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Abstract. Nowadays, applications of ultrasonic proximity sensors are
limited to a post-processing of the acquired signals with a pipeline of fil-
ters and threshold comparators. This article proposes two different and
novel processing methodologies, based on machine learning algorithms,
that outperform classical approaches. Indeed, noisy signals and presence
of thin or soundproofing objects are likely sources of false positive de-
tections that can make traditional approaches useless and unreliable. In
order to take advantage of correlations among the data, multiple parallel
signals, coming from a cluster of ultrasonic sensors, have been exploited,
producing a number of different features that allowed to achieve more ac-
curate and precise predictions for object detection. Firstly, model-based
learning as well as instance-based learning systems have been investi-
gated for an independent time correlation analysis of the different sig-
nals. Particular attention has been given to the training and testing of
the deep fully connected network that showed, since the beginning, more
promising results. In the second part, a recurrent neural network, based
on long short term memory cells, has been devised. As a result of its in-
trinsic nature, time correlations between successive samples are not more
overlooked, further improving the overall prediction capability of the sys-
tem. Finally, cutting edge training methodologies and strategies to find
the different hyperparameters have been adopted in order to obtain the
best results and performance from the available data.

Keywords: deep learning, ultrasound sensors, industrial security

1 Introduction

The usage of ultrasonic sensors is widely diffused in many and different fields. In
[1], this type of sensors are used to measure the distance of an object. It is a very
old technology [2], but still new patents [3] and papers [4] are continuously dis-
closed in a wide range of fields: from distance security measurement, automotive
field to robotics applications. Other newest applications use ultrasonic sensors
for image reconstruction of organs like liver [5] or heart [6]. These last techniques
are also associated with machine and deep learning analysis for post-processing
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of the captured images. Other machine learning related works with ultrasonic
sensors can be found in [7] [8] [9].

This paper proposes an alternative methodology, based on machine learning
algorithm, to manage and extract results from an ensemble of sensors in order
to detect the presence of possible obstacles. Indeed, instead of using a single
transducer, correlations between different signals open the possibility to detect
targets that are not recognized by a classical methodology. In fact, it is possible to
demonstrate that a redundancy of sensors makes the entire system more robust
and in addition it opens the possibility to drastically reduce the number of false
positive detections. So, based on this new type of data and based on modern
technique of machine learning, this paper shows that is possible to design a more
accurate and precise system than ones offered by tradition approaches.

2 Case Study

Industrial security is continuously evolving enclosing techniques and methods
that take advantage of latest researches. Often classical processing of data is not
sufficient to reach the desired level of security for workers and this paper deals
with this scenario. The proposed research can be a valuable support for classical
methodologies, making a more strong and robust overall system. Possible appli-
cations of the enhanced system include obstacle avoidance for automatic guided
vehicles (AGV), stacker cranes and open computer numerical control (CNC)
machines. The devised test-bed is a replica of the worst condition found in a
hypothetical real industrial case and it was used to generate the data set and
later for the tests of the final models.

Fig. 1. On the left the scheme of the panel with sensors, on the right the 3D view of
overall system.
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2.1 Dataset acquisition bench

The system that has been considered for data acquisition is composed of an
array of nine coaxial ultrasonic sensors equally spaced on an octagonal board
(fig. 1). The test bench has been used to detect the presence of a thin rod
posed in front of the cluster. The target has been coated with soundproofing
material in order to test the system in critical condition reducing the amount of
reflected waves. The target has been placed in different positions, orientations
and distances trying to emulate the real conditions and to produce a sufficiently
large and comprehensive data set for the training of the different models. Figure
1 shows the sensor cluster and the overall system setting. Lateral borders are
slightly tilted in order to further open the field of view of the array of sensors.
The described testing area has been used for the generation of a very large data
set composed by the multiple signals acquired from the nine different sensors.
Signals have been recorded as raw data, only discarding the first noisy part
of the acquisitions. Indeed, having used coaxial type of sensors (emitter and
receiver are on the same axis), the excitation phase produces, for a short period,
saturated signals on all transducers that can be easily omitted. Moreover, it is
pretty straightforward to automatize this simple procedure removing always the
first part of the incoming signals.

