable. However, there is
a solution to Problem 2, that is u?F,∞ = 0, u?J,∞ = 0. 4

Let PT (t, k) be the solution to the Hybrid Riccati Equa-
tion (15), such that PT (T,K) = Z := 0. The next lemma
characterizes PT (σ, 0) for T →∞ and σ ∈ [0, τM ].
Lemma 1. Let Assumption 1 hold. There is a symmetric
and positive semidefinite P∞(σ), σ ∈ [0, τM ] such that

P∞(σ) = lim
T→∞

PT (σ, 0). �

Proof. Let σ be a constant, σ ∈ [0, τM ], and let xσ =
x(σ, 0). If system (1) is stabilizable, then, by Proposi-
tion 1 of Carnevale, Galeani and Sassano (2014), there
exists a time invariant dynamic linear state feedback Σ
such that the eigenvalues of the monodromy matrix of
the closed loop system lie inside the open unit circle
in the complex plane. By Carnevale et al. (2012a,b), if
the eigenvalues of the monodromy matrix have modu-
lus less than 1, the origin is a globally exponentially
stable equilibrium, i.e., there exist constants α, λ ∈ R,
α > 0, λ > 0 such that |x(t, k)| 6 αe−λ(t−σ)|xσ|. Ad-
ditionally, one has that |x|M 6 |M ||x(t, k)|2 (Meyer,
2000). Therefore, if system (1) is stabilizable, then there
exists a time–invariant dynamic linear state feedback
Σ such that, letting x̄(t, k), ū = (ūF , ūJ) be the so-
lution to the closed–loop system, there exist constants
α, βF , βJ , λ ∈ R, α, βF , βJ , λ > 0 such that∫ ∞

σ

(|x̄(t, k)|QF
+ |ūF (t, k)|RF

) dt

+

∞∑
k=1

(|x̄(tk, k − 1)|QJ
+ |ūJ(k)|RJ

)

6
∫ ∞
σ

α2(|QF |+ βF |RF |)|xσ|2e−2λ(t−σ)dt

+

∞∑
k=1

α2(|QJ |+ βJ |RJ |)|xσ|2e−2λ(kτM−σ)

=: a(xσ) <∞.

Note that, Σ needs not be a solution to Problem 1,

i.e., x′σPT (σ, 0)xσ 6
∫ T
σ

(|x̄(t, k)|QF
+ |ūF (t, k)|RF

)dt +∑K
k=1(|x̄(tk, k)|QJ

+ |ūJ(k)|RJ
) 6 a(xσ).

Let T1, T2 ∈ R, with T2 > T1 > σ. Let K1 = bT1/τMc
and K2 = bT2/τMc. Let PT1(t, k) and PT2(t, k) be the
solution to (15) with PT1(T1,K1) = 0 and PT2(T2,K2) =
0, respectively. Let KF,i(t, k) = −R−1

F B′PTi(t, k) and
KJ,i(k) = −(RJ + F ′PTi

(tk, k)F )−1F ′PTi
(tk, k)E,

i = 1, 2. Let xTi
(t, k) be the solution to system (1)

with control inputs uF,Ti
(k, t) = KF,i(t, k)xTi

(t, k),
uJ,Ti

(k) = Kj,i(k)xTi
(tk, k), i = 1, 2. By Corollary 1,

the control inputs uF,T1
(k, t), uJ,T1

(k) minimize the

cost function J1 =
∫ T1

σ
(|x(t, k)|QF

+ |uF (t, k)|RF
) dt +
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∑K1

k=1 (|x(tk, k − 1)|QJ
+ |uJ(k)|RJ

)+ |x(T1,K1)|Z , and
the minimum of J1 is given by x′σPT1(σ, 0)xσ. Note
that control inputs uF,T2(k, t), uJ,T2(k) are generically
not optimal for the cost function J1. Therefore, since
|x(t, k)|QF

, |uF (t, k)|RF
, |x(tk, k − 1)|QJ

, |uJ(k)|RJ
are

greater than or equal to zero and T2 > T1, one has that

|xσ|PT1
(σ,0) 6

∫ T1

σ

(|xT2
(t, k)|QF

+ |uF,T2
(t, k)|RF

)dt

+

K1∑
k=1

(|xT2
(tk, k − 1)|QJ

+ |uJ,T2
(k)|RJ

)

6
∫ T2

σ

(|xT2
(t, k)|QF

+ |uF,T2
(t, k)|RF

)dt

+

K2∑
k=1

(|xT2(tk, k−1)|QJ
+ |uJ,T2(k)|RJ

) = |xσ|PT2
(σ,0).

Hence, since the sequence of solutions PT (σ, 0) parame-
terized by the terminal time T is upper–bounded (due to
the fact that |xσ|PT (σ,0) 6 a(xσ)) and non–decreasing,
there exists a finite limit for T → ∞ of |xσ|PT (σ,0), for
any xσ. Therefore, there exists a finite limit for each
entry of PT (σ, 0), for T → ∞ and P∞(σ) is symmet-
ric. Moreover, since limT→∞ x′σPT (σ, 0)xσ exists and is
greater than or equal to zero for each xσ ∈ Rn, then
P∞(σ) is positive semidefinite.

