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A mathematical framework for modeling propagation
of infectious diseases with mobile individuals

Corrado Possieri and Alessandro Rizzo

Abstract— In this paper, we propose a novel framework for
modeling the diffusion of infectious diseases. In particular, we
show that the infectious spread occurring between individuals
that are capable of moving along a (possibly stochastic) digraph
can be modeled through a (generally larger, yet sparser)
stochastic digraph. The use of the proposed modeling frame-
work makes available the whole spectrum of computational
tools for stochastic digraphs, toward the quantitative study of
epidemic spreading on complex networks. Salient examples are
provided throughout the paper.

I. INTRODUCTION

Mathematical models are of paramount importance for the
analysis of the propagation of infectious diseases, to assess
the validity of conjectures, perform what-if analyses, design
pharmaceutical or non-pharmaceutical interventions, sensi-
tivity analyses, and extract key information from data [1],
[2]. For instance, in [3], the evolution of the epidemic states
is described by a Markov process; in [1], [4], the dynamics
of the total number of healthy and infected individuals is
described through population dynamics [5]; in [6], a moment
closure method is proposed to efficiently propagate infec-
tion statistics; in [7], [8], deterministic dynamical models,
in which the state represent the fractions of infected and
susceptible individuals, have been proposed to model the
spread of infectious diseases in large populations; in [9],
[10], [11], [12], stochastic model over (static) networks have
been proposed to model the interactions among individuals;
in [13], [14], [15], [16], discrete-time activity driven net-
works have been proposed to study epidemic spreading over
networks; and, in [17], weighted and directed time-varying
graph structures are employed to model the spread of an
infectious disease.

The main objective of this paper is to propose a novel
framework for modeling the epidemic diffusion of infectious
diseases in populations of mobile agents [18]. The interest
in this class of models relies on the fact that they allow to
consider the spread of infectious diseases due to migrating
populations, which is one of the crucial aspects to be taken
into account in modern word [19], [20], [21], where migra-
tion has become a phenomenon of great importance [22].

In particular, we show that stochastic digraphs can be
efficiently used to represent the dynamics of propagation of
infectious diseases with mobile agents. The key advantage
of using this mathematical framework is that several tools
available in the literature, such as those in [23], [24], can be
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readily employed to characterize the properties of stochastic
digraphs, thus allowing to perform quantitative analysis
without resorting to extensive numerical simulations.

II. STOCHASTIC DIGRAPHS

Let Zn := {0, . . . , n − 1}. Given I ⊂ Zn, the indicator
function on I is defined as

II(ζ) :=

{
1, if ζ ∈ I,
0, otherwise.

The symbol E[·] denotes the expected value.
A directed graph (digraph) is a pair G := (V, E), where

V = Zn is the node set and E ⊂ Zn × Zn is the (ordered)
edge set [25], [26]. In G = (V, E), the out–neighborhood of
a is N o(a) := {b ∈ Zn : (a, b) ∈ E}.

A stochastic directed graph (or, shortly, stochastic di-
graph) is a triple G = (V,E, µ(·)), where
• V = Zn is the node set;
• E := {Es}r−1

s=0 , with r being an integer, is a sequence
of edge sets Es such that Gs := (V,Es) is a digraph,
s ∈ Zr. Here, we can consider r as a finite integer, as
the number of edge sets E such that (V, E) is a graph
is finite [24]);

• µ(·) is a distribution function derived from an infinite
sequence of independent, identically distributed (i.i.d.)
random variables wk : Ω → Zr k > 0, defined on the
probability space (Ω,F ,P), µ : Zr → [0, 1],

µ(s) = P(ω ∈ Ω : wk(ω) = s).

Define the set–valued map H : Zn × Zr ⇒ Zn,

H(a,w) := {b ∈ Zn : (a, b) ∈ Es}; (1)

for each s ∈ Zr, which maps each a ∈ Zn in the out–
neighborhood N o

w(a) of a in Gs := (V,Es), s ∈ Zr. Thus,
following [23], the stochastic digraph G = (V,E, µ(·)) can
be equivalently represented as

a+ ∈ H(a,w).

