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Abstract: Free-Floating Car-Sharing (FFCS) services are a flexible alternative to car ownership.
These transportation services show highly dynamic usage both over different hours of the day,
and across different city areas. In this work, we study the problem of predicting FFCS demand
patterns—a problem of great importance to the adequate provisioning of the service. We tackle both
the prediction of the demand (i) over time and (ii) over space. We rely on months of real FFCS rides in
Vancouver, which constitute our ground truth. We enrich this data with detailed socio-demographic
information obtained from large open-data repositories to predict usage patterns. Our aim is to offer
a thorough comparison of several machine-learning algorithms in terms of accuracy and ease of
training, and to assess the effectiveness of current state-of-the-art approaches to address the prediction
problem. Our results show that it is possible to predict the future usage with relative errors down to
10%, while the spatial prediction can be estimated with relative errors of about 40%. Our study also
uncovers the socio-demographic features that most strongly correlate with FFCS usage, providing
interesting insights for providers interested in offering services in new regions.

Keywords: Machine Learning, Regression models, Car Sharing

1. Introduction

Transportation in urban areas is among the top challenges to improve people’s quality of life and
to reduce pollution. Historically, private vehicles have been the preferred mode of transportation.
Orthogonally, governments invest in public transportation systems to offer alternatives to reduce
traffic and pollution. With the rise of the sharing economy, we are now witnessing a transition towards
new forms of shared mobility, which have spurred the interest of both the research community and the
private companies.

Car sharing is an evolution of the classic car rental model. Here, users can rent cars on demand
for a short period, e.g., a 20-minute trip across town. In particular, Free-Floating Car Sharing (FFCS)
services allow customers to rent and return the cars everywhere inside an operative area in a city.
Customers book, unlock, and return the car by using an application on their smartphones. In the FFCS
implementation, the provider bills the user only for the time spent driving, with simple minute-based
fares which factors all costs. Car2Go (https://www.car2go.com/) is one of the FFCS services that
currently operates in several cities around the world. Some studies demonstrate that a massive
adoption of car-sharing service can improve mobility as well as reduce costs and pollution [1–3].
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To properly design and manage a FFCS service, a provider needs to know the demand for cars
over different periods of the day, and over the different areas of the city. The prediction of FFCS
demand patterns is thus fundamental for an adequate provisioning of the service. Armed with good
predictions, the provider can better plan long-term system management, e.g., whether to extend the
operative area to those neighborhoods with expected customer growth. Similarly, it can implement
short-term dynamic relocation policies to better meet the demand in the next hours [4–6].

In this work we investigate the prediction of the usage dynamics of a real FFCS service. We aim
at assessing how state-of-the-art machine-learning algorithms can help FFCS providers and policy
makers in predicting the demand, both over time and across different spatial regions. More specifically,
we leverage a dataset of real rides from cities where Car2Go is offering its FFCS service. We consider
as a case study the city of Vancouver, Canada, the city with the highest demand for cars in our
dataset. We rely on more than 1 million rentals covering 9 months in 2017 [7]. We augment the
dataset by exploiting a rich and heterogeneous open dataset, namely the 2016 Vancouver Municipality
census (https://opendata.vancouver.ca/pages/home/). This second dataset comprises more than 800
features, which detail very diverse information about shops in each neighborhood, weather conditions,
residents, rate of emergency calls throughout the day, etc. Our goal is to first assess to which extent it
is possible to predict the FFCS demand over time and space, and second, which of the features have a
higher prediction power.

Our work focuses on two scenarios. In the first scenario, we investigate how to predict the
demand for cars in the future considering past usage. This is fundamental for managing the FFCS fleet
both in the short term (e.g., implementing relocation policies during service peak time), and in the
long term (e.g., to properly match the fleet size to the future system growth). To this end, we analyse
machine-learning algorithms that are considered state of the art, from simple Linear Regression and
traditional Seasonal Auto Regressive Integrated Moving Average (SARIMA) models, to Random
Forests Regression (RFR), Support Vector Regression (SVR) and latest approaches based on Long
Short-Term Memory Neural Network (NN) [8,9]. With the increasing complexity of these models,
we aim at assessing not only how they perform in our target prediction task, but also to which extent
one would need to embrace a complex model (such as NNs are) or rather simpler and more informative
models (like linear regression and RFR are).

