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DERIVATION AND APPLICATION OF EFFECTIVE INTERFACE
CONDITIONS FOR CONTINUUM MECHANICAL MODELS OF

CELL INVASION THROUGH THIN MEMBRANES\ast 

MARK A. J. CHAPLAIN\dagger , CHIARA GIVERSO\ddagger , TOMMASO LORENZI\dagger , AND

LUIGI PREZIOSI\ddagger 

Abstract. We consider a continuum mechanical model of cell invasion through thin membranes.
The model consists of a transmission problem for cell volume fraction complemented with continuity
of stresses and mass flux across the surfaces of the membranes. We reduce the original problem to
a limiting transmission problem whereby each thin membrane is replaced by an effective interface,
and we develop a formal asymptotic method that enables the derivation of a set of biophysically
consistent transmission conditions to close the limiting problem. The formal results obtained are
validated via numerical simulations showing that the relative error between the solutions to the
original transmission problem and the solutions to the limiting problem vanishes when the thickness
of the membranes tends to zero. In order to show potential applications of our effective interface
conditions, we employ the limiting transmission problem to model cancer cell invasion through the
basement membrane and the metastatic spread of ovarian carcinoma.
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1. Introduction.

Biological background. Cell migration is crucial to maintain normal home-
ostasis [58] and sustain many physiological and pathological processes [32, 52, 61, 63].
During migration phenomena, cells encounter a variety of barriers encompassing other
cells, cell-cell junctions, and extracellular matrices (ECMs) of different densities and
compositions [52].

One of the most difficult barriers for the cells to cross is the basement mem-
brane. This is a thin, dense, and highly cross-linked sheet-like network of ECM macro-
molecules that underlies, among others, all epithelial and endothelial layers [50, 52].
With its pore size being on the order of 50 nm, only small molecules such as nutrients
(e.g., oxygen and glucose) and other chemical factors are able to passively diffuse
across the basement membrane [50, 75]. Nonetheless, such a structural barrier is
crossed daily by billions of cells in healthy tissues in the course of normal immune
cell trafficking [45], epithelial-to-mesenchymal transition [78], collective cell migra-
tion [32, 61, 63], and tissue development and morphogenesis [79]. Recent empirical
studies [52, 82] suggest that during these physiological processes cells can invade the
basement membrane and other thin ECM barriers in a variety of ways, including either
active removal (e.g., through invadopodia breaching and barrier disruption mediated
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by the down-regulation of adhesion receptors) or structural remodelling leading to
the creation of gaps in the barrier, or even physiological enlargement of preexisting
openings that facilitate, for instance, leukocyte trafficking in the vasculature [67].

Similar mechanisms of cell invasion are likely to be activated in pathological con-
ditions, including fibrotic diseases (most commonly affecting the lungs or kidneys),
inflammatory diseases, arteriosclerosis, and neoplastic processes [52]. In particular,
many types of tumors originate and develop in body regions that are separated from
the surrounding environment by the basement membrane. This is, for instance, the
case of breast tumors (ductal carcinoma) [24], ovary tumors [3], and exocrine or
endocrine pancreatic tumors [17]. During the first stages of cancer progression, non-
invasive dysplastic cells proliferate locally and form a carcinoma in situ. At some later
stage of tumor development, such a localized cancer lesion may acquire the capacity
to invade the adjacent tissues by perforating the basement membrane, thus becoming
an invasive carcinoma [23, 76]. The transition from carcinoma in situ to invasive car-
cinoma is sustained by the ability of cancer cells to produce matrix metalloproteinases
(MMPs). These are enzymes capable of digesting the collagen fibers that constitute
the extracellular environment and the basement membrane [47, 82]. The MMPs' ac-
tion widens the pores of the fiber networks and enable cancer cells to spread from
the primary site to the surrounding tissues. Notably, experimental studies on cancer
cell mobility in MMP-degradable collagen lattices and nondegradable substrates of
various porosity have revealed the existence of an ECM critical pore size below which
cancer cell migration is entirely hampered in the absence of MMP secretion. Such a
critical pore size was termed ``the physical limit of migration"" [82].

Mathematical modelling background. Despite our growing knowledge about
the underpinnings of cell invasion during physiological and pathological processes [32,
44, 52, 75, 82, 83], a number of key aspects still remain unclear. This is mainly due
to the difficulty of examining in vivo the interactions occurring between cells and the
basement membrane or other ECM barriers during cellular invasion, as well as to the
wide range of diverse mechanisms that cells can use to cross different extracellular
structures [52]. As a consequence of our partial understanding of this complex bio-
logical phenomenon, there has been little prior work on the mathematical modelling
of cell invasion through thin membranes. In fact, classical mathematical models of
tumor growth [9, 31, 66, 72] and cell migration on two-dimensional flat substrates [26]
do not take into account the effect of cell invasion through ECM barriers nor the
transition from carcinomas in situ to invasive tumors.

Only more recently physiological and pathological processes involving the migra-
tion of single cells in the presence of obstacles or barriers have been mathematically
described by means of discrete models [39, 48, 62], and different aspects of tumor
growth in confined environments have been investigated in silico using both discrete
and hybrid models [41, 53, 54]. These models can be easily tailored to capture fine
details of the changes in cell-cell and cell-ECM adhesion properties observed during
cell migration. However, their computational cost can become prohibitive for large
cell numbers. Therefore, to model cell migration through the basement membrane
and other thin ECM barriers at the scale of larger portions of tissues, it is desirable
to use continuum models, which offer the possibility to carry out efficient numerical
simulations for large cell numbers that are biologically and clinically relevant.

In this regard, focusing on breast cancer, which originates in the epithelial lining
of the milk ducts, Ribba et al. [74] have proposed a mathematical model of cancer cell
invasion whereby the basement membrane of the ducts is explicitly represented as a
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weakly permeable thin region. Although it has provided some interesting biological
insights, such a modelling approach could become computationally inefficient in the
presence of multiple thin membranes, as they would still be modelled as finite regions.
Moreover, Gallinato et al. [35] have proposed a mixture model of breast cancer cell
invasion whereby the presence of the basement membrane of the milk ducts is taken
into account by imposing nonlinear Kedem--Katchalsky interface conditions [19, 28,
29, 51, 55, 70] at the interface between the tumor and the host region. In the setting of
Gallinato et al. [35], such transmission conditions lead the normal velocity of the cells
and the cell volume fraction to be continuous across the basement membrane, which is
not necessarily the case. Finally, Arduino and Preziosi [11] and Giverso, Arduino, and
Preziosi [37] have presented a number of multiphase models of cancer cell migration
and invasion through the ECM. In agreement with the biological experiments of Wolf
et al. [82], in these models the cellular mobility vanishes when the ECM pore size
decreases below a certain critical value. These models effectively capture the fact that
the ECM critical pore size is relative to the geometrical and mechanical characteristics
of the cells (e.g., the size and elasticity of the nucleus, the stiffness of the nuclear
membrane, cellular adhesion, and traction), and they have been proved useful in
studying cancer cell invasion in cases where the morphological characteristics of the
ECM are spatially heterogeneous, or even discontinuous. However, such models do
not apply to biological scenarios where ECM regions with different mechanical and
structural properties (i.e., different cell mobilities) are separated by thin membranes.

Contents of the paper. In this paper, we consider a continuum mechanical
model of cell movement and proliferation in a spatial domain that is divided into
subdomains by one or multiple thin membranes. The model is formulated in terms of
a transmission problem defined by a system of nonlinear partial differential equations
for the cell volume fraction complemented with mass-continuity and stress-continuity
conditions on the interfaces between the membranes and the rest of the domain.