A sequence (φ, z) := {(φk, zk)}Kk=0 is a regular directed
path of length K of G := (V,E, µ(·)) starting at x if
• φ0 = x;
• φk+1 ∈ N o

zk
(φk), for all k ∈ {0, . . . ,K − 1}.

A map a from Ω to sequences in Zn is a stochastic directed
path from a, denoted a ∈ Sr(a), if
• Pathwise feasibility: for each ω ∈ Ω, the sequence
{(ak(ω),wk(ω))}K(ω)

k=0 is a regular directed path from
a, where K : Ω→ Z>0 ∪ {∞} is the path length.



• Causal measurability: for each k ∈ Z>0, the
mapping ω 7→ ak+1(ω) is Fk–measurable, where
(F0,F1,F2, . . . ) is the minimal filtration of w.

By [23], the set-valued mapping H(a,w) defined in (1)
satisfies the standing assumption of [27], [28], [29], and
hence stochastic directed paths exist and are well defined.

It is worth noticing that if H(a,w) is a singleton (possibly,
empty) for all (a,w) ∈ Zn × Zr, then the transition
probabilities in the corresponding stochastic digraph can be
represented through a Markov chain. In particular, the (i, j)-
th entry of the transition matrix of such a Markov chain is

pi,j = P(xk+1 = j|xk = i) =
∑

r∈{ρ∈Zr:H(i,ρ)=j}

µ(r).

On the other hand, in general, i.e., when one allows
H(a,w) to be a set-valued map, stochastic digraphs have
more general representation capabilities since they can rep-
resent stochastic processes having non-unique solutions (i.e.,
the set Sr(a) need not be a singleton for all a ∈ Zn).

III. MODELING OF THE PROPAGATION OF INFECTIOUS
DISEASES WITH MOBILE AGENTS

In this section, we show that it is possible to encode
through a stochastic digraph the dynamics of the propagation
of infectious diseases in populations of mobile agents. In
particular, we consider three different classes of infectious
diseases: the susceptible-infected (SI) model (Section III-A),
in which infected individuals cannot recover from the infec-
tion, the susceptible-infected-susceptible (SIS) model (Sec-
tion III-B), in which individuals recover from the infection,
but are susceptible to being re-infected, and the susceptible-
infected-recovered (SIR) model (Section III-C), in which
individuals recover from the infection and are immunized
(or dead) after one round of infection. Independently of the
class of epidemics, we assume that individuals move over a
stochastic digraph (thus allowing also deterministic motion)
and that an individual may become infected if he/she shares
the same position of another infected individual, according
to a given stochastic rule.

The strategy that is used to find a stochastic digraph that
models the propagation of the disease in populations of
mobile agents is detailed as follows:
• map the overall state of all the individuals (i.e., the

pair position of each individual – infectious state) to
a nonnegative integer (coding the nodes of a larger
stochastic digraph) through a bijective map;

• determine the stochastic state transitions between nodes
of the stochastic digraph of the previous point; and

• compute the transition probabilities by taking into ac-
count the probability of infection/healing, according to
the specific epidemic dynamics.

By using such an approach, we obtain a stochastic di-
graph in which each node is in one-to-one correspondence
with a state of all the individuals (i.e., their position and
their infectious state) and in which transitions between one
state and another are governed by a stochastic process. In

particular, as it is shown in the subsequent Theorems 1, 2,
and 3, the stochastic digraph obtained by using this procedure
fully represents the (stochastic) propagation dynamics of the
infectious disease.

