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Abstract: Biochar is the solid residue that is recovered after the thermal cracking of biomasses in an 
oxygen-free atmosphere. Biochar has been used for many years as a soil amendment and in general 
soil applications. Nonetheless, biochar is far more than a mere soil amendment. In this review, we 
report all the non-soil applications of biochar including environmental remediation, energy storage, 
composites, and catalyst production. We provide a general overview of the recent uses of biochar 
in material science, thus presenting this cheap and waste-derived material as a high value-added 
and carbonaceous source. 
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1. Introduction 

The use of carbonaceous material is one of the most established practices in material science [1]. 
Nowadays, carbon fibers are used in so many commodities that they have become an unavoidable 
asset for the global market [2]. Together with carbon fibers, carbon black leads the global carbon 
revenue due to its use in the production of tires [3]. Over the years, highly costly carbon materials 
such as carbon nanotubes and graphene have fed the dreams of the scientific community with their 
astonishing conductive, optical, and mechanical properties [4,5]. Despite the expected revolution, 
these materials did not develop from research and small productions. In 2009, Segal et al. [6] said that 
the world was ready for the ton-scale production of graphene, but, in 2020, single layer graphene is 
still sold at 230 €/cm2 and graphene oxide costs 140,000 €/kg [7]. In contrast, carbon black is sold for 
1.5–0.95 €/kg [8]. High-tech carbon materials (i.e., carbon nanotubes, graphene and graphene oxide) 
have not yet fulfilled the promise of the new carbon era. While the world waits for the large scale 
commercialization of cheap pure carbon allotropes, new routes have been explored to make 
engineered carbon a profitable business. In this field, the most promising approach is probably the 
integration of carbon production with waste management [9–11]. The biomass waste stream is most 
abundant worldwide, and it is generally disposed through incineration. This represents both an 
environmental threat and an economic loss due to the transformation of a rich feedstock into heat 
and ashes. A more profitable approach is the thermal conversion of biomasses for the production of 
fuels [12,13], chemicals [14], and materials [15]. The conversion of biomass into liquid fuels is quite 
challenging due to the very high oxygen content of the original feedstock compared with traditional 
oil-derived fuel (i.e., gasoline and diesel). Nonetheless, the production of carbonaceous material from 
the thermochemical conversion of both lignocellulosic and non-lignocellulosic biomasses is very 
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promising for several reasons. This bioderived carbon is generally known as biochar and could be 
used for many applications [16], mainly due to its properties and well-balanced cost of around 0.8–
2.4 €/kg [17–19]. Currently, the most common biochar application is as for soil health improvement 
[20–22] and for use as solid fuels with a heating content of around 40 kJ/mol [23]. These two 
applications are limited and do not exploit the many biochar applications that can be derived from 
its easy tuneability with simple process adjustment [24]. 

In this review paper, we report a comprehensive overview of the non-soil applications of biochar 
to prove its feasibility as a replacement for traditional carbon materials and as a solid competitor with 
high tech materials. 

We summarize the recent literature in four main sections dedicated to (i) environmental 
remediation, (ii) energy storage, (iii) composite production, and (iv) other applications. 

We hope that this review is an useful tool to navigate the great sea of biochar potential. 

2. Biochar Production Strategies 

Biochar is produced through four main thermochemical routes: (i) torrefaction, (ii) pyrolysis, 
(iii) hydrothermal carbonization and (iv) gasification. 

Torrefaction is a low temperature thermal treatment that is used to densify biomasses for energy 
purposes [25]. The operative temperature ranges from 200 to 350 °C with long residence and 
processing times and high solid product yields [26]. The carbon content of solid residue is around 
50–60 wt.% [27] but can reach 72–80 wt.% by using microwave heating combined with the addition 
of microwave susceptors [28–31]. This approach leads to the reduction of the process timescale to 
minutes. 

Pyrolysis is a high temperature thermal treatment that breaks polymeric macromolecules, thus 
giving compounds that have a lower molecular weight in an oxygen free atmosphere [12,32]. 
Pyrolysis is run with different heating technologies [33] and apparatus designs [34–37] at a 
temperature range from 450 to 700 °C [38] with huge variations in product fraction yields. 

Hydrothermal carbonization is a thermal depolymerization process that is used to convert wet 
biomass into crude-like oil, gas, and hydrochar under moderate temperature and high pressure [39] 
by using an aqueous solvent [40], a non-aqueous solvent [41,42] or sub-critical/critical media [43]. 
This process can be performed with [44] or without a catalyst [42], and it is useful for the 
improvement of properties of products [45]. 

Gasification is the conversion of biomass into a gaseous fuel by heating in a gasification medium 
such as air [46], oxygen, or steam [47], generally at temperatures higher than 800 °C with or without 
a catalyst [48]. Products from gasification are a mixture of carbon monoxide, carbon dioxide, 
methane, hydrogen and water vapor. Biochar that is produced from gasification processes shows a 
higher carbon and ash content compared to biochar from torrefaction and pyrolysis processes [49]. 
This was due to higher process temperatures that promote an advance cracking process with the 
simultaneous reduction of volatile organic matters and an increment of fixed carbon. 

As shown in Figure 1, biochar carbon amount strongly correlates with the temperature that is 
adopted during the thermochemical conversion of all lignocellulosic biomasses. 
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Figure 1. Van Krevelen diagram of corn stalk and corn stalk components during the thermochemical 
conversion process as reported by Gaojin et al. [50]. 

Hydrogen/carbon and oxygen/carbon ratio low values are characteristic of less defective 
carbonaceous structures and could be more appealing for electronic and electric applications, while 
the other samples could be more useful as additive and for adsorbitive processes [51,52]. 

3. Non-Soil Biochar Applications 

3.1. Environmental Remediation Applications 

Environmental pollution is a global menace, and its magnitude is increasing day by day due to 
urbanization, heavy industrialization, and the changing lifestyles of people. In view of this, providing 
clean air, water and environments for people is a challenging task. In particular, the overall demand 
of water for human activities and the amount of wastewater that is produced are continuously 
increasing worldwide year by year [53]. Wastewater management has become one of the priorities 
for every urban conglomerate [54], involving several biological and chemical treatments [55] for reuse 
in civilian and industrial applications. 