Corollary 2. Let Assumption 1 hold. The matrix P∞(·)
satisfies

d

dσ
P∞(σ) = −A′P∞(σ)− P∞(σ)A−QF+

+ P∞(σ)BR−1
F B′P∞(σ), (21a)

for all σ ∈ [0, τM ], and

P∞(τM ) = QJ + E′P∞(0)E+

− E′P∞(0)F (RJ + F ′P∞(0)F )−1F ′P∞(0)E. (21b)

�

Proof. The proof follows directly from the hybrid system
(15) and from the fact that, by Lemma 1, there exists
P∞(σ) = lim

T→∞
PT (σ, 0), for all σ ∈ [0, τM ].

Remark 4. Due to the fact that infinite-horizon LQ
optimal control for LTI systems yields algebraic Ric-
cati equations with constant solutions, one may wonder
whether it is reasonable to expect to potentially find a
constant solution to the differential equation (21a) to-
gether with the two-point boundary conditions (21b).
Unfortunately, this is impossible in general since this

would imply solving, with respect to the constant ma-
trix PC , the coupled algebraic Riccati equations

0 = QF + PCA+A′PC − PCBR−1
F B′PC , (22a)

PC = QJ + E′PCE

− EPCF (RJ + F ′PCF )−1F ′PCE, (22b)

which is generically unfeasible since the symmetric ma-

trix PC contains only n(n+1)
2 scalar unknowns, whereas

the symmetric matrix equations (22) contain n(n + 1)
independent scalar equations. On the other hand, as
usual in ordinary differential equations with two point
(or split) boundary conditions arising in optimal con-

trol, the differential Riccati equation (21a) needs n(n+1)
2

boundary conditions, which are given by (21b) (which

contain n(n+1)
2 scalar equations relating the values of

P∞(·) at two different time instants, hence the name
“two boundary point”). Nonetheless, the structure of the
boundary conditions (21b) entails that finding the solu-
tion of interest of (21a) seems not to be a trivial task;
the discussion in Section 4.2 will provide an answer to
this question as well. 4

The following theorem gives a solution to Problem 2.
Theorem 3. Let the system (1) and the cost func-
tion (20) be given and let Assumption 1 hold. Then there
exists a solution to Problem 2 for any x0 ∈ Rn, given by

u?F,∞(τ, x) = −R−1
F B′P∞(τ)x, (23a)

u?J,∞(x) = −(RJ + F ′P∞(0)F )−1F ′P∞(0)Ex, (23b)

where P∞(τ) = limT→∞ PT (τ, 0). Additionally, the min-
imum of the cost function J∞ in (20) is given by

J?∞ = |x0|P∞(0). �

Proof. Let x∞(t, k) be the solution to the closed–loop
system (1) with the control inputs given in (23). Consider
the cost function

J̄K(u∞) =

∫ tK

0

(|x∞(t, k)|QF
+ |uF,∞(t, k)|RF

)dt

+

K∑
k=1

(|x∞(tk, k − 1)|QJ
+ |uJ,∞(k)|RJ

) .

Since the control input given in (23) is not neces-
sarily a solution to Problem 1 with respect to J̄K ,
one has that x′0PtK (0, 0)x0 6 J̄K(u∞). Note that, by
(21a) and (9),

∫ τM
0

(|x∞(t, k)|QF
+ |uF,∞(t, k)|RF

)dt =
x′0P∞(0)x0 − x′(τM , 0)P∞(τM )x(τM , 0). On the other
hand, by (21b) and (10), |x∞(τM , 0)|QJ

+ |uJ,∞(0)|RJ
=

x′(τM , 0)P∞(τM )x(τM , 0) − x′(τM , 1)P∞(0)x(τM , 1).
Therefore, by considering that the system (1) and the
cost function (20) are time–invariant, one has that J̄K =
x′0P∞(0)x0 − x′(tK ,K)P∞(0)x(tK ,K) 6 x′0P∞(0)x0,

7



because, by Lemma 1, P∞(0) is positive semidefi-
nite. Therefore, one has that limK→∞ x′0PtK (0, 0)x0 6
limK→∞ J̄K 6 x′0P∞(0)x0, whence, by considering that,
by Lemma 1, limK→∞ x′0PtK (0, 0)x0 = x′0P∞(0)x0, one
has that limK→∞ J̄K = |x0|P∞(0). Hence, we proved
that the input u? given in (23) leads to a value for the
cost function J∞(u∞) = |x0|P∞(0). We still need to
prove that this is the minimum of the cost J∞ given
in (20).

Assume that there exists ũ that leads to a cost
J∞(ũ) < |x0|P∞(0). This implies that there exists

a T̄ such that
∫ T̄

0
(|x̃(t, k)|QF

+ |ũF (t, k)|RF
)dt +∑K̄

k=1 (|x̃(tk, k − 1)|QJ
+ |ũJ(k)|RJ

) < x′0PT̄ (0, 0)x0,
where K̄ = bT̄ /τMc. But, by Theorem 1, x′0PT̄ (0, 0)x0

is the minimum of the left–hand term in the previous
equation, leading to a contradiction. Therefore, the con-
trol input u? given in (23) is a solution to Problem 2.