A. The SI model

The SI model with mobile agents is defined as follows:

(i) we consider a population of N individuals;
(ii) the state of the i-th individual is defined as xi =

[ pi si ]>, where pi ∈ Zn denotes the discretized
position of each agent and si ∈ Z2 denotes the health
state of the individual: pi = 0 if the i-th agent is
susceptible or pi = 1 if it is infected, i = 1, . . . , N ;

(iii) the position of each agent is updated at each step ac-
cording to a given stochastic digraph1 G = (V,E, µ(·)),

pi
+ ∈ H(pi, v), (2)

where vk : Ω → Zr, k ∈ Z>0, is a sequence of i.i.d.
random variables and H is defined as in (1);

(iv) each individual (say i) in susceptible status (i.e., si = 0)
can transition to infected as follows: if there is another
individual (say j) that is infected (i.e., sj = 1) and
that shares the same position (i.e., pi = pj), then the
individual become infected with probability α;

Note that we are not constraining the number of admissible
positions with respect to the number of agents (namely,
N < r, N = r, and N > r are all admissible cases in
the considered scenario). The next theorem states that there
exists a stochastic digraph SI that, given the rules (i)–(iv),
model the behavior of the SI dynamics with mobile agents.

Theorem 1. Given the rules (i)–(iv), there exists a stochastic
digraph SI that models the SI dynamics with mobile agents.

The following exemplifies the application of the technique
supported by Theorem 1 for determining a stochastic digraph
that models the SI dynamics with mobile agents.

Example 1. Let N = 2 and assume that each individual
moves along the digraph depicted in Fig. 1.

0 1

2 3

Fig. 1: Graph of the admissible movements of the 2 agents.

1Note that, in such a scenario, the graph describing the allowed move-
ments of the individuals can also be a deterministic digraph, which corre-
sponds to select E = E0 and µ(0) = 1; see Example 1. In such a case, we
are not constraining the motion of the individuals to have a predetermined
probability structure, but we are considering all the possible motions that
are compatible with the digraph.



By using Theorem 1, one obtains a stochastic digraph
with SI = (V̄, Ē, µ̄(·)) with V̄ = Z64, r̄ = 4, Ē =
{Ē0, Ē1, Ē2, Ē3}, µ(0) = (1−α)2, µ(1) = α(1−α). µ(2) =
α(1 − α), and µ(3) = α2, where the graphs Gi = (V̄, Ei),
i = 0, . . . , 3, correspond to the adjacency matrices illustrated
in Fig. 2. In particular, the adjacency matrix of Gi = (V̄, Ei)
is in {0, 1}n̄×n̄ and its (j1, j2)th entry equals 1 (represented
with a black box) if (j1, j2) ∈ Ei, or equals 0 (represented
with a white box) if (j1, j2) /∈ Ei, for i = 1, . . . , 4.

(a) (1− α)2. (b) α(1− α). (c) α(1− α). (d) α2.

Fig. 2: Adjacency matrices of the graphs Gi, i = 0, . . . , 3.
The matrix is black-and-white coded, where a black cell
corresponds to a “1” entry, and a white case to a “0” entry.

B. The SIS model

The SIS model with mobile agents is defined as follows:
(I) we consider a population of N individuals;

(II) the state of the i-th individual is defined as xi =
[ pi si ]>, where pi ∈ Zn denotes the discretized
position of each agent and si ∈ Z2 denotes the health
state of the individual: pi = 0 if the i-th agent is
susceptible or pi = 1 if it is infected, i = 1, . . . , N ;

(III) the position of each agent is updated at each step ac-
cording to a given stochastic digraph G = (V,E, µ(·)),

pi
+ ∈ H(pi, v), (3)

where vk : Ω → Zr, k ∈ Z>0, is a sequence of i.i.d.
random variables;

(IV) each individual (say i) in susceptible status (i.e., si =
0) can transition to infected as follows: if there is
another individual (say j) that is infected (i.e., sj = 1)
and that shares the same position (i.e., pi = pj), then
the individual becomes infected with probability α;

(V) each infected individual can transition to susceptible
status with probability β.

The following theorem states that there exists a stochastic
digraph SIS that, given the rules (I)–(V), models the
behavior of the SIS dynamics with mobile agents.

Theorem 2. Given the rules (I)–(V), there exists a stochastic
digraph SIS that models the SIS dynamics with mobile
agents.

The following exemplifies the application of the technique
supported by Theorem 2 for determining a stochastic digraph
that represents the SIS model with mobile agents.