Nonlinear partial differential equations describing reaction-diffusion processes and
transport phenomena in spatial domains that comprise different parts separated by
thin layers (i.e., films or membranes) arise in the mathematical modelling of various
chemical, physical, and biological systems [1, 2, 4, 8, 13, 14, 15, 16, 20, 21, 27, 34,
36, 43, 49, 57, 60, 64, 65, 68, 70, 71]. Due to the analytical and numerical challenges
posed by the presence of such layers [12], it is often convenient to approximate the
original problem by an equivalent transmission problem whereby each thin layer is
replaced by an effective interface. The equivalent problem is then closed by imposing
appropriate transmission conditions on the effective interfaces.

In this spirit, we develop a formal procedure to derive a set of biophysically con-
sistent interface conditions to close the limiting problem. Specifically, we find that
the mass flux across the effective interfaces must be continuous, as one would expect,
and proportional to the jump of a term linked to the cell pressure. The biophysical
interest lies in the fact that this proportionality coefficient can be related to the size
of the pores of the thin membrane, as well as to the geometrical and mechanical char-
acteristics of the cells as in [11, 37, 39]. This makes the limiting transmission problem
suitable for providing a possible macroscopic description of cell invasion through thin
membranes that takes explicitly into account cell microscopic characteristics, such as
the mechanical constraints imposed by the cell nuclear envelope and the solid material
surrounded by it [82].

The transmission condition identified by the limiting procedure can be regarded
as a nonlinear generalization of the classical Kedem--Katchalsky interface condition, as
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it reduces to it for a peculiar (logarithmic) choice of the constitutive relation between
the cell pressure and the cell volume fraction. In contrast to other nonlinear Kedem--
Katchalsky interface conditions that have been previously employed to model cell
invasion through the basement membrane [35], our transmission condition allows the
cell volume fraction to be discontinuous across the equivalent interface, while ensuring
mass conservation.

The remainder of the paper is organized as follows. In section 2, we present the
original transmission problem and introduce the related limiting problem. In section 3,
we formally derive a set of effective interface conditions to close the limiting problem.
In section 4, we present sample numerical solutions that illustrate the formal results
established in section 3 and show their potential applications. In particular, we use
the limiting transmission problem to describe cancer cell invasion through the base-
ment membrane and to model the metastatic spread of ovarian carcinoma. Section 5
concludes the paper and provides a brief overview of possible research perspectives.

2. Statement of the problem. We consider a population of cells moving
through a region of space that is filled with a porous embedding medium, e.g., the
ECM. Mathematically, we identify such a region with a simply connected spatial do-
main \scrD \subset \BbbR d, with d = 1, 2, 3. Focusing on the biological scenario where the spatial
domain is divided into two regions separated by a porous membrane, we let the do-
main \scrD consist of three subdomains represented as the open sets \scrD 1, \scrD 2, and \scrD 3, as
in the scheme depicted in Figure 1 for a three-dimensional case. The subdomain \scrD 2

represents the porous membrane, and the interfaces between the membrane and the
subdomains \scrD 1 and \scrD 3 are denoted by \Sigma 12 and \Sigma 23, respectively.

Fig. 1. Example of spatial domain and related notation.

We model the cell volume fraction at position x \in \scrD and time t \geq 0 by means of
the function \rho (t,x) \geq 0. The evolution of the cell volume fraction is governed by the
mass balance equation

(2.1)
\partial \rho 

\partial t
+ \nabla \cdot (\rho v) = \Gamma (\rho ), (t,x) \in \BbbR + \times \scrD 

complemented with the momentum-related equation for an elastic fluid, neglecting
inertia,

(2.2) v :=  - \mu \nabla p,

and a barotropic relation p \equiv p(\rho ) for the cell pressure p. If necessary, one can let the
net growth rate \Gamma depend also on the concentrations of some chemical factors, such
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as nutrients and growth factors, and couple (2.1) with the mass balance equations
modelling their evolution. In analogy with the classical Darcy's law for fluids, the
function \mu (t,x) \geq 0 is the cell mobility coefficient and (2.2) models the tendency of
cells to move towards regions where they feel less compressed [7].

Remark 2.1. We remark that (2.2) is only an approximate representation of the
far more complex process underlying the migration of cellular aggregates, which is
governed by a multitude of subcellular pathways involving different proteins and
chemical species [81, 80] and is influenced by the mechanical properties both of the
single cells and of the subcellular elements of the aggregate [37], as well as by the
conditions of the surrounding environment. However, when looking at cell migra-
tion at the tissue scale, the ensemble of cells that constitute a cellular aggregate can
be described as a single phase material---or possibly a multiphase material---with
liquid [59, 18, 25, 33, 42, 22, 38], or elastic/hyperelastic [6, 10, 46], or visco-elasto-
plastic [40] characteristics. In particular, the use of a liquid-like constitutive assump-
tion is supported by experimental evidence [30, 5, 77, 73] indicating that cellular
aggregates behave like elastic solids over short time scales (i.e., time scales on the
order of a few minutes) but eventually display a fluid-like behavior (i.e., over time
scales on the order of cell division and apoptosis). For this reason, the representation
of living materials as viscous/inviscid/elastic fluids is now commonly employed [59].

It is important to stress the fact that we let the cell mobility coefficient be a
function of both t and x. This is to take into account the heterogeneous composition
of the spatial domain \scrD and the biological notion that the mobility of cells in the
embedding medium, especially within the membrane, can vary considerably across
space and time. Variability of the cell mobility can be due both to local variations in
the microstructure of the ECM and to spatio-temporal changes in the concentration
of MMPs. Therefore, one may let the function \mu depend explicitly on the local
concentration of MMPs and then couple (2.1) and (2.2) with a conservation equation
for the MMP concentration, as we will do in section 4.

From continuum mechanics, one has that mass flux and stresses must be continu-
ous across the interfaces \Sigma 12 and \Sigma 23. Within the framework of (2.1) and (2.2), such
continuity conditions translate into the following interface conditions:

(2.3) [[\rho v \cdot nij ]] = 0 on \Sigma ij with i = 1, 2 and j = i+ 1

and

(2.4) [[p]] = 0 on \Sigma ij with i = 1, 2 and j = i+ 1.

In (2.3) and (2.4), the notation [[(\cdot )]] represents the jump across the interface \Sigma ij , i.e.,
[[(\cdot )]] := (\cdot )j  - (\cdot )i, with the subscript i indicating that (\cdot ) is evaluated as the limit
to a point of the interface coming from the subdomain \scrD i. Moreover, as shown in
Figure 1, we denote by nij the unit vector normal to the interface \Sigma ij that points
towards the subdomain \scrD j . Substituting the expression (2.2) for the velocity field v
into the flux-continuity condition (2.3) yields

(2.5) [[\mu \rho \nabla p \cdot nij ]] = 0 on \Sigma ij with i = 1, 2 and j = i+ 1.

In order to close the transmission problem defined by (2.1) and (2.2) complemented
with the interface conditions (2.4) and (2.5), in addition to prescribing suitable bound-
ary conditions on the outer boundaries (i.e., the noninterfacing parts of the boundaries
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of the three spatial subdomains) and suitable initial conditions, one should specify a
barotropic relation p(\rho ).