Remark 5. As in the classic results about LQ regulation,
the optimal control solving the hybrid optimal LQ prob-
lem turns out to be a linear state feedback. Nonethe-
less, as written in (23), such feedback appears to be de-
pendent on the timer state variable τ , even if the x-
dynamics and the cost functional are time-invariant and
even if an infinite-horizon overall problem is considered;
however, a feedback depending on the timer variable
during flow is perhaps expected, considering that opti-
mization between each pair of jumps occurs on a finite
interval, and then classic LQ theory over finite intervals
is known to yield time-varying feedback laws. Moreover,
the fact that the property of optimality for the underly-
ing plant is achieved in closed loop with a state feedback
depending on the timer variable is not surprising since
for certain stabilizable plants in such a class also stability
may be achieved via state feedback necessarily contain-
ing components depending on τ . For instance, consider
the system (1) with data

A =

[
A1 0

0 A2

]
, A1 =

[
0 1

−1 0

]
A2 =

[
0 0

0 0

]
, (24a)

B =

[
B1

0

]
, B1 =

[
0

1

]
, F = 0, (24b)

E =

[
0 0

E1 E2

]
, E1 =

[
1 0

0 1

]
, E2 =

[
α 0

0 α

]
. (24c)

The system is neither flow-reachable nor jump reachable,

but it is clearly hybrid reachable since

eAT =


cos(T ) sin(T ) 0 0

− sin(T ) cos(T ) 0 0

0 0 1 0

0 0 0 1

 , (25a)

EeAT =


0 0 0 0

0 0 0 0

cos(T ) sin(T ) α 0

− sin(T ) cos(T ) 0 α

 , (25b)

im(RA,B) = im


0 1

1 0

0 0

0 0

 , (25c)

so that it is immediate to check that

rank
[
EeAτM − sI F RA,B

]
= 4, ∀s ∈ C. (26)

As a consequence, all the closed loop eigenvalues of the
monodromy matrix can be assigned by using a suitable
hybrid dynamic linear state feedback controller. How-
ever, it is easily shown that no static, time-invariant, lin-
ear state feedback controller can stabilize the plant. In
fact, let

u = Kx, K =
[
K1 K2

]
, (27a)

Ā =

[
Ā1 Ā12

0 A2

]
, (27b)

Ā1 = A1 +B1K1, Ā12 = B1K2, (27c)

eĀT =

[
eĀ1T M

0 I2

]
, (27d)

M =

∫ T

0

eĀ1(T−τ)B1K2dτ = B̄1K2, (27e)

EeĀT =

[
0 0

eĀ1T αI2 + B̄1K2

]
. (27f)

Note that since rank(B̄1K2) ≤ rank(B̄1) = 1, only one of
the eigenvalues of αI2+B̄1K2 can be different from α (in

fact, [ 1 0 ] is a left eigenvector of αI2 + B̄1K2 relative to

the eigenvalue α, whatever choice ofK2 is made). Hence,
the monodromy matrix dynamics always contain two
eigenvalues at zero and always contain one eigenvalue
at α. Such conclusions make perhaps more interesting
the discussion in the subsequent Section 4.2, where an
alternative LTI (dynamic) controller implementing the
same input as (23) is provided and discussed. 4
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Remark 6. Consider the hybrid autonomous system

τ̇ = 1, (28a)

ẋ = Ax, (28b)

when (τ, x) ∈ [0, τM ]× Rn, and

τ+ = 0, (28c)

x+ = Ex, (28d)

when (τ, x) ∈ {τM} × Rn. By Carnevale et al. (2012b),
such a system is globally asymptotically stable if and
only if the matrix eAτME is Schur. Nonetheless, there
need not exist positive definite matrices WF , WJ and X
such that

A>X +XA+WF = 0,

E>XE −X +WJ = 0,

due to the fact that there need not exist a common Lya-
punov function for (28b) and (28d) that is independent
of the timer state variable τ . Nonetheless, if eAτME is
Schur, then there is a Lyapunov function for system (28).
Namely, letting W be any positive definite matrix, let-
ting X be the positive definite, symmetric solution to

E>eA
>τMXeAτME −X +W = 0,

whose existence is guaranteed by the fact that eAτME is
Schur, it can be easily derived that the function

Ω(τ, x) := e−γτx>eA
>(τM−τ)XeA(τM−τ)x,

where γ > 0 is a sufficiently small constant, is a Lya-
punov function for system (28). Note that such a func-
tion, as the optimal control law (23), depends on the
timer state variable τ (see also Example 3.21 of Goebel
et al., 2012). 4

The following corollary extends the results of Theorem 3
to any initial condition (τ0, x0) ∈ [0, τM ]× Rn of (1).
Corollary 3. Let the assumptions of Theorem 3 hold.
Consider the cost function

Ĵθ,κ =

∫ ∞
θ

(|x(t, k)|QF
+ |uF (t, k)|RF

) dt+

∞∑
k=κ+1

(|x(tk, k − 1)|QJ
+ |uJ(k)|RJ

) ,

subject to the dynamics given in (1), with initial condition
(τ0, x0) ∈ [0, τM ]×Rn, τ(θ, κ) = τ0 := θ−κτM , x(θ, κ) =
x0, (θ, κ) ∈ T . The control input given in (23) minimizes

Ĵθ,κ and the minimum of such a function is given by

Ĵ?θ,κ = |x0|P∞(τ0). �

4.1 Stabilization properties of the LQ infinite–horizon
optimal control

As in standard LQ control theory (Dorato et al., 1994),
the optimal solution of Problem 2 is not necessarily sta-
bilizing. Hence, consider the following problem.
Problem 3. Let the system (1) and the cost func-
tion (20) be given. Find, if any, a control input
u?∞ = (u?F,∞, u