Example 2. Let N = 2 and assume that each individual
moves along the same digraph considered in Example 1
(namely, the one depicted in Fig. 1). By using the tools
given in Theorem 2, one obtains a stochastic digraph with

SIS = (V̄, Ē, µ̄(·)) with V̄ = Z64, r̄ = 16, where the
graphs Gi = (V̄, Ēi), i = 0, . . . , 15, correspond to the
adjacency matrices illustrated in Fig. 3 (the same conventions
employed in Fig. 2 have been used).

(a) (1− α)2β2. (b) (1− α)2(1− β)β. (c) (1− α)αβ2. (d) (1− α)α(1− β)β.

(e) (1− α)2(1− β)β. (f) (1− α)2(1− β)2. (g) (1− α)α(1− β)β. (h) (1− α)α(1− β)2.

(i) (1− α)αβ2. (j) (1− α)α(1− β)β. (k) α2β2. (l) α2(1− β)β.

(m) (1− α)α(1− β)β. (n) (1− α)α(1− β)2. (o) α2(1− β)β. (p) α2(1− β)2.

Fig. 3: Adjacency matrices of the graphs Gi, and correspond-
ing values of µ(i), i = 0, . . . , 15.

C. The SIR model

The SIR model with mobile agents is defined as follows:

(a) we consider a population of N individuals;
(b) the state of the i-th individual is defined as xi =

[ pi si ]>, where pi ∈ Zn denotes the discretized
position of each agent and si ∈ Z3 denotes the health
state of the i-th agent: pi = 0 if it is susceptible, pi = 1
if it is infected, or pi = 2 if it is recovered, i = 1, . . . , N ;

(c) the position of each agent is updated at each step
according to a given stochastic digraph G = (V,E, µ(·)),

pi
+ ∈ H(pi, v), (4)

where vk : Ω → Zr, k ∈ Z>0, is a sequence of i.i.d.
random variables;

(d) each individual (say i) in susceptible status (i.e., si = 0)
can transition to infected as follows: if there is another
individual (say j) that is infected (i.e., sj = 1) and
that shares the same position (i.e., pi = pj), then the
individual becomes infected with probability α;

(e) each infected individual can transition to recovered status
with probability γ.



The following theorem states that there exists a stochastic
digraph SIR that, given the rules (a)–(e), models the
behavior of the SIR dynamics with mobile agents.

Theorem 3. Given the rules (a)–(e), there exists a stochastic
digraph SIR that models the SIR dynamics with mobile
agents.

The following exemplifies the application of the technique
supported by Theorem 3 for determining a stochastic digraph
that models the SIR dynamics with mobile agents.

Example 3. Let N = 2 and assume that each individual
moves along the same digraph considered in Examples 1
and 2 (namely, the one depicted in Fig. 1). By using the
tools given in Theorem 3, one obtains a stochastic digraph
with SIR = (V̄, Ē, µ̄(·)) with V̄ = Z144, r̄ = 16, where
the graphs Gi = (V̄, Ēi), i = 0, . . . , 15, correspond to the
adjacency matrices illustrated in Fig. 4 (the same conventions
employed in Fig. 2 have been used).

(a) (1− α)2(1− γ)2. (b) (1− α)2(1− γ)γ. (c) (1− α)α(1− γ)2. (d) (1− α)α(1− γ)γ.

(e) (1− α)2(1− γ)γ. (f) (1− α)2γ2. (g) (1− α)α(1− γ)γ. (h) (1− α)αγ2.

(i) (1− α)α(1− γ)2. (j) (1− α)α(1− γ)γ. (k) α2(1− γ)2. (l) α2(1− γ)γ.

(m) (1− α)α(1− γ)γ. (n) (1− α)αγ2. (o) α2(1− γ)γ. (p) α2γ2.

Fig. 4: Adjacency matrices of the graphs Gi, and correspond-
ing values of µ(i), i = 0, . . . , 15.

IV. BOUNDS ON THE INFECTION PROBABILITIES

The key advantage of using stochastic digraphs to model
propagation of infectious diseases is that the computational
tools developed for such a class of systems can be readily
used to characterize infection probabilities.