Water pollution is a global problem that is threatening the entire biosphere and affecting millions 
of lives [56]. Water pollution is recognized as one of the foremost global threats for human and 
environmental health [57]. A lot of different technologies for water purification are available based 
on filtration [58], adsorption [59], or degradation [60] technologies. Specialistic literature is rich in 
research that claims to have a water purification efficiency of up to 99%, but this is true only under 
idealized conditions of pH, contaminant concentrations, and other operating parameters [61]. Despite 
these astonishing claims, under real operative conditions, efficiency may substantially decrease. 
Furthermore, a lot of these techniques, such as ion exchange resins [62], are designed to target one 
class of contaminant at a time, which makes them useless in the case of environmentally polluted 
waters, where several contaminants simultaneously occur on a regular base. Taking into account 
these considerations, adsorption and degradative procedures are more appealing for real 
applications. 

Biochar represents a game-changer material that is able to remove both inorganic and organic 
pollutants through adsorbitive and degradative processes. Furthermore, biochar could be 
successfully used for air purification by removing molecules such as carbon dioxide or hydrogen 
disulfide. 
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3.1.1. Inorganic Pollutants Removal 

Water pollution due to the presence of dissolved metal species has become a serious issue in a 
lot of underdeveloped [63–66] and developed countries [67,68]. The management of this issue is 
crucial for human health and safety. 

Carbonaceous materials play a relevant role in the detoxification of watery sources, and biochar 
represents a very affordable solution. Huggins et al. [69] compared granular wood-derived biochar- 
and granular-activated carbon for the treatment of a wastewater stream in both batch and column 
systems. The authors clearly showed that biochar-based filtering material reduces the total chemical 
oxygen demand (COD) and ion concentrations (PO43−, NH4+, As3+, Cd2+, Cr3+, Pb2+, Zn2+, and Cu2+) of 
wastewater treatment with more efficiency than activated carbon. Furthermore, biochar can be 
produced from so many feedstock sources that it guarantees a high versatility. Arán et al. [70] proved 
the relevance of feedstock by studying the copper adsorption of different feedstock-derived biochars. 
The authors clearly showed that the distribution of copper between the forms bound to biochar and 
dissolved into media depends on the starting material. 

Chromium is a widely diffused element in the earth’s crust that has found a lot of applications. 
Consequently, chromium pollution has arisen as a serious environmental issue due to its abundant 
emissions from refractory materials, stainless steel production, and steel alloy production [71]. 
Chromium(VI) is particularly toxic, and its removal is mandatory to avoid both environmental and 
human life threats. Currently, many adsorptive systems are available [72–74], but they are quite 
expensive. Biochar has been used for the removal of Cr(VI) in a very effective way. Banerjee et al. [75] 
developed a zirconium-caged steam-activated biochar for the removal of Cr(VI) by using a 
contaminated water flux/fixed bed approach. The authors claimed a high Cr(VI) removal efficiency 
of up to 94 wt.% under a moderate flux rate (4 mL/min). 

Another promising approach taken by various researchers is based on redox methodology that 
converts Cr(VI) into Cr(III) after adsorption onto a carbonaceous structure [76]. In one study, this 
route was combined with a proposed one-pot solvothermal method that was applied to synthesize 
an iron-decorated magnetic biochar composite [77]. Biochar acted simultaneously as an adsorbent for 
Cr(VI) and an electron-donor for the reduction of Cr(VI) to Cr(III), while iron-containing 
nanoparticles were involved in the immobilization of Cr(III). Iron-decorated biochar showed a 
remarkable ability to removal chromium of up to 84 wt.% with an easy recoverability. Similarly, Shi 
al. [78] tailored iron nanoparticles to be supported on a mixed system that was based on silica and 
biochar. The authors showed how the tailoring process improved the Cr(VI) adsorption ability by up 
to 28 mg/g for a final removal of up to 85 wt.%. The essential role of biochar in Cr(VI) reduction in 
Fe–biochar systems has been proven by systematic studies [79,80], as shown in Figure 2, while in 
another study, the conversion of Cr(VI) to Cr(III) was ascribed to the redox couple Fe(III)/Fe(II) 
present in the greigite mineral that was used to tailor a biochar surface [81]. 
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Figure 2. Mechanism of heavy metal adsorption onto neat biochar surface, as illustrated by Li et al. 
[82]. 

Adsorption onto neat biochar particles was also used to purify water streams from Cd(II), Pb(II), 
Cu(II), Zn(II), Sm(III) [83–92]. 

Biochar surface modification plays a very relevant role on the adsorptive performances of 
biochar-based materials. 

One of the most established procedures to magnify functionalities on a biochar surface is partial 
oxidation during or after pyrolytic treatment. A low-oxygen pyrolysis atmosphere (1%–4%) was used 
by Zhang et al. [93] with a significant Pb(II) removal increment from 17.2 to 71.7 wt.%. This was 
confirmed by the study reported by Gao et al. [94], who used an oxidative post-pyrolysis procedure-
based treatment with HNO3, H2O2 or KMnO4. This functionalization led to a 97.4 wt.% sorption of 
Pb(II) from the watery solution. Liatsou et al. [95] showed, through a detailed set of investigations of 
herbaceous biochars treated with HNO3, that anhydrides and carboxylic acids act as main surface 
groups to bind metal ions 

This assumption remains true for inorganic tailored biochar, as clearly showed by Feng et al. 
[96]. The authors described the effects of residual groups (i.e., hydroxyl, carbonyl, and carboxyl 
functionalities) on bromate removal when using a FeCl3-decorated biochar. This study clearly 
showed that the main removal mechanism of bromate was due to the oxidation of hydroxyl groups 
while an Fe(III)/Fe(II) redox couple served as electron shuttle to facilitate the electron transfer. 

Biochar iron decoration represents a very interesting approach to produce a performing and 
highly recoverable adsorbent material with complex interactions between iron and carbonaceous 
phases [97]. Zhang et al. [98] impregnated an apple pomace biochar with a solution of Fe(III)/Fe(II) 
and used it with successful results in the adsorption of a watery metal mixture. A step forward is 
represented by the study of Zhou et al. [99]; the authors prepared a urea-functionalized Fe(O)-
decorated biochar that guaranteed a high removal and recovery efficiency during the adsorption of 
Cu(II). Guo et al. [100] combined iron with manganese oxides, achieving the recovery performance 



Materials 2020, 13, 261 6 of 35 

 

of the iron-tailored biochars, together with the ability to adsorb both C(II) and As(V). Further biochar 
tailoring processes have involved the introduction of phosphate residues that create a micropores 
structure together with a high surface area [101], as well as simple and complex organic [102,103] and 
inorganic [104,105] frameworks. 

Anionic species that are dissolved in water represent another great family of watery pollutants; 
however, in this case, biochars still represent a valuable tool [106–109]. 

Phosphates are probably one of the principal causes of the eutrophication of surface waters [110–
113]. Trazzi et al. [114] reported the use of a Miscanthus biochar produced at 700 °C for removing 
phosphates and segregating them into the soil, thus improving their agronomic performances and 
reducing algae proliferation. 