?
J,∞) that is a solution to Problem 2 and

that stabilizes system (1). �

The following lemma characterizes the dynamical behav-
ior of system (1) when the control input u?∞ is applied.
Lemma 2. Let the assumptions of Theorem 3 hold. Let

KF (τ) := −R−1
F B′P∞(τ), (29a)

KJ := −(RJ + F ′P∞(0)F )−1F ′P∞(0)E, (29b)

where P∞(·) is the solution to (21). Let x(t, k) be the
solution to the closed–loop system with flow dynamics

τ̇ = 1, (30a)

ẋ = (A+BKF (τ))x, (30b)

when (τ, x) ∈ [0, τM ]× Rn, and jump dynamics

τ+ = 0, (30c)

x+ = (E + FKJ)x, (30d)

when (τ, x) ∈ {τM}×Rn, with τ(0, 0) = 0, x(0, 0) = x0,
x0 ∈ Rn. The following statements are equivalent.

(i) The initial condition x0 is such that P∞(0)x0 = 0.
(ii) The solution x(t, k) is such that

QFx(t, k) = 0, (31a)

KF (τ(t, k))x(t, k) = 0, (31b)

QJx(tk, k − 1) = 0, (31c)

KJx(tk, k − 1) = 0, (31d)

for all t ∈ [tk, tk+1), k ∈ N.
(iii) The solution x(t, k) is x(t, k) = eA(t−tk)(EeAτM )kx0

and P∞(τ(t, k))x(t, k) = 0, for all (t, k) ∈ T . �

Proof. Consider the function

L(t, k) := x′(t, k)P∞(τ(t, k))x(t, k).

Since the matrix P∞(σ) is symmetric and positive
semidefinite for every σ ∈ [0, τM ] (see Corollary 3),
L(t, k) = 0 if and only if P∞(τ(t, k))x(t, k) = 0.

By (21a) and Lemma 1, one has that

L̇(t, k) = −x′(t, k)QFx(t, k)

− x′(t, k)K ′F (τ(t, k))RFKF (τ(t, k))x(t, k).
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By considering that QF is positive semidefinite and RF
is positive definite, L̇(t, k) 6 0, ∀t ∈ [tk, tk+1], and
L(t, k) = ck, ck ∈ R, ∀t ∈ [tk, tk+1], k ∈ N, if and only if
(31a) and (31b) hold for all t ∈ [tk, tk+1), k ∈ N. On the
other hand, by (21b) and Lemma 1, it results that

L(tk, k) = x′(tk, k)P∞(0)x(tk, k) =

x′(tk, k− 1)(P∞(τM )− (QJ +K ′JRJKJ))x(tk, k− 1).

Therefore, since QJ is positive semidefinite and RJ is
positive definite, L(tk, k) 6 L(tk, k − 1) and L(tk, k −
1) = L(tk, k) if and only if (31c) and (31d) hold, ∀k ∈ N.

Thus, L(t, k) is nonincreasing, lower and upper bounded
(indeed, 0 6 L(t, k) 6 |x(0, 0)|P∞(0)). Therefore,
limt+k→∞ L(t, k) = c, c ∈ R, c > 0. Additionally,
L(t, k) = c, c ∈ R, c > 0, for all (t, k) ∈ T if and only if
(31) holds.

(i) =⇒ (ii) If x0 is such that P∞(0)x0 = 0, thenL(t, k) =
0, for all (t, k) ∈ T , because L is nonincreasing and lower
bounded. Hence, (31) holds.

(ii) =⇒ (iii) If (31) holds, then the hybrid arc x(t, k)
solution to (30) is a solution to (1) with uF = 0 and
uJ = 0. Since

x′0P∞(0)x0 = J?∞

=

∫ ∞
0

(|x(t, k)|QF
+ |uF (t, k)|RF

) dt

+

∞∑
k=1

(|x(tk, k − 1)|QJ
+ |uJ(k)|RJ

)

if (31) holds, then P∞(0)x0 = 0. Thus, by considering
that if x0 is such that P∞(0)x0 = 0, then L(t, k) = 0,
for all (t, k) ∈ T , one has that P (τ(t, k))x(t, k) = 0, for
all (t, k) ∈ T .

(iii) =⇒ (i) Since P∞(τ(t, k))x(t, k) = 0 for any t and k,
P∞(0)x0 = 0.

The following theorem specifies additional conditions on
the cost function J∞ under which the state feedback (23)
solution to Problem 2 stabilizes system (1).
Theorem 4. Let the system (1) and the cost func-
tion (20) be given. Let Assumption 1 hold. If the tuple
(A,E,QJ , QF , τM ) is detectable, then the control input
(23) is such that the closed–loop system is asymptotically
stable. �

Proof. Assume that there exists x0 ∈ Rn such that, let-
ting x(t, k) be the solution to (30) such that x(0, 0) = x0,
limt+k→∞ x(t, k) 6= 0, i.e., the control input (23) does
not guarantee convergence of the trajectories of sys-
tem (1). Note that although this statement contradicts

only attractivity, since the closed-loop system given by
(1) and (23) is linear, it also contradicts asymptotic sta-
bility. Define the change of coordinates x̂ = T−1x that
is such that

P̂∞(0) = TP∞(0)T−1 =

[
diag(λ1, . . . , λ`) 0

0 0

]
,

where λi ∈ Λ(P∞(0)), λi ∈ R, λi > 0, i = 1, . . . , `, where
` is the number of eigenvalues of P∞(0) different from 0.