In particular, letting Ḡ = (V̄, Ē, µ̄(·)), with V̄ = Zn̄ and
Ē = {Ēs}r̄−1

s=0 , be the stochastic digraph representing the

propagation of an infectious disease (which can be obtained
by using Theorems 1, 3, and 2), define the set

Ii = Ξ(Zn × Z2 × · · · × Zn × {1} × · · · × Zn × Z2) ⊂ Zn̄,

where Ξ :=
∑N
i=1(2n)i−1(pi + n si), if either Ḡ = SI or

Ḡ = SIS, or Ξ :=
∑N
i=1(3n)i−1(pi+n si), if Ḡ = SIR.

Thus, define the following functions

mi(0, ξ) := 0, `i(0, ξ) := 0, (5a)

for all ξ ∈ Zn̄, and, for all (k, ξ) ∈ Z>0 × Zn̄,

mi(k + 1, ξ) :=

r̄−1∑
i=0

max
g∈Q(ξ,i)

{IIi(g),mi(k, g)}µ(i), (5b)

`i(k + 1, ξ) :=

r̄−1∑
i=0

min
g∈Q(ξ,i)

{IIi(g), II{i `i(k, g)}µ(i), (5c)

where I{i := Zn̄\. The next proposition shows how the
functions mi(k+1, ξ) and `i(k+1, ξ) can be used to bound
the probability that the i-th individual become infected.

Proposition 1. Let

ξ0 = Ξ([ p1(0) s1(0) · · · pN (0) sN (0) ]>).

Thus, for all κ ∈ Z>0, κ > 1, ξ ∈ Sr(ξ0), it results

`i(κ, ξ0) 6 E

[
max

k=1,...,κ
IIi(ξk)

]
6 mi(κ, ξ0). (6)

In particular, for all κ ∈ Z>0, κ > 1, there exist stochastic
directed paths ξ ∈ Sr(ξ0) and ξ ∈ Sr(ξ0) from ξ0 such that

`i(κ, ξ0) = P(∃k ∈ {1, . . . , κ} such that ξ
k
∈ Ii), (7a)

mi(κ, ξ0) = P(∃k ∈ {1, . . . , κ} such that ξk ∈ Ii). (7b)

By Proposition 1, the initial condition ξ ∈ Zn̄ of the
model and the functions `i(k, ξ) and mi(k, ξ) can be used to
establish lower and upper bounds on the probability that the
i-th agent is infected at some time κ ∈ Z>0, κ > 1, κ 6 k.
The next example illustrates the application of Proposition 1.

Example 4. The stochastic digraphs obtained in Exam-
ples 1, 2, and 3 have been used to compute bounds on the
probability that the first agent becomes infected at some time
lower than or equal to k, starting at some ξ0 ∈ Zn̄, i.e., we
computed bounds on P(∃k ∈ {1, . . . , κ} such that s1

k = 1).
Fig.s 5, 6, and 7 depicts the upper and lower bounds on
such probability (white blocks denote probability 0, whereas
black blocks denote probability 1) obtained iterating (5) and
using (6), letting α = 0.75, β = 0.5, and γ = 0.1.

We conclude this section by performing Monte Carlo sim-
ulations of the dynamical behavior of the models considered
in Examples 1, 2, and 3.

Example 5. In order to validate the upper and lower bounds
on the infection probability computed in Example 4, we
perform Monte Carlo simulations of the behavior of the
considered SI, SIS, and SIR models described in Section III.
We assume that the initial state of the system is p1 = 0,
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(a) Lower bound
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(b) Upper bound

Fig. 5: Upper and lower bounds obtained using the SI model.
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Fig. 6: Upper and lower bounds obtained with the SIS model.
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(a) Lower bound

k
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(b) Upper bound

Fig. 7: Upper and lower bounds obtained with the SIR model.

s1 = 0, p2 = 1, and s2 = 1, i.e., at the initial time the first
individual is susceptible and is in the node 0, whereas the
second individual is infected and is in the node 1.