In general, the three subdomains can differ in their biophysical properties. As
a result, the mobility coefficient and the net growth rate can become discontinuous
across the interfaces \Sigma 12 and \Sigma 23. In this case, denoting by \rho i(t,x), \mu i(t,x), and
\Gamma i(\rho i) the restrictions to the subdomain\scrD i of the functions that represent the local cell
volume fraction, the mobility coefficient, and the net growth rate, respectively, we can
rewrite the problem defined by (2.1) and (2.2) subject to the interface conditions (2.4)
and (2.5) as

(2.6)

\left\{             

\partial \rho i
\partial t

 - \nabla \cdot (\mu i \rho i \nabla p) = \Gamma i(\rho i) in \scrD i, i = 1, 2, 3,

\mu i \rho i \nabla p \cdot nij = \mu j \rho j \nabla p \cdot nij on \Sigma ij , i = 1, 2,

[[p]] = 0 on \Sigma ij , i = 1, 2,

with j = i+ 1. We make the following assumptions.

Assumption 2.2. The cell mobility coefficient \mu i is continuous in both arguments
for all i = 1, 2, 3.

Assumption 2.3. The net growth rate \Gamma i is a continuously differentiable function
of the cell volume fraction for all i = 1, 2, 3.

Assumption 2.4. The pressure p is given by a barotropic relation p \equiv f(\rho ), where
f is a continuously differentiable and monotonically increasing function of the cell
volume fraction.

Remark 2.5. In the case where the pressure p is a continuous function of the cell
volume fraction \rho , the stress-continuity condition (2.4) implies that also \rho is continuous
across the interfaces \Sigma 12 and \Sigma 23, that is,

[[\rho ]] = 0 on \Sigma ij with i = 1, 2 and j = i+ 1.

Hence, the flux-continuity conditions (2.3) or (2.5) read as

[[v \cdot nij ]] = 0 or [[\mu \nabla p \cdot nij ]] = 0 on \Sigma ij with i = 1, 2 and j = i+ 1.

In most biologically relevant scenarios arising in the study of cell invasion through
the basement membrane and other ECM barriers, the thickness of the membrane or
the barrier is much smaller than the characteristic size L > 0 of the spatial domain.
In order to translate this biological observation into mathematical terms, we define
the thickness of the membrane represented as the subdomain \scrD 2 as

(2.7) \varepsilon := max
\^\bfx 12\in \Sigma 12

\bigl\{ 
min\{ a > 0 : \^x12 + an12 \in \Sigma 23\} 

\bigr\} 
,

and we assume \varepsilon \ll L. In the biological scenarios corresponding to the assumption
\varepsilon \ll L, one typically wishes to

(i) replace the subdomain \scrD 2 with an effective interface, which is obtained from
the actual interfaces \Sigma 12 and \Sigma 23 by letting \varepsilon \rightarrow 0;

(ii) find biophysically consistent transmission conditions to impose on the effec-
tive interface in this asymptotic regime.
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With these goals in mind, we rewrite the transmission problem (2.6) as

(2.8) \scrP \varepsilon \equiv 

\left\{             

\partial \rho i\varepsilon 
\partial t

 - \nabla \cdot (\mu i\varepsilon \rho i\varepsilon f
\prime (\rho i\varepsilon )\nabla \rho i\varepsilon ) = \Gamma i\varepsilon (\rho i\varepsilon ) in \scrD i\varepsilon , i = 1, 2, 3,

\mu i\varepsilon \nabla \rho i\varepsilon \cdot nij = \mu j\varepsilon \nabla \rho j\varepsilon \cdot nij on \Sigma ij\varepsilon , i = 1, 2,

\rho i\varepsilon = \rho j\varepsilon on \Sigma ij\varepsilon , i = 1, 2,

with j = i+ 1, while the limiting transmission problem whereby the subdomain \scrD 2\varepsilon 

is replaced by an effective interface reads as

(2.9) \scrP 0 \equiv 

\left\{     
\partial \~\rho i
\partial t

 - \nabla \cdot (\~\mu i \~\rho i f
\prime (\~\rho i)\nabla \~\rho i) = \~\Gamma i(\~\rho i) in \~\scrD i, i = 1, 3,

transmission conditions on \~\Sigma 13,

where

(2.10) \~\scrD 1 = lim
\varepsilon \rightarrow 0

\scrD 1\varepsilon , \~\scrD 3 = lim
\varepsilon \rightarrow 0

\scrD 3\varepsilon , \~\Sigma 13 = lim
\varepsilon \rightarrow 0

\Sigma 12\varepsilon = lim
\varepsilon \rightarrow 0

\Sigma 23\varepsilon ,

(2.11) \~\rho i = lim
\varepsilon \rightarrow 0

\rho i\varepsilon , \~\mu i = lim
\varepsilon \rightarrow 0

\mu i\varepsilon , and \~\Gamma i(\~\rho i) = lim
\varepsilon \rightarrow 0

\Gamma i\varepsilon (\rho i\varepsilon ), i = 1, 3.

Remark 2.6. In the remainder of the paper, we will refer to the transmission
problem \scrP \varepsilon defined by (2.8), or equivalently by (2.6), as the ``thin layer problem"", and
to the limiting transmission problem \scrP 0 defined by (2.9) along with the appropriate
transmission conditions as the ``effective interface problem"".

The next section will be devoted to deriving the transmission conditions that are
necessary to complete the effective interface problem \scrP 0. For the effective interface
\~\Sigma 13 (i.e., an infinitesimal region) to have an effect on cell invasion analogous to that
of the actual thin membrane represented as the subdomain \scrD 2\varepsilon (i.e., a finite region),
when letting \varepsilon \rightarrow 0 we will need to compact the membrane (see Remark 2.7). In
other words, we will obtain the effective interface by virtually shrinking the pores of
the membrane in such a way as to cause a reduction in the local permeability \mu 2\varepsilon 

that is proportional to the local shrinkage. This ensures that the existing relation-
ships between the structural characteristics of the thin membrane and the biophysical
properties of the cells will remain intact across \~\Sigma 13. To this end, we will assume

(2.12) \mu 2\varepsilon  -  -  - \rightarrow 
\varepsilon \rightarrow 0

0 in such a way that
\mu 2\varepsilon 

\varepsilon 
 -  -  - \rightarrow 
\varepsilon \rightarrow 0

\~\mu 13, with \~\mu 13 : \BbbR + \times \scrD 2\varepsilon \rightarrow \BbbR +

and

(2.13) lim
\varepsilon \rightarrow 0

\nabla \mu 2\varepsilon 

\varepsilon 
\cdot n12 = lim

\varepsilon \rightarrow 0

\nabla \mu 2\varepsilon 

\varepsilon 
\cdot n23 = \nabla \~\mu 13 \cdot \~n13 = 0,

where \~n13 is the unit vector normal to the interface \~\Sigma 13 that points towards the
subdomain \~\scrD 3. The positive bounded function \~\mu 13 can be seen as the ``effective mo-
bility coefficient"" of the cells through the thin membrane represented as the effective
interface \~\Sigma 13.