Hence, let x̂0 = T−1x0 = [ x̂′0,o x̂
′
0,i ]′>, with x̂0,o ∈ R`,

x̂0,i ∈ Rn−`. Since system (30) is linear, one has that
x(t, k) = xo(t, k) +xi(t, k), where xi(t, k) is the solution

to (30) with xi(0, 0) = T [ 0 x̂′0,i ]′, while xo(t, k) is the

solution to (30) with xo(0, 0) = T [ x̂′0,o 0 ]′.

Consider the hybrid arc xi(t, k) and assume that
limt+k→∞ xi(t, k) 6= 0. Since P∞(0)xi(0, 0) = 0, by
Lemma 2, (31) holds for all t ∈ [tk, tk+1), k ∈ N,
i.e., QFxi(t, k) = 0, ∀(t, k) ∈ T , and xi(t, k) =

eAτ(t,k)(EeAτM )kT [ 0 x̂′0,i ]′. This is in contradiction

with (A,E,QJ , QF , τM ) being detectable. Hence, if
(A,E,QJ , QF , τM ) is detectable and xi(t, k) is such
that P∞(0)xi(t, k) = 0, then limt+k→∞ xi(t, k) = 0.

Consider xo(t, k). Note that if x̂0,o 6= 0, then

P∞(0)xo(0, 0) 6= 0.

Since P∞(0)xo(0, 0) 6= 0, then (31) does not hold. Define

L(t, k) := x′(t, k)P∞(τ(t, k))x(t, k).

Since (31) does not hold, L(tk, k) > L(tk+1, k + 1) (see
the proof of Lemma 2). Let x̂o(tk, k) = T−1xo(tk, k) =

[ x̂′o,1(tk, k) x̂′o,2(tk, k) ]′. By considering that

L(tk, k) = x̂′o,1(tk, k)diag(λ1, . . . , λ`)x̂o,1(tk, k),

and that L(tk, k) is monotonically decreasing and lower
bounded, limk→∞ x̂o,1(tk, k) = 0. On the other hand,

since x̂′o,2(tk, k) is such that P̂∞(0)x̂′o,2(tk, k) = 0,
(A,E,QJ , QF , τM ) is detectable, and the hybrid arc
x(t, k), solution to system (30) with x(0, 0) = x̄,
equals x̆(t − tκ, k − κ), where x̆(t, k) is the solu-
tion to system (30) with x̆(tκ, κ) = x̄, κ ∈ N, one
has that limk→∞ x̂′o,2(tk, k) = 0. Therefore, since
limk→∞ xo(tk, k) = 0, one has that limt+k→∞ xo(t, k) =
0.

In fact, letting

H :=

[
A −BR−1

F B′

−QF −A′

]
,

ψ(τ) := [ I 0 ]eHτ [ I P∞(0) ]′

10



by Carnevale, Galeani and Sassano (2014), one has
that xo(t, k) = ψ(τ(t, k))xo(tk, k). Hence, letting
M = maxσ∈[0,τM ] |φ(σ)| <∞, |xo(t, k)| 6M |xo(tk, k)|.

Therefore, since

lim
t+k→∞

xi(t, k) = 0,

lim
t+k→∞

xo(t, k) = 0,

one has that limt+k→∞ x(t, k) = 0, i.e., the control in-
put (23) stabilizes system (1).

The following theorem shows that the additional condi-
tions on the cost function J∞ stated in Theorem 4 are,
in fact, necessary to guarantee that the optimal control
u?∞, solution to Problem 2, stabilizes system (1).
Theorem 5. Let the system (1) and the cost func-
tion (20) be given. Let Assumption 1 hold and let
u? = (u?F , u

?
J) be a solution to Problem 2. Then u?

stabilizes system (1) only if (A,E,QJ , QF , τM ) is de-
tectable. �

Proof. Assume that (A,E,QJ , QF , τM ) is not de-
tectable. Hence, ∃λ ∈ Λ(EeAτM ), λ 6∈ Cg, such that
there exists a vector w ∈ Cn such that

EeAτMw = λw, (32a)

QJe
AτMw = 0, (32b)[

QF A′QF · · · (A′)n−1QF

]′
w = 0. (32c)

Consider the following two cases

(a) λ ∈ R. Since EeAτM ∈ Rn×n, the vector w is in
Rn. Let x(t, k) be the solution to system (1) with
uF = 0, uJ = 0, such that x(0, 0) = w. Hence
x(t, k) = eAτ(t,k)(EeAτM )kw = eAτ(t,k)λkw. Thus,
by (32c), one has that QFx(t, k) = 0, while, by
(32b), it results that QJx(tk, k− 1) = 0. Therefore,
the control inputs uF = 0, uJ = 0 are such J∞ = 0,
i.e., uF = 0, uJ = 0 is a solution to Problem 2.

(b) λ /∈ R. Define wa, wb ∈ Rn such that w = wa + ιwb,
where ι is the imaginary unit. Since λ = %eιθ,
%, θ ∈ R, is an eigenvalue of EeAτM ∈ Rn×n,
then λ∗ ∈ Λ(EeAτM ). Additionally, by (32b)
and (32c), one has that QJe

AτMw∗ = 0 and

[QF A′QF · · · (A′)n−1QF ]′w∗ = 0. Hence, one

has that

QJe
AτMwa = 0,[

QF A′QF · · · (A′)n−1QF

]′
wa = 0,

QJe
AτMwb = 0,[

QF A′QF · · · (A′)n−1QF

]′
wb = 0.