Several biochar modifications have been used to tailor phosphorous uptake, ranging from 
electrochemical [115] to inorganic deposition [116,117] procedures. These studies led to the 
development of real-scale plants based on biochar adsorbents that operate in flux and not merely on 
the batch scale [118]. 

Nitrate represents another anion species that is strongly correlated with eutrophication [119]. 
Divband et al. [120] developed a biochar from the pyrolysis of sugarcane bagasse, showing the best 
operative conditions after 1 h of using a solution with a pH of 4.64 and a starting nitrate concentration 
of up-to-a-dose-adsorbent of 2 g/L. Furthermore, species such as fluoride [121] and uranyl oxides 
[122,123] could be efficiently removed from watery phases by using biochar. 

Biochar destiny after adsorption represents another strong point for its use for water 
purification. As reported by several authors [124,125], contaminated biochar could be a source of 
fertilizers, catalysis, metal nanoparticle synthesis through pyrolytic conversions, feed additives, and 
biologically active compounds. 

The desalinization process represents a further relevant application of water treatments that use 
biochar. This procedure has been performed through simple osmotic filtration [126] and through 
capacitive processes [127] with [128,129] or without [130] functionalization. 

3.1.2. Organic Pollutants Removal 

Watery pollution, due to the presence of organic molecules, has risen together with the 
anthropization. The anthropogenic effect is the main cause of the release of pollutants such as dyes, 
pharmaceuticals, and polymers residues [131,132]. During last few decades, the use of carbonaceous 
materials for the improvement of water purifications has been very intensively studied. Materials 
such as carbon dots [133], carbon nanotubes [134] and graphene [135] have been used for both organic 
pollutants detection and removal. Despite their performances, the high cost of high-tech carbon 
materials has slowed down their application in real-plant units. 

Biochar represents a cheaper solution compared to other carbonaceous materials with very 
promising performances [136,137] due to the several interactions that occur on biochar particles, as 
summarized in Figure 3. 

The great variety of interactions that occur between biochar and organic molecules ranges from 
very weak (e.g., hydrophobic ones) to very strong (e.g., hydrogen bond and π–π orbital interactions). 

The simultaneous occurrence of these interactions is the reason for the good performance of 
biochar as an adsorber for several typologies of compounds [138–143]. 
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Figure 3. Schematic interactions occurring between organic molecules and biochar particles, as 
reported by Dai et al. [144]. 

Firstly, biochar has been used to remove persistent small organic molecules such as aromatics. 
Jayawardhana et al. [145] used biochar that was derived from the pyrolysis of municipal solid waste 
to remove alkylated benzenes. They reached an efficiency of 850 and 550 μg/g for toluene and m-
xylene, respectively. Similarly, Kang et al. [146] used a biochar-derived material for the adsorption of 
phenanthrene. Nitroaromatics were also removed by using rice husk biochars, as described by 
Lingamdinne et al. [147]. In this research, the authors used a rice husk that had been pyrolyzed at 700 
°C to remove 2,4,6-trinitrotoluene and 1,3,5-trinitro-1,3,5-triazacyclohexane. They showed that the 
adsorption process occurred through weak electrostatic interactions as well as through charge 
transfer between nitric functionalities and biochar surface functional groups. Mandal et al. [148] used 
various biomass wastes (tea, cucumber, and mixed hardwood) for the production of biochar at 400 
and 700 °C. These carbonaceous materials were used to adsorb 2,4-dichlorophenoxy acetic acid, 
achieving an uptake of up to 59 mg/g. Zhu et al. [149] deeply investigated the interaction between 
biochar and 2,4-dichlorophenoxyacetic acid. They showed that surface amination and oxidation can 
improve biochar adsorption properties. Furthermore, polyhalogenated hydrocarbons were removed 
from waste stream by using biochar that was produced from the pyrolysis of digestate with an uptake 
of up to 11 mg/g [150]. 

Al Ameri et al. [151] used a peat-derived biochar as a bio-sorbent for the sorption and removal 
of crude oil spills from synthetic seawater, reaching a crude oil adsorption of 32.5 g per gram of 
biochar sorbent. Similarly, Feng et al. used porous carbon macro spheres with a diameter of 1–2 cm 
that were prepared through the carbonization of the fruit of Liquidambar formosana. The authors 
claimed an oil adsorption close to 99 wt.%. 

Dyes represent the other great threat to water sanification due to their persistency and toxicity 
[152]. The adsorption of dyes is affected by many parameters, such as solution pH, chemical nature 
and initial concentration of the dye molecules [153]. He et al. [154] reported the use of a micro-scale 
biochar particles/polysulfone mixed matrix hollow fiber membrane for the removal of methylene 
blue from water. The membrane’s static and dynamic adsorption performance was investigated, and 
the adsorption mechanism was associated with electrostatic interaction, hydrogen bonding and 
hydrophobic interaction. In a study by Hou et al. [155], hydrochars from bamboo shoot shells were 
used for rhodamine B adsorption. Hydrochar produced at 800 °C with a heating rate of 25 °C 
adsorbed up to 86 mg/g of rhodamine B—a result that was lower than the results that were achieved 
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by using non pyrolyzed sugar cane bagasse [156]. Zazycki et al. [157] used pecan nutshell biochar as 
low-cost adsorbent for removing Reactive Red 141 from aqueous solutions with an uptake of up to 
130 mg/g, which was comparable with results achieved by Netpradit et al. [158], who used metal 
hydroxides. Jung et al. [159] produced a magnetic iron-decorated biochar from the pyrolysis of 
marine macroalgae for the adsorption of Orange 7 from aqueous media with comparable 
performances to those of metal frameworks [160]. The iron tailoring enabled a higher adsorption 
performance along with an easier separation and recovery process in the post-adsorption stage when 
using a simple magnet. A similar approach was applied by Heo et al. [161], who used a CuZnFe2O4-
tailored biochar composite for the simultaneous removal of bisphenol A and sulfamethoxazole. 