Remark 2.7. By analogy, consider a liquid flowing through a layer of porous ma-
terial with unitary cross-sectional area. The liquid flux Q can be computed using the
classical Darcy's law as

Q =  - \kappa 

\nu 

\Delta P

\Delta x
,
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where \Delta P is the pressure drop between the ends of the layer, \Delta x is the thickness of the
layer, \kappa represents the hydraulic permeability of the material, and \nu is the dynamic
viscosity of the liquid. We can draw a conceptual analogy between the biological
problem at hand and the case of the liquid by noting that in order to preserve the
flux Q when taking the limit \Delta x \rightarrow 0 the key is to keep the pressure drop \Delta P fixed.
This can be achieved by letting

\kappa  -  -  -  - \rightarrow 
\Delta x\rightarrow 0

0 in such a way that
\kappa 

\Delta x
 -  -  -  - \rightarrow 
\Delta x\rightarrow 0

\~\kappa , with \~\kappa \in \BbbR +,

where \~\kappa represents an ``effective permeability"" of the porous layer in the case where
the layer is thin. The latter assumption is analogous to assumption (2.12).

3. Formal derivation of the interface conditions for the effective trans-
mission problem. In this section, we formally derive the transmission conditions
required to complete the effective transmission problem \scrP 0 defined by (2.9). In sum-
mary, as established by Proposition 3.1, we show that the mass flux across the effective
interface \~\Sigma 13 is continuous, and we find an additional transmission condition that es-
tablishes a relationship between the mass flux across the effective interface \~\Sigma 13 and
the effective cell mobility coefficient \~\mu 13(t,x).

Proposition 3.1. Under Assumptions 2.2--2.4, the following transmission con-
dition formally applies to the effective interface problem (2.9):

(3.1) \~\mu 1 \~\rho 1 f
\prime (\~\rho 1)\nabla \~\rho 1 \cdot \~n13 = \~\mu 3 \~\rho 3 f

\prime (\~\rho 3)\nabla \~\rho 3 \cdot \~n13 on \~\Sigma 13.

Moreover, under the additional assumptions (2.12) and (2.13),

(3.2) \~\mu 13 [[\Pi ]] = \~\mu 1 \~\rho 1 f
\prime (\~\rho 1)\nabla \~\rho 1 \cdot \~n13 = \~\mu 3 \~\rho 3 f

\prime (\~\rho 3)\nabla \~\rho 3 \cdot \~n13 on \~\Sigma 13,

where the function \Pi (\rho ) is defined according to the equation

(3.3) \Pi \prime (\rho ) := \rho f \prime (\rho ).

Proof. For ease of presentation, we formally derive the interface conditions (3.1)
and (3.2) in the case where \Sigma 12\varepsilon and \Sigma 23\varepsilon are parallel planes, but there would be
no additional difficulty in considering more general cases. We introduce the notation
\scrD 2\varepsilon \ni x := (x\bot ,x\Sigma ), where x\bot := x \cdot n12 = x \cdot n23. We also make the change of
variables x\bot \mapsto \rightarrow x\bot  - \^x12\bot , with \^x12\bot given by \^x12 = (\^x12\bot , \^x12\Sigma ) \in \Sigma 12\varepsilon , and let

\eta :=
x\bot 

\varepsilon 
\in (0, 1), so that (2.8) for \rho 2\varepsilon can be rewritten as

(3.4)
\partial \rho 2\varepsilon 
\partial t

 - \nabla \bfx \Sigma 
\cdot (\mu 2\varepsilon \rho 2\varepsilon f

\prime (\rho 2\varepsilon )\nabla \bfx \Sigma 
\rho 2\varepsilon ) - 

1

\varepsilon 

\partial 

\partial \eta 

\biggl( 
\mu 2\varepsilon 

\varepsilon 
\rho 2\varepsilon f

\prime (\rho 2\varepsilon )
\partial \rho 2\varepsilon 
\partial \eta 

\biggr) 
= \Gamma 2\varepsilon (\rho 2\varepsilon )

and the related flux continuity conditions can be rewritten as

(3.5)
\mu 2\varepsilon 

\varepsilon 
\rho 2\varepsilon f

\prime (\rho 2\varepsilon )
\partial \rho 2\varepsilon 
\partial \eta 

\bigm| \bigm| \bigm| 
\eta =0

= \mu 1\varepsilon \rho 1\varepsilon f
\prime (\rho 1\varepsilon )\nabla \rho 1\varepsilon \cdot n12

\bigm| \bigm| 
\Sigma 12\varepsilon 

,

(3.6)
\mu 2\varepsilon 

\varepsilon 
\rho 2\varepsilon f

\prime (\rho 2\varepsilon )
\partial \rho 2\varepsilon 
\partial \eta 

\bigm| \bigm| \bigm| 
\eta =1

= \mu 3\varepsilon \rho 3\varepsilon f
\prime (\rho 3\varepsilon )\nabla \rho 3\varepsilon \cdot n23

\bigm| \bigm| 
\Sigma 23\varepsilon 

.

Rearranging terms in (3.4) yields
(3.7)

\partial 

\partial \eta 

\biggl( 
\mu 2\varepsilon 

\varepsilon 
\rho 2\varepsilon f

\prime (\rho 2\varepsilon )
\partial \rho 2\varepsilon 
\partial \eta 

\biggr) 
= \varepsilon 

\biggl( 
\partial \rho 2\varepsilon 
\partial t

 - \nabla \bfx \Sigma 
\cdot (\mu 2\varepsilon \rho 2\varepsilon f

\prime (\rho 2\varepsilon )\nabla \bfx \Sigma 
\rho 2\varepsilon ) - \Gamma 2\varepsilon (\rho 2\varepsilon )

\biggr) 
.
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We make the ansatz

(3.8) \rho 2\varepsilon 

\Bigl( x\bot 

\varepsilon 
,x\Sigma 

\Bigr) 
= \rho 02(\eta ,x\Sigma ) + \varepsilon \rho 12(\eta ,x\Sigma ) + \scrO (\varepsilon )

and compute the asymptotic expansions

(3.9) f \prime (\rho 2\varepsilon ) = f \prime (\rho 02) + \varepsilon f \prime \prime (\rho 02)\rho 
1
2 + \scrO (\varepsilon ), \Gamma (\rho 2\varepsilon ) = \Gamma (\rho 02) + \varepsilon \Gamma \prime (\rho 02)\rho 

1
2 + \scrO (\varepsilon ).

Substituting (3.8) and (3.9) into (3.7), and letting \varepsilon \rightarrow 0, under assumption (2.12) we
formally obtain

(3.10)
\partial 

\partial \eta 

\biggl( 
\~\mu 13 \rho 

0
2 f

\prime (\rho 02)
\partial \rho 02
\partial \eta 

\biggr) 
= 0 =\Rightarrow \~\mu 13 \rho 

0
2 f

\prime (\rho 02)
\partial \rho 02
\partial \eta 

= const. \forall \eta \in (0, 1).

In a similar way, from the flux continuity conditions (3.5) and (3.6) we formally obtain

(3.11) \~\mu 13 \rho 
0
2 f

\prime (\rho 02)
\partial \rho 02
\partial \eta 

\bigm| \bigm| \bigm| 
\eta =0

= \~\mu 1\~\rho 1f
\prime (\~\rho 1)\nabla \~\rho 1 \cdot \~n13

\bigm| \bigm| 
\~\Sigma 13

,

(3.12) \~\mu 13 \rho 
0
2 f

\prime (\rho 02)
\partial \rho 02
\partial \eta 

\bigm| \bigm| \bigm| 
\eta =1

= \~\mu 3\~\rho 3f
\prime (\~\rho 3)\nabla \~\rho 3 \cdot \~n13

\bigm| \bigm| 
\~\Sigma 13

.