(33)

Let x(t, k) be the solution to system (1) with uF = 0,
uJ = 0, such that x(0, 0) = c1wa + c2wb, c1, c2 ∈ R.
One has that x(t, k) = eAτ(t,k)(c̄1%

k cos(θk + φ1)wa+
c̄2%

k cos (θk + φ2)wb), c̄1, c̄2, φ1, φ2 ∈ R. Hence, by
(33), one has that QFx(t, k) = 0, and QJx(tk, k −
1) = 0. Therefore, the control inputs uF = 0,
uJ = 0 are such J∞ = 0, i.e., uF = 0, uJ = 0 is a
solution to Problem 2.

Note that, in both cases (a) and (b), λ 6∈ Cg. Therefore,
by Lemma 1 of Carnevale et al. (2012b), u? does not
stabilize system (1).

Note that the control input u? given in (23) is inde-
pendent of k and hence of the initial condition for the
timer τ(0, 0) = τ0, τ0 ∈ [0, τM ]. Therefore, under the as-
sumptions of Theorem 4, system (30) is globally asymp-
totically stable also for any initial condition (τ0, x0) ∈
[0, τM ]× Rn of (1).
Lemma 3. Let the system (1) and the cost func-
tion (20) be given. Let Assumption 1 hold. If the tuple
(A,E,QJ , QF , τM ) is observable, then the matrix P∞(0)
is positive definite. �

Proof. Let x∞(t, k), u∞(t, k) be the solution to the
closed–loop system (1) with the control inputs given in
(23). Consider the cost function

J̄n =

∫ tn

0

(|x∞(t, k)|QF
+ |uF,∞(t, k)|RF

)dt

+

n∑
k=1

(|x∞(tk, k − 1)|QJ
+ |uJ,∞(k)|RJ

) .

By letting x̄ be the initial condition of system (1), by
Corollary 1, one has that J̄n = x̄′P∞(0)x̄ − x′∞(tn, n)
P∞(0)x∞(tn, n). By Corollary 3, the matrix P∞(0)
is positive semidefinite. Assume that there exists
x̌ ∈ Rn such that P∞(0)x̌ = 0. By considering
that QF , QJ , RF , RJ , and P∞(0) are positive
semidefinite matrices, by Horn and Johnson (2012),
there exist matrices C̄F , C̄J , R̄F , R̄J , and P̄ with
the property that QF = C̄ ′F C̄F , QJ = C̄ ′J C̄J ,
RF = R̄′F R̄F , RJ = R̄′J R̄J , P̄ ′P̄ = P̄∞(0), respectively.

Hence, we have that
∫ tn

0
(x′∞(t, k)C̄ ′F C̄Fx∞(t, k) +

u′F,∞(t, k)R̄′F R̄FuF,∞(t, k))dt +
∑n
k=1(x′∞(tk, k −

1)C̄ ′J C̄Jx∞(tk, k − 1) + u′J,∞(k)R̄′F R̄FuJ,∞(t, k)) +

x′(tn, n)P̄ ′P̄ x(tn, n) = 0. Hence, since RF and RJ are
positive definite matrices, this implies uF,∞ = 0 and
uJ,∞ = 0. Therefore, letting x̄(t, k) be a solution to

˙̄x(t, k) = Ax̄(t, k),

x̄+(tk, k) = Ex̄(tk, k),
(34)
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with x̄(0, 0) = x̄, x̄ 6= 0, it must necessarily be that

C̄F x̄(t, k) = 0,

C̄J x̄(tk, k − 1) = 0,
(35)

for all t ∈ [tk, tk+1], k ∈ N, k 6 n. Therefore, the follow-
ing relations hold for all t ∈ [tk, tk+1], k ∈ N, k 6 n,

QF e
Aτ(t,k)(EeAτM )kx̌ = 0, (36a)

QJe
AτM (EeAτM )kx̌ = 0, (36b)

which implies that the tuple (A,E,QJ , QF , τM ) is not
observable, that is a contradiction. Hence, since P∞(0)
is positive semidefinite (by Theorem 3) and nonsingular,
P∞(0) is positive definite.

4.2 The monodromy algebraic Riccati equation

Following a construction wholly similar to the one given
in Section 3.3, it can be easily verified that the solution
P∞(τM ) =: P̄ of the two-point boundary value prob-
lem (21a), if any, satisfies the following monodromy al-
gebraic Riccati equation (briefly, MARE )

P̄ = QJ + E′Φ(τM , P̄ )E − E′Φ(τM , P̄ )F ·
· (RJ + F ′Φ(τM , P̄ )F )−1F ′Φ(τM , P̄ )E. (37)

By construction and by Lemma 1, if system (1) is sta-
bilizable, then a solution to the MARE (37) exists and
can be determined either by computing numerically the
solution to the MRE (16) for Z = 0, K →∞ and k = 0
or by directly determining the solution to (37). Once
such a positive semidefinite solution P̄ has been deter-
mined, the solution P∞(σ) of the two-point boundary
value problem (21a) is given by

P (σ) = U(σ)V −1(σ),

where U(·) and V (·) are the solution to (Liberzon, 2011)[
U̇(t)

V̇ (t)

]
=

[
A −BR−1B′

−Q −A′

][
U(t)

V (t)

]
,

with final condition U(τM ) = I and V (τM ) = P̄ .