Another rising issue in civilian water is the presence of traces of pharmaceuticals compounds 
due to their consumption [162,163] and inappropriate disposal [164]. Kim et al. [165] proposed an 
interesting ultrafiltration-activated biochar hybrid system for the removal of ibuprofen, 17 α-ethinyl 
estradiol, and carbamazepine, ultimately achieving an adsorption of up to 47 wt.%. Li et al. [166] used 
biochars that were prepared from cassava dregs at different pyrolytic temperatures (350, 450, and 700 
°C) for the adsorption of ciprofloxacin, and this process is correlated to the action of residual groups 
with adsorption ability. Jang et al. [167] used a sodium hydroxide-activated biochar to remove 
tetracycline; a comparison with a commercial activated carbon (Calgon F400) showed a comparable 
activity with the biochar used. Similarly, Mandal et al. [168] removed atrazine and imidacloprid from 
water by using an agricultural waste stream-derived biochar in a multi-staged batch adsorption 
systems. A different approach was reported by Xu and co-workers. They used Fe(0) nanoparticle-
tailored biochar for the adsorption of florfenicol [169]. An additional sulfide modification of the iron 
nanoparticles led to the disruption of the antibiotic molecules. 

Adsorption processes are neither the only nor the most used route to eliminate organic 
pollutants from watery streams. Degradative processes based on the oxidation routes play a major 
role in this field, mainly through catalytic-mediated peroxide oxidation, as shown in Figure 4. 

 

Figure 4. Schematic processes of the organic molecule degradation mediated by peroxides. 

Fenton and Fenton-like processes are the more effective processes based on the activation of 
peroxides in mild conditions by using cheap metal precursors [170] and more stable oxidant agents 
such as persulfates [171]. Huang et al. [172] proved the significant role of biomass types on the 
formation of persistent free radicals during Fenton and Fenton-like process. This was particularly 
interesting because biochars have shown high catalytic potential due to their persistent free radicals 
that attract attention in the removal of refractory pollutants from water. The radical evolution in 
biochars that were derived from several biomasses (i.e., bamboo, corn stalk, and pig manure) were 
investigated by electron paramagnetic resonance. These experiments, together with linear sweep 
voltammetry measurements, showed that a hydroxyl radical was the dominant reactive radical in the 
biochar–H2O2 systems. Based on this study, He et al. [173] described persulfate activation with 
sawdust biochar in an aqueous solution with an enhanced electron donor-transfer effect. The authors 
pyrolyzed sawdust at two different temperatures (300 and 700 °C), showing that the degradation 
efficiency of Orange 7 increased along with the pyrolytic temperature. This was due to the graphite 
electron donor-transfer complex formed on the surface and in the pores of the biochar that played a 
decisive role in the reaction. 

Interestingly, Ho et al. [174] produced a nitrogen-doped biochar from the pyrolysis of C-
phycocyanin extracted spirulina residue for catalytic persulfate activation. The authors processed the 
feedstock at a high temperature (900 °C) and achieved nitrogen doping directly from the protein 
content. The resulting material promoted a non-radical activation process that guaranteed a mild and 
high-efficiency strategy for disinfection in waste and drinking water. More traditional catalysts that 
produced a porous biochar originated from Myriophyllum aquaticum tailored with Fe3O4 were 
described by Fu et al. [175]. This catalyst induced the activation of peroxymonosulfate during p-
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hydroxybenzoic acid degradation according to the traditional Fenton process route. Similarly, several 
authors have claimed the effectiveness of magnetic iron-based biochars in Fenton degradative 
processes [176,177]. Furthermore, Deng et al. described the use of pyrolyzed wood-waste for the 
fabrication of a porous carbon cathode that acts in the electro-Fenton degradative process of 
sulfathiazole in a pyrophosphate electrolyte alkaline environment. Bisphenol A could be also 
degraded by using both thermal [178] and ultrasound [179,180] induced Fenton processes. 

Gan et al. [181] induced the degradation of refractive organic pollutants, such as dimethyl 
phthalate, by using a metal framework based on CoFe2O4 for the activation of peroxymonosulfate. 

Fenton and Fenton-like routes are not the only available oxidative procedures. Moussavi et al. 
[182] prepared a biochar from a pistachio hull that demonstrated its catalytic potential for degrading 
Reactive Red 198 in catalytic ozonation processes, ultimately achieving a 58 wt.% removal efficiency. 

Alternatively to oxidative degradation processes, reductive processes can also be performed, 
even if they are less appealing than the others due to their greater complexity. Some authors have 
described a reductive approach for the removal of nitro alkylated benzene based on the use of Fe(0)-
tailored biochars [183,184], but the number of studies is still much lower than those on oxidative-
based processes. A different and interesting approach is the hybrid system proposed by Lyu et al. 
[185] based on the use of biochar-supported nanoscale iron sulfide and Corynebacterium variabile 
HRJ4. The authors applied this chemo-bio route for the dechlorination of trichloroethylene. A similar 
approach was used by Ayyappan et al. [186], who used a coconut shell biochar for dye degradation 
in a microbial fuel cell; they claimed a removal efficiency of up to 78 wt.%. 

Photodegradative procedures have also been considered for watery streams purification [187]. 
Shirvanimoghadda et al. [188] produced and used carbon microtubes from the pyrolysis of cotton 
waste at different temperatures (from 900 to 1500 °C) for the UV photodegradation of bisphenol-A. 
A tailored magnetic biochar-containing Fe3O4-BiOBr was used by Li et al. [189] for carbamazepine 
photodegradation under visible LED light irradiation with a degradative performance of up to 96 
wt.%. Kumar et al. [190] described another bismuth-based magnetic biochar material that was 
successfully used for the UV photodegradation of paraquat, with the nitrophenol reduction achieving 
a degradation of up to 99 wt.%. These performances were quite comparable with more expensive 
materials such as tailored graphene oxide [191]. Furthermore, the combination with cheap 
photoactive species such as zinc oxides has led to the realization of a performing photoactive material 
[192]. 

3.1.3. Gaseous Pollutants Removal 

Gas mixture purification is one of the most relevant industrial issues [193]. Actually, the most 
used approaches are based on selective membranes [194,195] or in-solution absorption [196]. The use 
of a biochar-based adsorber could be an interesting application on a large scale for this bio waste-
derived material. Das et al. [197] realized a biochar packed biofilter for gas-phase hydrogen sulfide 
removal; the authors claimed a very good stability for fifty days of operation. This system showed a 
maximum elimination capacity of 33 g/m3 h, along with a fast response to shock loads. A very similar 
approach was described by Braghiroli et al. [198] for the removal of SO2 that was generated from 
anthropogenic sources. Shao et al. [199] used activated biochar, proving the beneficial effect of CO2 
activation in producing a material with a higher adsorption capability and a higher regenerability 
compared with pristine biochar. 