Using (3.10) along with (3.11) and (3.12) we find that for all \eta \in (0, 1) we have

(3.13) \~\mu 13 \rho 
0
2 f

\prime (\rho 02)
\partial \rho 02
\partial \eta 

= \~\mu 1 \~\rho 1 f
\prime (\~\rho 1)\nabla \~\rho 1 \cdot \~n13

\bigm| \bigm| 
\~\Sigma 13

= \~\mu 3 \~\rho 3 f
\prime (\~\rho 3)\nabla \~\rho 3 \cdot \~n13

\bigm| \bigm| 
\~\Sigma 13

.

Hence, the transmission condition (3.1) is formally verified. Moreover, under the
additional assumption (2.13), integrating both sides of (3.13) with respect to \eta and
noting that

\~\mu 13

\int 1

0

\rho 02 f
\prime (\rho 02)

\partial \rho 02
\partial \eta 

d\eta = \~\mu 13

\int 1

0

\partial \Pi 

\partial \eta 
d\eta = \~\mu 13 [[\Pi ]],

with \Pi defined according to (3.3), we obtain

\~\mu 13 [[\Pi ]] = \~\mu 1 \~\rho 1 f
\prime (\~\rho 1)\nabla \~\rho 1 \cdot \~n13 = \~\mu 3 \~\rho 3 f

\prime (\~\rho 3)\nabla \~\rho 3 \cdot \~n13 on \~\Sigma 13.

Hence, the transmission condition (3.2) is formally verified as well.

Remark 3.2. If the cell pressure is given by the barotropic relation

p \equiv f(\rho ) with f(\rho ) := P ln (\rho /\rho 0) and P > 0, \rho 0 > 0,

then (2.8) for \rho i\varepsilon becomes a nonlinear reaction-diffusion equation with a nonlinearity
only in the reaction term, and \Pi = P \rho + C with C \in \BbbR . In this case, the interface
condition (3.2) reduces to the classical Kedem--Katchalsky interface condition, i.e.,
\~\mu 13 (\~\rho 3  - \~\rho 1) = \~\mu 1 \nabla \~\rho 1 \cdot \~n13 = \~\mu 3 \nabla \~\rho 3 \cdot \~n13 on \~\Sigma 13.

Remark 3.3. If \~\mu 13 \equiv 0, then the thin membrane represented as the effective
interface \~\Sigma 13 is impermeable and we recover no-flux boundary conditions on both
sides of \~\Sigma 13, i.e., the cells in each subdomain are compartmentalized.
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Taken together, the formal results established by Proposition 3.1 allow us to
complete the effective interface problem \scrP 0 defined by the transmission problem (2.9)
as follows:

(3.14) \scrP 0 \equiv 

\left\{               

\partial \~\rho 1
\partial t

 - \nabla \cdot (\~\mu 1 \~\rho 1 f
\prime (\~\rho 1)\nabla \~\rho 1) = \~\Gamma 1(\~\rho 1) in \~\scrD 1,

\partial \~\rho 3
\partial t

 - \nabla \cdot (\~\mu 3 \~\rho 3 f
\prime (\~\rho 3)\nabla \~\rho 3) = \~\Gamma 3(\~\rho 3) in \~\scrD 3,

\~\mu 13[[\Pi ]] = \~\mu 1 \~\rho 1 f
\prime (\~\rho 1)\nabla \~\rho 1 \cdot \~n13 = \~\mu 3 \~\rho 3 f

\prime (\~\rho 3)\nabla \~\rho 3 \cdot \~n13 on \~\Sigma 13.

In order to illustrate these formal results we constructed numerical solutions of a
one-dimensional version of the thin layer problem \scrP \varepsilon for decreasing values of \varepsilon , and
we compared the numerical solutions obtained with the numerical solutions of the
corresponding effective interface problem \scrP 0. These results are reported in section S.1
of the Supplementary Material and show that the relative error between the numerical
solutions of the two transmission problems tends linearly to zero as \varepsilon \rightarrow 0.

Remark 3.4. The results established by Proposition 3.1 can also be obtained using
a control volume approach analogous to that typically used in continuum mechanics
(i.e., considering a control volume that cuts across the subdomain \scrD 2\varepsilon ).

4. Application of the effective interface conditions. The numerical solu-
tions presented in this section show potential applications of the formal results es-
tablished by Proposition 3.1. In section 4.1, we construct numerical solutions for a
two-dimensional model of cancer cell invasion through a basement membrane and the
corresponding effective interface problem. The numerical results obtained indicate
that the effective interface problem provides a good approximation of the original
transmission problem for membranes of sufficiently small thickness. In section 4.2, we
construct numerical solutions for an effective interface problem modelling cell invasion
dynamics in ovarian carcinoma. The numerical results obtained support the idea that
the model can qualitatively reproduce the key steps of the complex process leading to
the metastatic spread of ovarian cancer cells. All numerical simulations are carried
out using the finite element software COMSOL Multiphysics, with the parallel sparse
direct solver MUMPS. The method for constructing numerical solutions is based on
the backward differentiation formula with an adaptive time-step, and a refined mesh
is used in the region in the vicinity of the effective interface.

4.1. Numerical simulation of cancer cell invasion through the basement
membrane. We compare the numerical solutions of a thin layer problem modelling a
two-dimensional cell invasion process with the numerical solutions of the correspond-
ing effective interface problem. We consider a biological scenario whereby cancer
cells, which proliferate according to a logistic law with intrinsic growth rate r > 0, in-
vade a normal tissue composed of healthy cells in homeostatic equilibrium (i.e., cells
for which proliferation is balanced by natural death) by squeezing through a dam-
aged part of the basement membrane. Throughout this section, we use the notation
x = (x/L, y/L) to denote the spatial position nondimensionalized with respect to the
thickness L > 0 of the region represented as the subdomains \scrD 1\varepsilon and \~\scrD 1, and we
nondimensionalize the time variable with respect to the intrinsic growth rate r.

We consider the net growth rate

(4.1) \Gamma (\varphi , \rho ) := (1 - \rho ) \rho H(\varphi ) ,



INTERFACE CONDITIONS FOR CELL INVASION MODELS 2021

where H(\cdot ) denotes the Heaviside step function and the function \varphi (t,x) is an auxiliary
level set function that tracks the region of space occupied by cancer cells. Moreover,
we use the barotropic relation

(4.2) p \equiv f(\rho ) with f(\rho ) := (\rho  - \rho 0)+ and 0 < \rho 0 < 1,

where (\cdot )+ is the positive part of (\cdot ). We remark that we consider a scenario whereby
the cell volume fraction at t = 0 is equal to or greater than \rho 0 for all x. Since
\rho 0 < 1, under definition (4.1) both the thin layer problem \scrP \varepsilon and the effective interface
problem \scrP 0 are such that the cell volume fraction will be greater than or equal to
\rho 0 for all t \geq 0. Under this scenario, the barotropic relation (4.2) is such that
Assumption 2.4 is satisfied.