For each model, we perform 103 Monte Carlo simulations
assuming that, at each step, the individual select the succes-
sive location uniformly at random among the ones that are
in the out-neighborhood of the node corresponding to the
actual position, and that the infection probabilities are the
same as the one considered in Example 4. Finally, in order
to approximate P(∃k ∈ {1, . . . , κ} such that s1

k = 1), that
is the probability that the first agent is in infected status for
some time lower than or equal to κ, we compute the ratio
between the number of simulations in which s1

k = 1 for some
k ∈ {1, . . . , κ} and the total number of simulations.

Letting ξ0 = Π([ p1 s1 p2 s2 ]>), we compare such
ratios with the values of the functions `i(k, ξ0) and mi(k, ξ0)
computed in Example 4. Fig. 8 depicts the obtained ap-

proximate of P(∃k ∈ {1, . . . , κ} such that s1
k = 1) obtained

via Monte Carlo simulations and the functions `i(κ, ξ0) and
mi(κ, ξ0) for κ = 1, . . . , 9, when the SI model is used.
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Fig. 8: Infection probabilities in the SI model.

On the other hand, Fig. 9 depicts the obtained approximate
of P(∃k ∈ {1, . . . , κ} such that s1

k = 1) obtained via Monte
Carlo simulations and the functions `i(κ, ξ0) and mi(κ, ξ0)
for κ = 1, . . . , 9, when the SIS model is used.
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Fig. 9: Infection probabilities in the SIS model.

Finally, letting ξ0 = Ψ([ p1 s1 p2 s2 ]>),
Fig. 10 depicts the obtained approximate of
P(∃k ∈ {1, . . . , κ} such that s1

k = 1) obtained via
Monte Carlo simulations and the functions `i(κ, ξ0) and
mi(κ, ξ0) for κ = 1, . . . , 9, when the SIR model is used.
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Fig. 10: Infection probabilities in the SIR model.

As shown by Fig.s 8, 9, and 10, in all the considered
cases, `1(κ, ξ0) 6 P(∃k ∈ {1, . . . , κ} such that s1

k = 1) 6
m1(κ, ξ0) for all κ ∈ {1, . . . , 9}, thus confirming the
theoretical results given in Proposition 1. Furthermore, there
exist stochastic directed paths ξ ∈ Sr(ξ0) and ξ ∈ Sr(ξ0)
such that (7) holds. Thus, there exist stochastic directed paths
such that P(∃k ∈ {1, . . . , κ} s.t. s1

k = 1) = 0, i.e., the first
agent is not infected almost surely for all k ∈ {1, . . . , κ}.
This is essentially due to the fact that individuals are allowed



to move so that the first agent does not share the same
position of an infected individual at any step k ∈ {1, . . . , κ}.
Such a behavior can be prevented by suitably redefining the
digraph of the admissible motions (shown in Fig. 1).

V. CONCLUSIONS

In this paper, we present a framework for modeling
epidemic spreading in populations of mobile agents, using
stochastic digraphs. The key advantage of using this mathe-
matical framework is that all the tools available for such a
class of systems can be readily and efficiently used to quanti-
tatively characterize the properties of the epidemic diffusion.
In particular, the preliminary results here reported show that
simple computational tools can be employed to determine
bounds on the probability that a certain individual is infected,
given the initial condition of all the other individuals.

Future work will deal with the extension of the obtained
results to more general classes of infectious diseases [30],
with providing further computational tools to characterize
the probabilistic behavior of the propagation of the disease,
and with designing pinning control strategies to limit the
spread of the infection [31], thus allowing to plan optimal
vaccination strategies. In particular, one of the objectives of
our future research is to adapt the Lyapunov-like tools given
in [23] to characterize local asymptotic stability, local recur-
rence, and local reachability in probability of some states
in the stochastic digraph. This will allow us to determine
critical thresholds for the propagation of the disease and to
determine the sensitivity to changes in parameter values.

A critical issue of the presented approach is that the
number of nodes of the digraphs modeling the diffusion of
infectious diseases grows exponentially with the size of the
population, thus rapidly increasing the computational burden.
A further objective of our future research is to use sparsity
features and approximate dynamic programming tools [32]
to determine the bounds used in Proposition 1.
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