Furthermore, the use of carbon dioxide as a biochar activation reagent could contribute to the 
reduction of CO2 atmospheric emissions, which represent one of the greatest threat for climate change 
[200–202]. Nonetheless, the use of CO2 for biochar activation is not the only route to mitigate 
emissions. The other and more appealing approach is represented by the use of biochar for the 
removal of CO2 from gaseous mixtures [203]. Liu et al. [204] described the use of spent coffee grounds 
as efficient CO2 adsorbers, reaching a gas uptake of up to 119 mg/g at 35 °C. Igalavithana et al. [205] 
recovered biochar from the gasification of food and wood waste, ultimately claiming a high CO2 
uptake and a very good recyclability. Huang et al. [206] used a biochar that was produced from the 
microwave co-torrefaction of sewage sludge and Leucaena wood, ultimately reaching a CO2 uptake 



Materials 2020, 13, 261 10 of 35 

 

of up to 53 mg/g. Chiag et al. [207] explained different biochar CO2 adsorption abilities with the 
surface microstructures and residual functionalities of carbonaceous materials. The effect of nitrogen 
residual functionalities was used by Zhang et al. [208] for the realization of a nitrogen-rich rice husk 
biochar that was able to adsorb CO2 at a rate of 59 mg/g. Rice husk was also pyrolyzed under 
microwave irradiation [209] and activated with post-pyrolysis treatments [210], ultimately showing 
very promising CO2 uptake values. Pyrolysis post-treatments were widely used to increase the CO2 
adsorption ability of a biochar by introducing basic sites via ammonia functionalization processes 
[211,212]. 

3.2. Energy Storage Applications 

Energy storage technology represents a great challenge of 21st century [213] due to its different 
applications. Nowadays, numerous technologies [214] have been developed, such as solar and fuel 
cells [215,216], high performance batteries [217] and supercapacitors [218], as summarized in Figure 
5. 

 
(a) 

 
(b) 
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Figure 5. Schematic representation of (a) battery (Daniell cell), (b) a supercapacitor, and (c) a hydrogen 
fuel cell as reported by Winter et al. [219]. 

A battery is a system formed by at least two electrochemical cells with contacts to supply 
electrical energy according to electrochemical potential. Specialist literature has been focused on two 
main solid state battery systems based on lithium [220] and sodium [221] ions. A supercapacitor is 
an energy storage modulus that stores energy in an electrical double layer that is formed at the 
interface between an electrolytic solution and an electronic conductor. A fuel cell is an electrochemical 
system that produces electric energy through the supply of a fuel (i.e., hydrogen [222], carbon [223], 
and methanol [224]) and an oxidant agent (i.e., oxygen and hydrogen peroxide). 

3.2.1. Biochar Used for Supercapacitor Production 

The essential requirement for producing a performing supercapacitor material is an elevated 
surface area where the double ionic layer can be created. For this purpose, physically- and chemically-
activated biochar is a very attractive material for the realization of supercapacitor electrodes [225]. 
Chemical activation introduces functional groups on the surface of an activated biochar, thus 
affecting the latter’s electrochemical properties [226]. Nonetheless, Gabhi et al. [227] described the 
effect of monolithic biochars with graphite and graphite-like structures on capacitive performance. 
The authors showed the relationships between conductivity and activate biochar structures at 950 °C 
by using sugar maple, oak and hickory woods. They claimed an increase of biochar conductivity from 
5 × 10−6 up to 343 S/m when carbon content changed from 86.8 to 93.7 wt.%. This phenomenon was 
attributed to the formation of graphite nanocrystals in the main structure of the biochar during the 
high temperature treatment. 

Chemical activation is a well-established procedure to create an activated biochar with a good 
capacitive performance. Luo et al. [228] reported cellulose activation by using ammonia, and they 
were able reach area capacitance of 40 mF/m2. 

Jin et al. [226] described the chemical activation of an ash-rich biochar by using potassium 
hydroxide at 900 °C, with a further modification occurring when using HNO3 at 150 °C. Activated 
biochar showed a very high specific area of up to 2000 m2/g with a specific capacitance of up to 260 
F/g. 

A low ash content feedstock was used by Qu et al. [229] for a direct conversion into activated 
biochar by using a steam and acidic–alkali treatment. Corncob-activated biochar had a surface area 
of up to 1210 m2/g, a capacitance of 314 F/g, and a remarkable stability after 105 cycles in a symmetrical 
cell. Fast pyrolysis and alkaline chemical activation was used by Chen et al. [230] for the conversion 
of rotten food waste into an activated biochar with a capacitance of 488 F/g. Herbaceous feedstocks 
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were diffusely studied for electrodes production and feedstock like hemp [231] and several flowers 
[232,233] have been used for supercapacitor realization. 

Surface morphology plays a relevant role in biochar-based supercapacitors [234–236]. As a 
matter of fact, macroporous biochar is characterized by an inferior performance compared to micro 
and mesoporous biochar, while microporous biochar has been shown to work at higher current 
density—up to 1.3 A/g—compared to other forms [237]. 

Activated biochar properties could be also modulated by using a plasma treatment, as described 
by Gupta et al. [238]. The authors reported a low temperature oxygen plasma treatment that was able 
to magnify the capacitance of a yellow pine biochar from 14 to 174 F/g as consequence of a surface 
area significant increment. 

Furthermore, non-lignocellulosic biomasses could be converted into usefully carbonaceous 
materials for capacitive uses. As an example, keratin-mixed algae [239] was pyrolyzed for the 
production of heteroatom-doped activated biochar with interesting surface area and capacitive 
values. Pontiroli et al. [240] reported the production of a hierarchically-porous activated biochar from 
the pyrolysis of poultry litter with specific surface area of up to 3000 m2/g and a capacitance of 229 
F/g. 

3.2.2. Biochar Used for Batteries Production 

Several authors have explored the use of biochars as anodic materials for the realization of 
performing batteries. Many authors have focused on the realization of lithium ion batteries due the 
great demand of highly technological devices based on them. Dai et al. [241] produced biochar from 
the pyrolysis of sewage sludge in order to produce hierarchical porous hollow carbon nanospheres 
with a great surface area of up to 1500 m2/g. This biochar was employed as an anode for an Li-ion 
battery and showed an impressive discharge capacity of up to 1169 mAh/g. Low porousity biochars 
have shown far lower performances, as reported by Luna-Lama et al. [242], who used spent coffee 
grounds pyrolyzed at 800 °C and reached a specific capacity of only 360 mAh/g. This trend was 
confirmed by Zhang et al. [243], who reported values of around 600 mAh/g when using a 
microporous biochar. Similarly, Benitez et al. [244] reported the use of microporous biochar as a 
cathodic material for a lithium–sulfur battery with a specific capacity of 915 mAh/g and a current 
density of 100 mA/g. Chen et al. [245] showed that nitrogen doping could enhance hierarchical porous 
biochar activity derived from the pyrolysis of derived pomegranate residues at 700 °C of up to 550 
mAh/g. Furthermore, the nitrogen-doped material was particularly stable after 500 cycles thanks to 
the chemical confinement of sulfur and the soluble lithium polysulfides performed by nitrogen sites. 
Heteroatom-doped biochar was used by Chen et al. [246] as a cathode with a discharge capacity of 
up to 1049 mAh/g. Non-lignocellulosic biomasses were used, as reported by Magnacca et al. [247]—
the authors used chitin pyrolyzed at a moderate temperature for the realization of a low cost lithium–
sulfur battery with acceptable performances. The tailoring process could further enhance biochar 
performance. Pan et al. [248] decorated a silk-derived biochar with nanocubes of ZnCo2O4 to produce 
a flexible performing anode material. Similarly, Li et al. [249] tailored a pomelo pericarp biochar with 
Fe3O4 nanoparticles, reaching a capacity of up to 635 mAh/g. Salimi et al. [250] combined the Fe3O4 
nanoparticle-tailoring process with the pyrolysis of algae to produce an electrode material with a 
higher initial specific discharge capacity of up to 740 mAh/g and a good cyclic stability [251]. 