We choose the spatial domains schematized in Figure 2 to carry out numerical
simulations. For the thin layer problem (see Figure 2(a)), we let the subdomains
\scrD 1\varepsilon and \scrD 3\varepsilon be separated by the basement membrane of thickness \varepsilon , which is repre-
sented as the subdomain \scrD 2\varepsilon with boundaries \Sigma 12\varepsilon and \Sigma 23\varepsilon . We identify the part
of the membrane that is damaged, and thus permeable to cancer cells, with a subset
\scrD p \subset \scrD 2\varepsilon . Similarly, for the effective interface problem (see Figure 2(b)), we let the

subdomains \~\scrD 1 and \~\scrD 3 be separated by the effective interface \~\Sigma 13. In this case, the
damaged part of the basement membrane is represented as a set \~\Sigma p \subset \~\Sigma 13. For sim-
plicity, we assume the cell mobility coefficients in the subdomains \scrD 1\varepsilon and \scrD 3\varepsilon to have
the same constant value, i.e., \mu 1\varepsilon = \mu 3\varepsilon \equiv \=\mu with \=\mu > 0, and we define the mobility
coefficient in the subdomain \scrD 2\varepsilon as \mu 2\varepsilon (x) := \varepsilon \=\mu 2 1\scrD p(x) with \=\mu 2 > 0, where 1\scrD p(x)

is a mollification of the indicator function of the set \scrD p \subset \scrD 2\varepsilon . Accordingly, for the
effective interface problem, we choose \~\mu = \~\mu 3 \equiv \=\mu , \~\mu 13 := \=\mu 2 1\~\Sigma p

(x). We assume that
cancer cells initially occupy only the region of space on the left of the membrane,
while healthy cells reside in the remaining part of the spatial domain.

(a) (b)

Fig. 2. Spatial domain used in the numerical simulation of cancer cell invasion through the
basement membrane. (a) Spatial domain for the thin layer problem. The subdomains \scrD 1\varepsilon and
\scrD 3\varepsilon are separated by the basement membrane of thickness \varepsilon , which is represented as the subdomain
\scrD 2\varepsilon . The region highlighted in green (i.e., the set \scrD p \subset \scrD 2\varepsilon ) is assumed to be damaged and thus
permeable to cancer cells. To construct numerical solutions, we choose \scrD 1\varepsilon := ( - 1, 0) \times ( - 3, 3),
\scrD 2\varepsilon := (0, \varepsilon )\times ( - 3, 3), \scrD 3\varepsilon := (\varepsilon , 5)\times ( - 3, 3). (b) Spatial domain for the effective interface problem.
The subdomains \~\scrD 1 and \~\scrD 3 are separated by the effective interface \~\Sigma 13. The region highlighted in
green (i.e., the set \~\Sigma p \subset \~\Sigma 13) is assumed to be damaged and thus permeable to cancer cells. In

particular we consider \~\scrD 1 := ( - 1, 0)\times ( - 3, 3), \~\scrD 3 := (0, 5)\times ( - 3, 3). (Color available online.)
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We describe the spatio-temporal evolution of the cell volume fraction \rho i\varepsilon (t,x)
through the thin layer problem (2.8) with f(\rho i\varepsilon ) defined according to (4.2) and \Gamma i\varepsilon \equiv 
\Gamma (\varphi \varepsilon , \rho i\varepsilon ) given by (4.1). The function \varphi \varepsilon (t,x) is the auxiliary level set function that
tracks the region of space occupied by cancer cells---i.e., at any time instant t \geq 0,
if \varphi \varepsilon (t,x) > 0, then the point x is occupied by cancer cells, whereas if \varphi \varepsilon (t,x) \leq 0,
then the point x is occupied by healthy cells. Hence, the zero level set of the function
\varphi \varepsilon (t,x) corresponds to the boundary of the tumor region at time t. The evolution of
the function \varphi \varepsilon (t,x) is governed by the following equation [69]:

(4.3)
\partial \varphi \varepsilon 

\partial t
+ v\varepsilon \cdot \nabla \varphi \varepsilon = 0 in \scrD 1\varepsilon \cup \scrD 2\varepsilon \cup \scrD 3\varepsilon with v\varepsilon =  - \mu i\varepsilon f

\prime (\rho i\varepsilon )\nabla \rho i\varepsilon in \scrD i\varepsilon 

for i = 1, 2, 3, subject to the continuity conditions

(4.4) [[\varphi \varepsilon ]] = 0 on \Sigma ij\varepsilon with i = 1, 2 and j = i+ 1.

Notice that the transmission conditions (2.8)2 ensure the continuity of the normal
velocity across the interfaces \Sigma 12\varepsilon and \Sigma 23\varepsilon .

The corresponding effective interface problem is given by the transmission prob-
lem (3.14) with \~\Gamma i \equiv \Gamma ( \~\varphi , \~\rho i) defined according to (4.1) and with f(\~\rho i) given by (4.2).
As for the thin layer problem, the function \~\varphi (t,x) is the level set function tracking
the region of space occupied by cancer cells, the evolution of which is governed by the
following equation [69]:

(4.5)
\partial \~\varphi 

\partial t
+ \~v \cdot \nabla \~\varphi = 0 in \~\scrD 1 \cup \~\scrD 3 with \~v =  - \~\mu if

\prime (\~\rho i)\nabla \~\rho i in \~\scrD i for i = 1, 3,

subject to the continuity condition

(4.6) [[ \~\varphi ]] = 0 on \~\Sigma 13.

A formal derivation of condition (4.6) is provided in section S.2 of the Supplemen-
tary Material. Finally, we choose parameter values, boundary conditions, and initial
conditions corresponding to those of the thin layer problem.

The numerical results obtained are summarized by the plots in Figures 3 and 4.
The plots in the top row of Figure 3 display the numerical solutions to the thin
layer problem with \varepsilon = 0.1 at different time instants. The numerical solutions to the
effective interface problem at the same time instants are displayed in the plots in the
bottom row. The discrepancy between the solutions to the thin layer problem and
the solutions to the effective interface problem decays over time as the invasion front
of cancer cells moves away from the basement membrane, which is represented either
by the subdomain \scrD 2\varepsilon or by the effective interface \~\Sigma 13. This is further clarified by
the plots in Figure 4. In particular, the curves reported in Figure 4(c) indicate that
the relative error between the numerical solution to the thin layer problem at the
point (\varepsilon , 0) and the numerical solution to the effective interface problem at the point
(0+, 0) decays over time. Moreover, in agreement with the formal results established
by Proposition 3.1, the relative error decays as \varepsilon \rightarrow 0.

4.2. Numerical simulation of ovarian cancer invasion. In this section, we
apply the formal results established by Proposition 3.1 to the mathematical model-
ling of cell invasion dynamics in ovarian carcinoma. In particular, we simulate the
metastatic journey of a cancer multicellular mass, from the initial growth inside the
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(a) t = 5 (b) t = 10 (c) t = 20 (d) t = 30

(e) t = 5 (f) t = 10 (g) t = 20 (h) t = 30

Fig. 3. Numerical simulation of cancer cell invasion through the basement membrane. (a)--(d)
Numerical solutions to the thin layer problem with \varepsilon = 0.1. The different panels display the cell
volume fraction \rho i\varepsilon (t,x) with i = 1, 2, 3 at successive nondimensionalized time instants. (e)--(h)
Numerical solutions to the effective interface problem. The different panels display the cell volume
fraction \~\rho i(t,x) with i = 1, 3 at successive nondimensionalized time instants. The color scale ranges
from blue (corresponding to 0.5) to red (corresponding to 1). The white curves are isolines that
track the region of space occupied by cancer cells. To construct numerical solutions, we impose zero
Neumann boundary conditions on the left outer boundary and on the upper and lower boundaries,
whereas a Dirichlet boundary condition is prescribed on the right outer boundary. The cells are
uniformly distributed across the spatial domain at t = 0, that is, we impose the initial conditions
\rho i\varepsilon (0,x) := \rho 0 for all x \in \scrD i\varepsilon with i = 1, 2, 3, and we consider a biological scenario whereby cancer
cells are initially confined to the subdomain \scrD 1\varepsilon by making the assumption that \varphi \varepsilon (0, x, \cdot ) :=  - x.
We choose the parameter values \rho 0 = 0.5, \~\mu 1 = \~\mu 3 \equiv \=\mu = 0.5, and \=\mu 2 = 0.1. (Color available
online.)