3 Dataset visualization

Firstly, the recorded raw data have been analyzed and visualized with different
solutions. Using, principal component analysis (PCA), it has been possible to

Fig. 2. Projection of the nine signals using PCA. The data is normalized by shifting
each point by the centroid and making it unit norm.
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plot on a tridimensional graph the different acquisition points. In fig. 2, blue
points are samples characterized by the presence of the target and orange points
when the object is not present in the field of view. Reflections made by the
thin rod are so subtle that they can be easily lost in the background noise.
However, even if data points are not well separated, it is interesting to notice
how the two classes clustered in specific regions of the space making it clear
how correlations between different sensors are a key aspect to exploit for the
detection of the target. As already introduced, the main motivation for the use

Fig. 3. Correlation matrix of the signals coming from the nine sensors.

of an ensemble of sensors is that it opens the possibility to exploit correlations
between the acquired parallel signals (figure 3). A first high-level analysis can
be done considering the following considerations: if the correlation between two
sensors reaches high values, the points on the graph will be roughly disposed
on a straight line and there can be found an example of this in the correlation
graph between sensors 9 and 2 (green square); instead when the graph shows
a cloud-pattern disposition it indicates a low value of correlation. The graph
between sensors 1 and 3 (red square) can be used as example for this case.
From those correlations the network is capable to understand information not
explicitly given by the sensor itself.
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4 Preliminary analysis

First of all, the acquired raw dataset has been analyzed with a simple classical
methodology that can be easily improved with more elaborated processing [7].
However, already in this preliminary part, it has been taken into account the
advantage of working with a redundancy of sensors. Indeed, it is obvious from
the following results that correlations between the sensors can largely improve
the detection accuracy. The nine signals produced by one of the acquisitions

Fig. 4. Waveforms of the nine sensors of a sample acquisition. Envelops are highlighted
in orange on each sensors graph.

are represented in 4. The detection is easily recognizable with the second sensor
response, but it is lost in the background noise in almost all remaining sensors.
The envelope curve of each acquisition is highlighted in orange on each sensor
signal. Moreover, it is clear how the acquired waves are very dissimilar due to
the different location of the sensors on the board.

Firstly, it is possible to perform a simple detection independently on each sen-
sor, simply by comparing the resulting envelops with a manually tuned threshold
Ta. However, due to the critical setting of the designed test bench, it is possi-
ble to demonstrate that with this simple strategy each sensor produces a huge
number of false positive detections.

On the other hand, it is possible to implement a more elaborated processing,
exploiting the concurrent signals coming from the nine sensors. As it is repre-
sented in figure 5, it is pretty straightforward to construct a cumulative function
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which takes into account how many sensors are above the imposed threshold Ta.
At this point, a second threshold Tb has to be set, in order to determine how

Fig. 5. Above, envelope curves of the acquired signals. Below, cumulative function of
the sum of concurrent detections.

many sensors should concur to confirm a detection. On figure 6, with two
different colors are presented two possible outcomes with different values of Tb.
In conclusion, it is clear from these preliminary analysis how thresholds Ta and Tb

Fig. 6. The solid blue line: detections with concordance of 3 sensors and orange dashed
line: concordance of 6.

can greatly affect the overall result of the system, generating false positive alarm
or miss detections. So, difficulty in selecting optimized thresholds, the manual
interpretation of a considerable amount of acquisitions and boost in performance
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exploiting correlations between the different sensors, are the driving motivations
for the presented innovative methodologies.

5 Proposed Methodologies

The analysis and processing of the ultrasonic waves has been carried out using
two distinct approaches. Initially, only samples value range are took into ac-
count, neglecting temporal correlations between subsequent instances. However,
the contemporary use of multiple sensors and the derived correlations between
different signals, opens the possibility to build and train robust models, able to
achieve optimal results. Secondly, a much more sophisticated model has been
designed to exploit jointly the time information of the different wave forms and
their amplitude values. In the next section both methodology are compared and
analyzed in view of the results achieved.