Different ion-based batteries have also been developed, though in minor quantities; the only 
solid works about is from Saavedra Rios et al. [252], who used biochars from various biomasses as 
precursors for hard carbon anodes in sodium-ion battery applications. 

3.2.3. Biochar Used for Fuel Cell Production 

Several authors [253–255] have used biochar as a fuel for direct carbon fuel cells, proving the 
relationship between biochar properties (e.g., carbon percentage, ash content, surface area, and 
heating value) and its fuel performances. Xu et al. [256] definitively established the direct relation 
between the thermal degradation of biomasses and their performances in carbon fuels cell by 
comparing thermogravimetric analysis with empirical data. Qiu et al. [257] reported the development 
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of a direct carbon solid oxide fuel cell that was able to convert the chemical energy of biochar into 
electricity with high efficiency. The authors used biochar that had been derived from several 
biomasses (wheat straw, corncob, and bagasse), reaching a peak power densities of 260 mW/cm2 at 
800 °C. A detailed study of direct carbon fuel cells was reported by Kacprzak et al. [258–260]. Firstly, 
the authors compared graphite rod and biochar from an apple tree that was pyrolyzed at 600 °C in a 
molten salt mixture of sodium and potassium hydroxide, and they found an optimum operative 
condition at 400 °C with a NaOH/KOH ratio of 1. In these operative conditions, biochar outputs were 
comparable with those achieved when using pure graphite. A further experiment proved the similar 
behavior of biochar and commercial coal with a generated power, in both cases, close to 35 mW/cm2. 

In the same field, Ali et al. [261] used titanate-based anodes in a direct carbon fuel cell by using 
biochar from pyrolyzed walnut and almond shells as fuel. The authors claimed a generated power of 
up to 78 mW/cm−2. Elleuch et al. [262]—in similar conditions without the titanate-based anodes—
reached a power of up to 127 mW/cm2. 

Another appealing use of biochar is the realization of electrodes for microbial fuel cells, as 
reported by Huggins et al. [263]. The authors used wood-based biochars as microbial fuel cell 
electrodes to significantly reduce costs and carbon footprints, showing a generated power of 532 ± 18 
mW/m2, with power cost of power output cost 17 $/W. This was 90% cheaper than graphene-based 
fuel cell electrodes, which have a cost of up to 402 $/W. Further improvements were achieved by 
using a manganese oxide-doped biochar, thus improving the power output by up to 606 mW/m2 
[264]. Khudzari et al. [265] developed a granular biochar anode in rice plant microbial fuel cells that 
were focused on the production of bioelectricity; the authors showed the beneficial effect of biochar 
on reducing methane emissions without decreasing plant biomass yield. 

Biochar was also used for the production of performing cathode electrodes. Li et al. [266] 
produced biochar from the pyrolysis of corncob (with the temperature ranging from the torrefaction 
range up to 750 °C) that was used as an oxygen reduction reaction catalyst in air cathode microbial 
fuel cells; here, the biochar produced at 650 °C showed higher power outputs of up to 459 mW/m2. 
Similarly, Yuan et al. [267] used a sewage sludge biochar produced at 900 °C to reach power outputs 
of up to 500 ± 17 mW/m2. 

Apart from the electrodes, Chakraborty et al. [268] developed a novel, low-cost proton exchange 
membrane that used sulfonated biochar that was produced from rotten food that had been pyrolyzed 
at 600 °C for application in microbial fuel cells. This study proved the high performances of the 
membrane, with a proton conductivity of 0.07 S/cm, an ion transport number of 0.891, and an oxygen 
diffusion coefficient pf 6.5 × 10−9 m2/s. Comparing proton conductivity and power harvested per unit, 
the biochar-based membrane outperformed those based on materials such as Nafion. 

3.3. Biochar-Based Composites Production and Properties 

Nowadays, composite materials represent one of the largest global markets, with an expected 
future development of up to 131 billion dollars in 2024, as shown in Figure 6. 
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Figure 6. Composite material global market revenue, with a prediction for 2024 as reported by Grand 
Vie Research Center [269]. 

Carbon-based composites represent one of the most relevant parts of global markets, with an 
annual production of about 150 kton/y in 2018 [270]. As shown in Figure 7, around 70% of total 
carbon-based composites are represented by polymeric host materials, with 49.1% being thermoset 
and 29.5% being thermoplastic polymers. Among them, carbon fiber-reinforced epoxy resins 
represent a greater amount due to their many applications in key high-tech sectors such as 
aeronautics and aerospace industries [271]. Carbon-containing inorganic composites are mainly 
represented by ceramics [272] and cements [273], but their total production is far lower than 
polymers. In this scenario, biochar plays a minor role, even if its use is going to be consolidated due 
to production flexibility and its property tuneability [274]. 

 

Figure 7. World carbon-based composite production in 2018, according to Sauer et al. [270]. 
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3.3.1. Biochar–Inorganic-Based Composites 

Cement production is a one of the largest productions in the world, with more than 3 Gton/y 
produced in 2018 [275]. Along history, many additives have been developed to enhance both the 
mechanical properties and durability of cement-based material [276], ranging from polymers [277] to 
carbonaceous materials such as carbon nanotubes [278], graphene [279] and carbon fibers [280]. 
Biochar has also been extensively studied, even if it has not yet reached the market. 