(a) t = 0, 5, 10, 15, 20, 25, 30 (b) t = 0, 5, 10, 15, 20, 25, 30 (c)

Fig. 4. Numerical simulation of cancer cell invasion through the basement membrane. (a)
Spatio-temporal evolution of the volume fraction of cancer cells \rho i\varepsilon (t, x, 0)H(\varphi \varepsilon (t, x, 0)) (solid
lines) and the volume fraction of healthy cells \rho i\varepsilon (t, x, 0) (1 - H(\varphi \varepsilon (t, x, 0))) (dashed lines) for
the thin layer problem, with i = 1, 2, 3. (b) Spatio-temporal evolution of the volume frac-
tion of cancer cells \~\rho i(t, x, 0)H( \~\varphi (t, x, 0)) (solid lines) and the volume fraction of healthy cells
\~\rho i(t, x, 0) (1 - H( \~\varphi (t, x, 0))) (dashed lines) for the effective interface problem, with i = 1, 3. (c) Rel-
ative error between the numerical solutions to the thin layer problem at the point (\varepsilon , 0) and
the numerical solutions to the effective interface problem at the point (0+, 0) (i.e., the quantity
err+ = | \rho 3\varepsilon (t, \varepsilon , 0)  - \~\rho 3(t, 0+, 0)| /\~\rho 3(t, 0+, 0)) as a function of \varepsilon , at successive time instants. The
relative error at the point (0 - , 0) is not reported, as it was smaller than 5\times 10 - 3 for all t and \varepsilon .
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ovary to the invasion of the healthy tissue adjacent to the peritoneum, using an effec-
tive interface problem.

For the sake of brevity, throughout this section we drop the tildes from all quanti-
ties and we work with dimensionless quantities, as specified in the previous subsection.
In particular, we use the notation x = (x/L, y/L) to denote the spatial position nondi-
mensionalized with respect to the characteristic size L > 0 of the region represented
as the subdomain \scrD 1.

4.2.1. Biological background. Ovarian carcinoma originates either inside the
ovary or in the fallopian tube. This type of cancer is known to invade the surrounding
tissues and to metastasize both by direct extension and by cell detachment from
the primary tumor [56]. The latter process of metastasis formation is peculiar to
ovarian carcinoma and allows cancer cells to spread into the peritoneal cavity, to
invade adjacent peritoneal tissues and, ultimately, to reach distant organs. Such
a process encompasses multiple layers of complexity, which represents one of the
main reasons why the metastatic behavior of ovarian cancer cells remains poorly
understood.

The detachment of ovarian cancer cells from the primary tumor starts with the de-
struction of the basement membrane underlying the ovarian capsule (i.e., the ovarian
surface epithelium) [3]. Cancer cells can subsequently break through the ovarian cap-
sule as single cells or, more frequently, as spheroid-like aggregates. Such multicellular
masses grow and passively move until they reach the walls of the peritoneal cavity---
which represent the common site of disaggregation, dissemination, and metastatic
outgrowth for ovarian carcinoma [41].

The cancer cells that reach the walls of the cavity can attach to the mesothe-
lial cells that constitute the peritoneal lining and, by secreting MMPs [56], they can
degrade the basement membrane underlying the mesothelium and cleave cell-cell ad-
hesion molecules (e.g., N-cadherins) that hold mesothelial cells together [56]. This
leads to the retraction of mesothelial cells at the cancer cells' attachment sites and
promotes the formation of foci of invasion, which enable the ovarian cancer cells to
invade the healthy tissue adjacent to the peritoneum and form secondary tumors [41].

4.2.2. Mathematical model. In adult human females, the ovarian capsule con-
sists of a single layer of epithelial cells, and the peritoneal lining is constituted by a
monolayer of mesothelial cells [3]. Hence, the thickness of the ovarian capsule and
the peritoneal lining is small compared to the characteristic size of the ovary and of
the peritoneal cavity. For this reason, we represent both the ovarian capsule and the
peritoneal lining, along with the underlying basement membranes, as two thin porous
membranes. Moreover, using the formal results established by Proposition 3.1, we
model each thin porous membrane as an effective interface.

On the basis of these observations, considering a two-dimensional scenario, we
represent the ovary, the peritoneal cavity, and the healthy tissue adjacent to the
peritoneum as three distinct spatial subdomains \scrD 1, \scrD 2, and \scrD 3 separated by the
effective interfaces \Sigma 12 (i.e., the ovarian capsule along with the underlying basement
membrane) and \Sigma 23 (i.e., the peritoneal lining along with the underlying basement
membrane); cf., respectively, the blue curve and the red line in Figure 5. We focus on
the biological scenario whereby there is a part of the ovarian capsule that is damaged
and thus permeable to cancer cells. We identify such a region with a subset \Sigma p of the
effective interface \Sigma 12 (cf. the green line in Figure 5).

Letting the function \rho i(t,x) model the cell volume fraction at position x \in \scrD i and
time t \geq 0, we describe the spatio-temporal evolution of the cells through the effective
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Fig. 5. Spatial domain used in the numerical simulation of ovarian cancer invasion. The
subdomain \scrD 1 corresponds to the ovary, the subdomain \scrD 2 represents the peritoneal cavity, and
the subdomain \scrD 3 models the healthy tissue adjacent to the peritoneum. The effective interfaces
\Sigma 12 and \Sigma 23 represent, respectively, the ovarian capsule and the peritoneal lining. The part of the
ovarian capsule highlighted in green (i.e., \Sigma p \subset \Sigma 12) is assumed to be permeable to cancer cells.
(Color available online.)

interface problem (3.14), with i = \{ 1, 2, 3\} , posed on the spatial domain illustrated
in Figure 5. Similarly to section 4.1, we define f(\rho i) according to (4.2), and we let
ovarian cancer cells proliferate in all subdomains \scrD i, with i = \{ 1, 2, 3\} , according to
the net growth rate \Gamma i \equiv \Gamma (\varphi , \rho i) given by the logistic law (4.1). The evolution of
the function \varphi (t,x) is governed by (4.5) posed on the spatial domain illustrated in
Figure 5 and subject to the continuity condition (4.6) on \Sigma 12 and \Sigma 23.

We make the prima facie assumption that the effective mobility coefficient \mu 12 is
a given function of x and does not depend on t. On the other hand, on the basis of
the biological facts discussed in section 4.2.1, we let the effective mobility coefficient
\mu 23 be a function of the local concentration of MMPs c(t,x), which can vary across
space and time. In particular, using a modelling strategy similar to that proposed by
Gallinato et al. [35] and Giverso, Arduino, and Preziosi [37], we define \mu 23 as

(4.7) \mu 23(t,x) \equiv \mu 23(c(t,x)) := \=\mu 23

(c(t,x) - 1)+
Kc + (c(t,x) - 1)

, \=\mu 23 > 0, Kc > 0.