5.1 Independent time correlations analysis

Model-based learning as well as instance-based learning systems have been in-
vestigated, showing excellent results on both types of binary classifiers. The
pre-processing phase is a standard procedure. Firstly, the acquired dataset has
been processed with a simple pipeline, removing non representative samples (ini-
tial time steps with saturated signals due to the emission of ultrasound waves)
and applying standardization to perform feature scaling. Secondly, the resulting
training data, with nine attributes, coming from the designed array of sensors,
have been manually annotated and used to train and evaluate the different mod-
els. In order to better evaluate the different cases, K-fold cross-validation, with
k equal to ten, and randomized search have been used in order to evaluate some
initial models by varying some hyperparameters. For the sake of completeness,
for the first algorithm, K-nearest neighbors (K-NN) [11], 6 is the number of
neighbors used with Euclidean as distance reference metric. For the Random
Forest [12], 50 is the number of estimators with 3 as minimum samples split
(minimum number of samples required to split an internal node) and maximum
depth of 15. The selected function to measure the quality of a split was ’entropy’
for the information gain. Finally, for the kernel SVM [13], it has been used a
radial basis function kernel ’rbf’ with 1.5 as value for the penalty parameter.
After this first preliminary phase, the analysis has been focused only on the
most promising hyperparamenters, fine tuning it with a grid search strategy. In
table 1 the different architectures are shown, with their corresponding results
generated by the K-fold cross-validation process [14].

It is possible to see the difference between results achieved by the feed for-
ward fully connected neural network and all other supervised algorithms. That
is made possible by the presence of multiple hidden layers, capable of mining
deep correlations between the different samples and represent knowledge in a
hierarchical structure [15]. After the grid search analysis, the selected config-
uration accounts five hidden layers with 32, 32, 32, 52 and 62 rectified linear
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units (ReLU) respectively, for a total of 7,497 trainable parameters. Moreover, a
batch of 128 instances has been used with AMSGrad [16] optimizer, an adaptive
learning rate method which modifies the basic ADAM optimization algorithm.
The overall algorithm update rule, without the debiasing step, is shown in Eq.1.
The first two equations are the exponential decay of the gradient and gradient
squared, respectively. Instead, with the third equation, keeping an higher vt term
results in a much smaller learning rate, η, fixing the exponential moving average
and preventing to converge to a sub-optimal point of the cost function.

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t

v̂t = max( ˆvt−1, vt)

θt+1 = θt −
η√
v̂t + ε

mt (1)

Finally, only Dropout regularization technique has been applied at each layer
with a drop rate of 30%. It is also worth pointing out that, due to the online
learning nature of neural networks, once a system is trained on the original
dataset, it can be further improved with new mini-batches coming from the
actual application. That opens the possibility to devise a dynamic setup able to
adjust and evolve to the specific application and to new environmental changes.

5.2 Time correlations analysis

In this second part, time correlations, between subsequent data samples, are
no more overlooked. On the contrary, that additional information is exploited
to achieve an even better model, more prone to generalize over new sample
data points. That is achieved using a deep learning model based on long short
term memory (LSTM) layers that increasingly extracts longer range temporal
patterns. Moreover, in order to avoid random interactions between different time-
steps and channels (LSTM hidden units), a many-to-many architecture [17] has
been adopted. For this purpose, a TimeDistributedDense layer is applied which
executes a Dense function across every output over time, using the same set of
weights, preserving the multidimensional nature of the processed data. Figure
7 presents a simplified overview of the devised model. The adoption of this
strategy, opens the possibility to exploit the temporal correlations between the
different samples without leaving out the interactions among the nine signals.

Dataset pre-processing For this second case study in the pre-processing
pipeline few more steps were needed. Indeed, the devised recurrent neural net-
work (RNN), requires data points to be collected in slice of time series. So, before
feeding the model, the samples of each sensor have been collected in chunks of
data, forming a three-dimensional array, used for the training of the model. In
order to maximize the number of possible new instances of the training dataset
the following rule has been adopted:

Xn,:,: = x(i−t):(i) = (x(i−t), ..., x(i)) (2)
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Fig. 7. Overview of the adopted RNN architecture based on LSTM units.Xi samples
feed a sequence to sequence model based on LSTM units that gradually extract higher
level temporal representations. After that, a TimeDistributedDense layer is applied
which executes a Dense function across every output over time using the same set of
weights. Finally, a fully connected layer is applied with a sigmoid end point unit to
perform the predictions.

where t is the chosen time-step range, X ∈ Ri×j×k is the 3rd-order dataset
output tensor and x(i) are the feature vectors of the old dataset which has
(x(i))T as rows. Finally, for the ground truth array, the following approach has
been adopted:

Y (i) = H(

i∑
n=i−t

y(n) − t/l) (3)

where H(x) is the Heaviside step function, Y ∈ Ri is the new label array, y(i) is
the old one and t the time-step value. The proposed approach introduced a new
hyperparameters, l, which is required to be set and can affect the reactivity of
the system. Figure 8 presents the architecture of the generated data structure.
The left cube of data represents the different instances used as input for the
RNN. At the centre, there are the feature extracted by the signals of the sensors
and finally, on the right, all individual sample data points, generated by the nine
sensors in t time steps. After a randomized search, l has been set to 2 and the
time-step parameter to 20 that is, feeding the RNN with twenty subsequent ac-
quisitions with each instance. Finally, non-representative samples were removed
and standard deviation applied.