Cosentino et al. [281] evaluated the performance of a standardized biochar set that was produced 
by UK Biochar Research Center [282], considering flexural strength and fracture energy. The authors 
reported inferior performances compared to those achieved by previous studies [283]. Nonetheless, 
they reported a comprehensive study about the influence of a solid set of biochar properties (e.g., 
carbon content, pyrolysis temperature, and particle size) on the mechanical properties of biochar-
containing cement composites. A further insight into biochar-based cement composites was reported 
by Gupta et al. [284]. The authors reported an exhaustive study on the influence of biochar particle 
size and surface morphology on the rheology, strength and permeability of cement mortar under 
both moist and dry curing conditions. The authors showed the primary effect of biochar 
macroporosity of big sized particles (diameters ranging from 2 to 100 μm) on the rheological 
properties of cement mortar. Biochar particle size did not affect the hydration process, which was fast 
in all experiments run. Small sized particles (diameters below 2 μm) improved early strength and 
water tightness compared to big size macroporous biochar particles. Mo et al. [285] combined biochar 
and MgO to mitigate the autogenous shrinkage of cement materials, and similar results were 
achieved by Muthukrishnan et al. [286] by simply using low-ash pyrolyzed rice husks. Gupta et al. 
[287] explored the addition of pre-soaked biochar particles that were produced at 500 °C, and they 
showed a reduction of sorptivity and a depth of water penetration of up to 60%. Another interesting 
matrix that is able to host biochar is concrete. Concrete is more complex compared to neat cement, 
and it also contains inert material such as the sand of fine milled stones. The content of cement is 
highly variable and could partially or totally be replaced by biochar, as reported by Dixit et al. [288]. 
The authors described the use of biochar as a material for cement replacement in ultra-high 
performance concrete. The authors firstly described the biochar–concrete interphase interactions by 
using scanning electron microscopy to enlighten the deposition of cement hydrates on the surface 
and inside the surface pores of biochar, with dense interfacial transition zone, further suggesting the 
efficacy of biochar for improving hydration. 

Gupta et al. [289] also proved that the addition of biochar that had been pyrolyzed at 550 °C 
improved concrete elevated temperature properties far better than fume silica, with a strength 
increment of up to 20%. Biochar concrete composites showed interesting properties for the sound 
adsorption across the range of 200–2000 Hz, as reported by several research papers [290,291]. One of 
the most promising discoveries was comprised of the outputs presented by Kua et al. [292]. The 
authors described the use of biochar-immobilized bacteria mixed with poly(vinylalcohol) fibers for 
the production of a self-healing fiber-reinforced concrete. The authors claimed the ability of self-
repairing cracks greater than 600 μm. 

Cement and concrete are not the only inorganic matrixes that have been used to host biochar. 
Mu et al. [293] deeply described the use of carbon-containing clay composites as building materials. 
In this field, biochar has found many applications in construction science. Lee et al. [294] produced a 
hybrid material based on biochar and natural clay used as building envelope insulation with an 
increment to water vapor resistance due to the presence of up to 23 wt.% of biochar. The mechanical 
properties of biochar-based clay composites were described by Yang et al. [295]. The authors tested 
biochar that had been produced from several biomasses (e.g., rice husk, coconut shell, and bamboo) 
and showed an improvement in thermal performance and strength from a 10 wt.% mixture of 
bamboo-derived biochar and red clays. 

Dahal et al. [296] used biochar as a filler in glass–fiber composites and showed lower damping 
ratio, an elevated storage moduli of up to 4 GPa, and a higher stiffness for the 10 wt.% biochar 
composite, as compared to the neat glass fibers. 
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3.3.2. Biochar-Containing Reinforced Plastics 

Carbonaceous-reinforced thermoset plastics are widely diffuse materials that incorporate a 
plethora of different matrixes [297–299]. An epoxy matrix is the most studied and the most used 
matrix worldwide. Consequently, the replacement for traditional carbon fillers with biochar has 
stimulated great interest. Khan et al. [300] studied the mechanical and di-electrical properties of high-
temperature annealed maple biochar-based epoxy composites by using a filler concentration ranging 
from 0.5 to 20 wt.%. The authors claimed a magnification of all mechanical properties when using an 
annealed biochar load of up to 4 wt.% and similar dielectric properties of low-loaded carbon 
nanotubes resin when using 20 wt.% of biochar. Bartoli et al. [301] established the relationship 
between the surface morphology of biochar particles and related composite mechanical properties by 
using a biochar loading of 2 wt.%. The authors achieved a 40% increment of maximum elongation 
when using a rhizomatous grass biochar and doubled the Young’s modulus when using a wheat 
straw-derived biochar. The authors advanced the hypothesis that a smooth surface can induce an 
improved mobility inside the epoxy matrix, while a highly porous surfaces could not. This was 
reflected in the different behaviors that were observed when using biochar that was produced in the 
same pyrolytic conditions as different feedstocks. 

Pyrolytic temperature plays a crucial role in the interactions between epoxy resins and biochar 
particles. Giorcelli et al. [302] used a maple tree-derived biochar that was produced at 600 and 1000 
°C, and they observed a maximum elongation improvement of up to five times compared with neat 
resin. 

High temperature-treated biochar could be a solid choice for the production of conductive epoxy 
composites. Giorcelli et al. [303] reported that more graphitized biochar showed a strong DC electrical 
conductivity. This affected the ability of these materials to shield the microwave radiation with a 
comparable performance to multiwalled carbon nanotubes [304], even as thin films [305]. 

Furthermore, biochar from pyrolyzed, wasted cotton fibers could be recovered in a carbon fiber 
shape that showed the property enhancement of an epoxy resin host matrix [306,307]. 

Regarding thermoplastic-reinforced plastics, polyolefins-based biochars are the most produced. 
Among them, biochar-containing polyethylene was studied by Arrigo et al. [308] by using a coffee-
derived biochar. The authors reported that the rheological and thermal behavior of biochar 
composites showed a slowing down of the dynamics of the polymer host matrix due to the 
confinement of the polymer chains on the filler porous surface. Additionally, the well-embedded 
biochar particles improved the thermo-oxidative stability of the produced polyethylene composites. 
Zhang et al. [309] studied the influence of temperature on poplar biochar-based high density 
polyethylene composites. Interestingly, the microcrystalline structure of the polymer matrix was not 
affected by the presence of biochar. On the other hand, the mechanical properties showed an 
appreciable difference between neat and biochar-loaded polymers, with the latter showing an 
improved flexural strength and a decreased impact strength. Li et al. [310] studied the behavior of 
highly biochar-loaded, ultra-high molecular weight polyethylene. The authors realized a performing 
electromagnetic interference shielding material by using 80 wt.% of bamboo biochar that was 
pyrolyzed at 1100 °C and reached a conductivity of 107.6 S/m. Furthermore, Bajwa et al. [311] 
reported the utilization of biochar for the production of a high density polyethylene/poly(lactic 
acid)/wood flour composites with super thermal stability properties. 