A detailed derivation of definition (4.7) is provided in section S.3 of the Supplemen-
tary Material. Denoting the restriction of the function c to the subdomain \scrD i by
ci, we describe the dynamics of the concentration of MMPs through the following
transmission problem:

(4.8)

\left\{             

\partial ci
\partial t

= \gamma c \rho i H(\varphi ) +Dc \Delta ci in \scrD i, i = 1, 2, 3,

Dc \nabla ci \cdot nij = Dc \nabla cj \cdot nij on \Sigma ij , i = 1, 2, j = i+ 1,

[[c]] = 0 on \Sigma ij , i = 1, 2, j = i+ 1,

where the parameter \gamma c > 0 is the rate at which cancer cells release MMPs and the
parameter Dc > 0 is the diffusivity of MMPs. Notice that the transmission conditions
in (4.8) are such that the MMP concentration c(t,x) and its flux are continuous across
the effective interfaces \Sigma 12 and \Sigma 23. This is because the size of the MMP molecules
is much smaller than the size of the pores of the membranes (i.e., the membranes
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are permeable to the MMP molecules). Alternatively, one could impose the classical
Kedem--Katchalsky interface conditions on \Sigma 12 and \Sigma 23.

4.2.3. Numerical solutions. The numerical results obtained are summarized
by the plots in Figure 6. As illustrated by these plots, which display the cell volume
fraction in the different subdomains along with the boundaries of the cancer multi-
cellular mass (white lines), the mathematical model defined by the effective interface
problem (3.14) posed on the spatial domain of Figure 5 and coupled with the trans-
mission problem (4.8) can qualitatively reproduce the salient steps of the metastatic
journey undertaken by an ovarian cancer multicellular mass. In summary, cancer cells
are initially confined to the ovary region \scrD 1 (see Figure 6(a)), where they proliferate
and grow into a multicellular mass. At later stages (see Figures 6(b)--6(d)), cancer
cells break through the damaged part of the ovarian capsule \Sigma p \subset \Sigma 12 and spread
across the peritoneal region \scrD 2, until they reach the peritoneal lining \Sigma 23. From
there, secreting MMPs, cancer cells create one focus of invasion (see Figure 6(e)),
which enables the multicellular mass to squeeze through the peritoneal lining and
form a secondary tumor in the healthy tissue adjacent to the peritoneum \scrD 3 (see
Figures 6(f)--6(h)).

(a) t = 4 (b) t = 8 (c) t = 14 (d) t = 20

(e) t = 28 (f) t = 30 (g) t = 32 (h) t = 36

Fig. 6. Numerical simulation of ovarian cancer invasion. Numerical solutions to the trans-
mission problem defined by the effective interface problem (3.14) posed on the spatial domain of
Figure 5 and coupled with the transmission problem (4.8). The different panels display the cell vol-
ume fraction \rho i(t,x) with i = 1, 2, 3 at successive nondimensionalized time instants. The color scale
ranges from blue (corresponding to 0.5) to red (corresponding to 1). The black lines highlight the
boundaries of the subdomains \scrD 1, \scrD 2, and \scrD 3, and the effective interfaces \Sigma 12 and \Sigma 23. The white
curves are isolines that track the region of space occupied by the cancer multicellular mass. To con-
struct numerical solutions, we impose zero Neumann boundary conditions on the outer boundaries
of the subdomains for all dependent variables. We consider a biological scenario whereby cancer
cells are initially confined to a circular region of the ovary centered at the point x0, while healthy
cells occupy the rest of the spatial domain, and no MMPs are initially present. Hence, we assume
\rho i(0,x) := \rho 0 for all x \in \scrD i and i = \{ 1, 2, 3\} , c(0,x) \equiv 0, and \varphi (0,x) :=  - 1 + 2 exp

\bigl( 
| x - x0| 2/b

\bigr) 
.

Finally, we choose \rho 0 = 0.5, \mu 1 = \mu 2 = \mu 3 \equiv \=\mu = 0.5, \=\mu 23 = 1, x0 = ( - 0.13, 1.04), b = 0.01,
Kc = 0.2, Dc = 0.005, \gamma c = 0.5, and \mu 12(x) := \=\mu 12 1\Sigma p (x), where \=\mu 12 = 0.1 and 1\Sigma p (x) is a
mollification of the indicator function of the set \Sigma p \subset \Sigma 12. (Color available online.)
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Note that the plots in Figures 6(e)--6(h) indicate that the size of the focus of
invasion grows over time. This is due to the diffusion of MMPs secreted by cancer
cells, which increase the local value of the effective mobility coefficient \mu 23(t,x) (cf. the
expression given by (4.7)). Moreover, throughout the simulations one can verify that
the cell volume fractions can become discontinuous not only in the portions of the
ovarian capsule and of the peritoneal lining that are impermeable, but also in the
permeable part of the ovarian capsule and at the focus of invasion in the peritoneal
lining.

5. Conclusions and research perspectives. We have developed a formal
asymptotic method to mathematically address biological problems of cell invasion
through thin membranes (i.e., the basement membrane and other ECM barriers of
small thickness). We have shown how, starting from an original transmission prob-
lem in which thin membranes are represented as finite regions of small thickness,
one can obtain a limiting transmission problem where each membrane is replaced by
an effective interface, and we have derived a set of biophysically consistent interface
conditions to close the limiting problem.

The approximation of a thin porous layer with an effective interface and a set of
suitable transmission conditions is a simplifying approach that has attracted attention
in a wide range of application fields---e.g., heat transfer problems [68], flow simula-
tions in porous media with immersed intersecting fractures [14], structural mechanical
problems [15, 13], and flows through thin membranes for biological applications [55]---
as it brings considerable modelling and computational benefits. From the modelling
point of view, the main benefit lies in the fact that, by using this approximation, one
does not need to develop a detailed model of the phenomena that occur inside the
thin layer. From the computational point of view, such an approximation ensures
a stark reduction of simulation time in the case of very thin layers, since it makes
it possible to avoid the computational cost associated with the fine mesh required
to produce accurate numerical results in the proximity of a thin layer, where sharp
variations of the dependent variables can lead to the emergence of numerical instabil-
ities. The price to pay for having a simpler and more computationally efficient model
is the introduction of effective interface parameters, such as our ``effective mobility
coefficient,"" the estimation of which may require ad hoc experiments and extensive
parameter fitting.

The formal results obtained have been validated via numerical simulations show-
ing that the relative error between the solutions to the original transmission problem
and the solutions to the limiting problem vanishes when the thickness of the mem-
branes tends to zero. Moreover, in order to show potential applications of our effective
interface conditions, we have employed the limiting transmission problem to model
cancer cell invasion through the basement membrane and the metastatic spread of
ovarian carcinoma.

Our work can be extended both from the analytical perspective and from the
modelling point of view. From the analytical perspective, it would be interesting to
provide a rigorous proof of the formal results established by Proposition 3.1. From the
modelling point of view, we would like to generalize the results presented in this paper
to the case of multiple cell populations. We also plan to develop further our formal
method for deriving effective interface conditions in order to consider momentum-
related equations different from (2.2). In particular, it would be interesting to capture
both the active response of living aggregates and the visco-elasto-plastic behavior of
cellular aggregates, which is induced by the dynamical formation of bonds between
cells and by the interaction between cells and the extracellular environment.
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Although the focus of this work has been on cancer invasion, cell penetration
of thin membranes also occurs during development, immune surveillance, and disease
states other than cancer, such as fibrosis [75]. Hence, the effective interface conditions
that we have derived can find fruitful application in a variety of research fields in the
biological and medical sciences, including developmental biology and immunology.
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