Training and results The final designed model presents three LSTM layers
with 32, 15 and 32 hidden units, respectively. Then, a TimeDistributedDense
layer with 52 ReLu neurons and finally, a single sigmoid unit to perform the
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Fig. 8. Overview of the LSTM dataset structure.

predictions. In this second case, particular attention has been given to regular-
ization. As before, Dropout has been used at each layer, but in order to prevent
over-fitting also weight decay [18] has been exploited. Again, this is a simple fix
to Eq. 1 updating rule, but that has shown, in our case study, for better results
than L2 regularization:

θt+1 = θt −
η√
v̂t + ε

mt − ηwtθt (4)

The new term ηwtθt added in Eq. 4 subtracts a little portion of the weights at
each step, hence the name decay. On the other hand, L2 regularization is a clas-
sic method to reduce over-fitting, and consists in adding to the loss function the
sum of the squares of all the weights of the model, multiplied by a given hyper-
parameter. So, the two strategies are only the same thing for vanilla stochastic
gradient descent (SGD), but as soon as we add momentum, or use a more sophis-
ticated optimizer like Adam or AMSGrad, L2 regularization and weight decay
become different giving completely results. After, finding the maximum value of
learning rate to start with [19], training the RNN with cosine annealing strategy
and evaluating the architecture with K-fold cross-validation, the final model has

Supervised Learning Alg. Accuracy Precision Recall F1 Score

K-nearest neighbors (K-NN) 0.9280 0.9979 0.8516 0.9190

Random forest 0.9229 0.9798 0.8004 0.8811

Kernel SVM (rbf) 0.9042 0.9703 0.8004 0.8772

Feed Forward NN 0.9576 0.9796 0.9311 0.9547

Recurrent Neural Network (RNN) 0.9615 0.9677 0.9782 0.9729

Table 1. Results of the independent and dependent time correlation analysis kept
separate due to the different trainig methodologies. It is clear, from the last model,
how the contemporary exploitation of temporal and instantaneous interactions can
greatly boost the final scores. Moreover, it is clear from the F1-score that the last
model is much more balanced in performance than others.
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been shown to achieve over 97% (table 1 ) of F1-score, setting a huge gap be-
tween all other tested systems based on a independent time correlations analysis.
All training have been carried out on a GPU 2080 Ti with 11 GB of memory
exploiting the parallel computing platform CUDA version 10 created by Nvidia.
The time spent for the training of the independent time correlation networks was
negligible. Instead, the RNN training, due to the complexity of the networks,
has required approximately 3 hours.

5.3 Future works

The proposed algorithms could be easily applied in real time applications that
would not require the presence of hardware with high computational capabilities.
A future development of the proposed methodologies could be an embedded
deployment of the overall system, taking advantage of hardware accelerators
for the time correlation solution. Indeed, a simple solution could include the
usage of hardware like a simple micro-processor for the acquisition of raw data
coming from the sensors array, their analysis through the chosen model and
generation of warning signals in presence of detected objects. This configuration
could solve huge security problems, with a low cost solution, combining two
important requirements for present companies.

6 Conclusions

Two novel methodologies have been presented as valuable alternatives to tra-
ditional approaches for processing information of ultrasonic proximity sensors.
Classical methodologies, in critical situations, struggle to find a correct level of
threshold and filtering resulting in miss detections and high false positive rate.
Several binary classifiers have been trained in a supervised matter and tested
on real case applications where classical techniques struggles to detect the pres-
ence of an object. The contemporary usage of multiple sensors, in a cluster
disposition, revealed clear correlations between the different signals. These re-
current and marked patterns enables the possibility to build more robust and
reliable models able to build their knowledge on these information. Finally, re-
sults have shown a significant boost in accuracy exploiting not only the instan-
taneous correlation of the different signals but also the temporal pattern of the
acquired sample. Indeed, the simultaneous observation of multiple samples and
their temporal correlation can deeply mine into data, producing more elaborated
and articulated predictions.
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