As anticipated above, while the result in Theorem 3
provides an optimal stabilizing linear state feedback so-
lution, a time-invariant, although potentially dynamic,
implementation would clearly be more desirable.

Theorem 6. Let P∞(·) be as defined in Corollary 2. The
LTI hybrid controller given by

ṗ = −A′p−QFx, (38a)

p+ = P∞(0)(E + FKJ)x, (38b)

u∗F,∞(t, k) = −R−1
F B′p(t, k), (38c)

u∗J,∞(k) = KJx(tk, k), (38d)

with p(0, 0) = P∞(0)x(0, 0) and KJ as in (29b), pro-
vides the same optimal control state feedback (and per-
formance) as the one specified in (23). �

Proof. Exactly as in the classic (non-hybrid) derivation
of LQ control from the Pontryagin Minimum Principle
(PMP), defining the Hamiltonian function H(x, p, u) for
the problem of interest as

H(x, p, u) = x′QFx+ u′RFu+ p′(Ax+Bu),

the control law during flows, which is uniquely identi-
fied by minimizing the strictly convex (in u) function
H(x, p, u), can be expressed as the linear time invariant
feedback from the costate given by (38c), provided that
the costate evolution is governed by the dynamics

ṗ = −∇xH(x, p, u),

and the initial state for each flow interval is suitably
initialized according to (38b), which implements the re-
lation that p(t, k) = ∇xJ∗(x, t, k) (that is, the classic
result that the costate provides sensitivity information
about the value function, namely its gradient at the
current event (x, t, k)). In particular, such relation at
jump times becomes p((k+ 1)τM , k+ 1) = P∞(0)x((k+
1)τM , k + 1) so that substituting x((k + 1)τM , k + 1) =
Ex((k + 1)τM , k) + FKJx((k + 1)τM , k) relation (38b)
holds.

State p in (38) is actually a well-known variable in classic
optimal control, namely the costate, given by

p(t, k) := P∞(τ(t, k))x(t, k). (39)

In the Hamiltonian formulation, the closed–loop optimal
state and costate evolution is described by the equations:

[
ẋ

ṗ

]
=

[
A −BR−1

F B′

−QF −A′

][
x

p

]
, (40a)

[
I FR−1

J F ′

0 E′

][
x+

p+

]
=

[
E 0

−QJ I

][
x

p

]
, (40b)

where, as in the remainder of the paper, (40a) holds
for all (t, k) ∈ T , whereas (40b) holds for t = (k +
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1)τM . When det(E) 6= 0, (40b) is readily solved. On the
other hand, when det(E) = 0, neither of the matrices

in (40b) is invertible , so that neither [ (x+)′ (p+)′ ]′ nor

[ x′ p′ ]′ can be explicitly derived in terms of the other,

and then a different solution technique must be used.
By a nontrivial extension of classic arguments (along
the path provided e.g. in Pappas et al., 1980, Sec. II),
the following result can be proven, making completely
constructive the previous results (in practice, providing
a way to compute P∞(0)).
Theorem 7. Assume that system (1) is stabilizable
and the matrices QF and QJ are such that the tuple

(A,E,QJ , QF , τM ) is detectable. Let V = [ V ′1 V ′2 ]′,

V1, V2 ∈ Rn×n, be a basis for the generalized eigenspace
corresponding to eigenvalues λ with |λ| < 1 for the pair
(HJLe

HF τM , HJR) where

HF :=

[
A −BR−1

F B′

−QF −A′

]
, (41a)

HJR :=

[
I FR−1

J F ′

0 E′

]
, (41b)

HJL :=

[
E 0

−QJ I

]
. (41c)

Then, P∞(0) in (38b) is given by P∞(0) = V2V
−1
1 . �

Remark 7. The results given in this section have some
connections with the ones given in Ferrante and Ntogra-
matzidis (2013) and in Ferrante et al. (2005). However,
while the scope of Ferrante and Ntogramatzidis (2013)
and Ferrante et al. (2005) is to determine the solution to
an LQ optimization problem with affine constraints on
the initial and the terminal state for discrete-time and
continuous-time systems, respectively, the main objec-
tive of this section is to determine the solution to an LQ
hybrid optimization problem. Furthermore, the numer-
ical tools proposed in this section to determine a solu-
tion to Problem 2 differ from the ones given in Ferrante
and Ntogramatzidis (2013) and Ferrante et al. (2005). In
fact, while the approaches given in Ferrante et al. (2005)
and in Ferrante and Ntogramatzidis (2013) rely on the
solutions of an algebraic Riccati equation and of a Lya-
punov equation and on the so-called extended symplec-
tic pencil, respectively, it has been shown in Theorem 7
that the solution to Problem 2 can be determined by
solving a generalized eigenvalue problem. 4

5 A physically motivated example

Consider a disk of radius r, total mass m, and inertia
I, moving on an horizontal plane between two parallel
walls, orthogonal to the plane of motion and infinitely
massive. Let l + 2r, l > 0, be the distance between the

two walls, let (xc, yc) be the coordinates of the center of
mass of the disk, and let α denote the angular position
of the disk (Fig. 1).

xc

yc

α

l + 2r

Fig. 1. A rotating disk bouncing between two walls.