Poly(propylene) is the other widely studied polyolefin for the realization of biochar-based 
composites. Das et al. [312] proved the economic feasibility of the use of biochar over traditional 
carbon fillers. The authors showed the cost reduction of biochar-based composites with the same 
properties of non-biochar-based ones due to the reduction of compatibilizer amounts of up to 3 wt.%, 
with 18 wt. % of saving. The low cost of biochar was the key of the study of Behazin et al. [313], where 
the authors used a pyrolyzed perennial for the realization of a poly(propylene)/poly(octene-ethylene) 
composite with filler loadings of 10 and 20 wt.%; they showed, through rheological analysis, stronger 
interactions between the polymer matrix and biochar. A detailed study of poly(propylene) and 
biochar interaction was reported by Bhattacharyya and co-workers in several papers [314–316]. 
During this research, the authors proved the general improvement of the mechanical and thermal 
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properties of biochar-based poly(propylene) composites together with a significant effect in flame 
retardancy. Furthermore, Das et al. [317] produced biochar-based wood polymer composites while 
manufacturing a biocomposite with appreciable properties. Similarly, Poulose et al. [318] combined 
date palm biochar with a poly(propylene) matrix and revealed that the biochar had negligible effect 
on the storage modulus up to a 15 wt.% loading. Other widely used polyolefin matrix used for the 
realization of piezo sensors are poly(vinyl alcohol) [319,320] and poly(acrylonitrile) [321]. 

Furthermore, polyesters were impregnated with biochar in a study by Ogunsona et al. [322]. The 
authors filled nylon 6 with biochar produced from the pyrolysis of Miscanthus at 500 and 900 °C, and 
they showed the beneficial effect of the high temperature-produced biochar and the detrimental effect 
of the other. Sheng et al. [323] modified bamboo biochars with silyl groups for the production of 
poly(lactic acid) composites, showing an enhancement of maximum elongation of up to 93% 
compared to a neat polymer. 

Recently, biochar has been used for the production of biopolymer (i.e., starch [324] and gluten 
[325]) composites, thus fulfilling the vision of total bio and sustainable production. 

3.4. Other Uses of Biochar 

Biochar has found plenty of applications in all the field that are traditionally occupied by 
carbonaceous materials such as solid fuel [326,327]. The catalysis has seen the risen of biochar in the 
last few years [328], with application in many processes. Lee et al. [329] developed porous catalysts 
from pine and maize biochar that were produced at torrefaction temperatures ranging from 300 to 
380 °C for biodiesel synthesis through a pseudo-catalytic transesterification. Li et al. [330] produced 
biochar from hydrolyze-mixed textile waste in the temperature range of 400–700 °C, and they used it 
as catalyst for succinic acid production in a fibrous bed bioreactor with a yield of 8 wt.%. The amount 
of surface acidic groups represent a key properties for biochar catalytic activity [331]. Kastner et al. 
[332] used a solid acid biochar as heterogenous catalyst for the esterification of fatty acids. Biochar 
produced at 500 °C was tailored with sulfonic groups to reach conversion values close to 99%. Zhong 
et al. [333] further tailored sulfonic-decorated biohchar with alkyl groups, and they produced a highly 
active catalyst for biofuel production and for transesterification reactions [334]. 

Vidal et al. [335] developed an amino-siloxy-oxidized biochar that was able to promote the 
conversion of epoxy compounds and CO2 into glycerol carbonate. 

Areeprasert et al. [336] introduced iron particles onto a biochar surface to perform catalytic 
reforming processes of waste electronic and electric equipment, reaching a liquid yield of up to 68 
wt.%. 

Furthermore, biochar could be efficiently used in redox-mediated reactions [337]. Cao et al. [338] 
proposed a very promising route to convert iron-enriched plant residue by using an electro-active 
biochar-based catalyst. The authors pyrolyzed a metal hyperaccumulator water plant and produced 
a biochar that contained 28 mg/g of iron. They tested the biochar that was produced in the 
electrocatalytic reduction of oxygenated water by using cyclic voltammetry, and they found a 
reduction current of up to 1.82 mA/cm2. 

Biochar could also be used for the production of electrochemical measurement devices [339,340]. 
Ziegler et al. [341] use mixed softwoods that were pyrolyzed at 700 °C with a drop-casting technique 
for the preparation of a room temperature-relative humidity sensor. The authors clearly showed the 
onset of the response, with a relative humidity of 5% varying the impedance of two orders of 
magnitude when humidity reached 100%. Similarly, Jagdale et al. [342] used spent coffee grounds to 
realize a relative humidity sensor with a starting response at 20% humidity. Further studies showed 
the use of biochar-based materials for the detection of ions (i.e., lead [343], copper [344], and zinc 
[345]) at concentrations of nmol/L and for organic materials in mmol/L concentrations [346,347]. 
Several authors have described the use of biochar-derived materials for biosensing. Kalinke et al. 
[348] pyrolyzed nitric acid-treated castor oil cake at 400 °C and tailored it with Ni(OH)2/NiOOH for 
the realization of non-enzymatic glucose electrode. Alternatively, Martins et al. [349] developed an 
immunoassay for hantavirus detection that was based on a biochar platform with a range of work 
from 5 ng/mL to 1.0 μg/mL. 
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Biochar has also been used in biological procedures. Huang et al. [350] pyrolyzed rosin waste 
and tailored it with silver nanoparticles for anti-bacterial use. The use of biochar as additive in 
bioprocesses was reported by Bock et al. [351]. The authors used biochars to stabilize digestors 
because they control ammonia formation. Duan et al. [352] use biochar to improve short chain fatty 
acid algae anaerobic fermentation, and they doubled the amount of biomass production after four 
days. 

4. Conclusions 

In this review, we have presented an updated overview of non-soil applications of biochar with 
a focus on more useful and unusual ones. We reported many studies on the adsorbitive capacity of 
ions and organic molecules, together with their biochar electrochemical properties. These properties 
are particularly relevant in the future perspective of clean energy production and storage. We also 
described, in detail, the possibility of using biochars as sound replacements for traditional fillers in 
both inorganic and organic composites materials. This evidence has shown the feasibility of the 
biochars used in a lot of sectors as solid alternatives to traditional and next-generation materials. The 
polyhedral nature of biochar represents a very strong advantage for spread the biochar use across 
material science field. 

We hope that this summary of recent literature can lead to the foundation of new research which 
will exploit the great potential of biochar and biochar based materials. 
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