Assume that all the impacts are elastic and occur with
pre–impact conditions such that the infinitesimal inter-
val in which the disk is in contact with the wall consists
in a first interval of sliding followed by a second interval
of rolling, i.e.,

|ẏc(tk, k− 1) + rα̇(tk, k− 1)| 6 2ζµ|ẋc(tk, k− 1)|, (42)

where ζ = r2m
I and µ is the coefficient of kinetic friction

characterizing the infinitesimal sliding phase (Carnevale,
Galeani and Menini, 2013). Assuming, additionally, that
|ẋc(t)| = |ẋc(0)| = v > 0, a comprehensive state–space
description of this mechanical system, with state x =

[ yc ẏc α α̇ ]′ ∈ R4, is

τ̇ = 1, (43a)

ẋ =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

x+


0

1
M

0

0

uy, (43b)

when (τ, x) ∈ [0, lv ]× R4, and

τ+ = 0, (43c)

x+ =


1 0 0 0

0 1− ζ−1 0 −ζ−1r

0 0 1 0

0 −r−1(1− ζ−1) 0 ζ−1

x, (43d)

when (τ, x) ∈ { lv} × R4, τ(0, 0) =
xc,0

v , and x(0, 0) =

[ yc,0 ẏc,0 α0 α̇0 ]′. It can be easily checked that sys-

tem (43) satisfy (3), whence it is stabilizable. Consider
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the cost J∞ given in (20). Note that the matrix E is not
invertible and hence (40) cannot be used directly.

In order to satisfy the admissible motion condition (42),
a reasonable choice for QJ is

QJ := γ


0 0 0 0

0 1 0 r

0 0 0 0

0 r 0 r2

 , (44)

so that the cost function J∞ penalizes the term
γ |ẏc(tk, k − 1) + rα̇(tk, k − 1)|2. Thus, letting γ = 102,
v = 0.1m/s, l = 0.1m, r = 0.1m, m = 0.5kg, RF = 1,
RJ = 1, and

QF :=


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 ,
we solved the MARE (37), that is, due to the matrix
inversion, a system of polynomial equations in the entries
of the matrix P̄ , obtaining

P̄ =


1.760 −0.1081 0.07429 0.01087

−0.1081 272.2 −16.53 −7.222

0.07429 −16.53 2.592 1.653

0.01087 −7.222 1.653 2.722

 .

Thus, the matrix P∞(0) can be computed as P∞(0) =
U(0)V −1(0), where[

U(0)

V (0)

]
= exp

(
−
[
A −BR−1B′

−Q −A′

]
τM

)[
I

P̄

]
,

or, equivalently, as P∞(0) = Φ(τM , P̄ ),

P∞(0) =


1.760 0.7293 0.07429 0.09459

0.7293 0.5887 0.02222 0.02586

0.07429 0.02222 2.592 3.308

0.09459 0.02586 3.308 6.888

 . (45)

It is worth pointing out that, by Theorem 7, the same
matrix can be determined by solving the generalized
eigenvalue problem

HJLe
HF τM z = λHJRz,

where HJL, HJR, and HF are defined as in (41). Solving
the equation det(HJLe

HF τM−λHJR) = 0, we find the fi-
nite eigenvalues 0, 0.016−0.225ı, 0.016+0.225ı, 0.321−

4.423ı, 0.321 + 4.423ı, 0.561, 1.782. The eighth eigen-
value is an infinite one, in accordance with Section II-B
of Pappas et al. (1980). The eigenvectors corresponding
to the four eigenvalues in Cg can be put in a matrix

V =

 V1

V2



=



0.018 0.018 −0.45 −0.44

0.020ı −0.020ı 0 0.86

−0.10 + 0.36ı −0.10− 0.36ı −0.056 −0.011

−0.06− 0.20ı −0.06 + 0.20ı 0.024 0.011

0.023 + 0.016ı 0.023− 0.016ı −0.82 −0.14

0.013 + 0.012ı 0.013− 0.012ı −0.33 0.18

−0.44 + 0.29ı −0.44− 0.29ı −0.10 0

−0.71− 0.17ı −0.71 + 0.17ı −0.059 0.021


.

It can be easily verified that the matrix P∞(0) given
in (45) matches with V2V

−1
1 .

A numerical simulation of the behavior of system (43) in
closed loop with the optimal controller (38) has been car-

ried out assuming x(0, 0) = [−0.2m 0m/s 1rad 0rad/s ]′.

Figure 2 depicts the results of such a simulation.

−0.5

0

0.5

1

1.5

t

x

yc
ẏc
α
α̇

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−0.2

−0.1

0

0.1

0.2

0.3

t

u
? F
,∞

Fig. 2. Numerical simulation of system (43) in closed loop
with the optimal controller (38).

As shown by such a figure, the optimal controller (38)
stabilizes the closed-loop system due to the fact that
system (43) is stabilizable and the matrices QF and QJ
are such that the tuple (A,E,QJ , QF , τM ) is detectable.
Further, the admissible motion condition (42) is satisfied
in the simulations with µ > 0.0522.

6 Conclusion

This paper deals with the finite–horizon and infinite–
horizon LQ optimal control problem for a class of hybrid
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system. It is shown that the solution to such problems
can be obtained by an hybrid extension of the classi-
cal Differential and Difference Riccati Equations, solving
such problems for the non–hybrid case. Necessary and
sufficient conditions, ensuring that the optimal control
stabilizes the hybrid system, are given.
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