In the second scenario, we correlate socio-demographic indicators with FFCS demand. We predict
the demand of cars in a neighborhood without past data, using only socio-demographic data.
This problem is often referred to as a green field or cold start approach. In this case, the operator
is interested in knowing what the expected system usage in a new neighborhood is (or even a new
city) based only on socio-demographic data. We map the FFCS demand to Vancouver neighborhoods,
and associate them to the socio-demographic data coming from the official Vancouver census. We then
use machine-learning techniques to highlight the relationship between demographics and customers’
mobility. We aim at answering the following research questions: (i) Using modern machine-learning
methodologies, and armed with a rich socio-demographic data, would one be able to predict the
temporal mobility patterns in a city? And (ii) which would be the most important socio-demographic
data to use for this task?

Through a series of experiments, we show that the temporal prediction of rentals can be solved
with errors as low as 10%. Interestingly, Random Forest Regression turns out to perform stably better
than the other models, including Neural Networks, for this task. When considering the mobility
prediction using only socio-demographic data, we obtain errors in the 40–50% range. While this
performance may not be accurate enough for a precise planning, this prediction still would be useful
for operators willing to decide, e.g., to which new areas of the city to extend their service. Interestingly,
our models allow us also to observe what features are the most useful for the prediction problem,
precious information for providers and regulators that wish understand FFCS systems—to decide,
for instance, in which new cities to start a service (green field problem). Our work suggests, for example,
that the density of people commuting by walk and the number of emergency calls in a neighborhood

https://opendata.vancouver.ca/pages/home/
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are important factors for predicting the number of rentals that will start there. We note that emergency
calls are used as a proxy for human activity, i.e., the more human activity the larger the number
of emergency calls. Given this assumption, we can leverage the information about the volume of
emergency calls to improve prediction at different periods of the day. As for the temporal prediction,
knowing the weather conditions in the near future would improve prediction too.

After overviewing the related work in Section 2, we describe the data collection methodology we
adopt in Section 3. Section 4 provides a characterization of the datasets, while Sections 5 and 6 provide
details about the methodologies and results for the temporal and spatial prediction, respectively.
Finally, Section 7 summarizes our findings.

2. Related Work

With the ease of collecting data and the ability to build and train off-the-shelf machine-learning
solutions, researchers have started applying data driven approaches in the context of transportation.
Previous work [10] addressed traffic modeling and prediction with real traffic data, and proposes
strategies to improve congestion prediction using Kalman filters, showing how traffic is stationary in
time. Other studies [11] proposed new approaches based on a multivariate extension of non-parametric
regression to predict traffic patterns, with the goal of counteracting traffic congestion. While similar in
spirit, our work focuses on FFCS services explicitly, and uses a much richer dataset as well as more
advanced machine-learning algorithms.

Focusing on car sharing, early work focused on estimating demand using activity-based
micro-simulation to model how agents move around in a city [12]. Later, as data from operative
car-sharing platforms became available, researchers started using real data to analyze mobility demand.
For instance, previous work [2,13] proposed a demand model to forecast the modal split of the
urban transport demand. Similarly, other studies [3] investigated the Mobility-as-a-Service market,
where FFCS is one of the implementations, and pointed out how FFCS supply can push the users to
avoid purchasing a new car, which would lead to a reduction of CO2 emission. Yet, none of these prior
studies focused on car-sharing demand prediction.

Along the same lines, other studies [14] made a large survey covering a Swiss station-based
car-sharing service. The results confirmed that FFCS is preferred as a fast alternative to public
transportation and the subscription depends on the car-sharing implementation (business model).
Previous work [4] also proposed a simple binary logistic model for predicting car-sharing subscribers
in Switzerland, considering the relationship between potential membership and service availability.
This relationship was then used to identify areas with unmet demand, i.e., areas where new car-sharing
stations could be placed.

Other studies [15,16] conducted a detailed characterization of a car-sharing system in Munich
and Berlin. As with our work, they identified features correlated with the demand for shared cars in
the target cities. However, our work differs from their in the sense that we here analyze a much larger
set of features, including demographics and economic data, and consider multiple prediction models.
We focus on demand prediction, facing both time and space dimensions, and provide a thorough
comparison and guidelines for future directions.

In our previous work [17], we analyzed in depth the usage of different car-sharing systems in
Vancouver. Based on this data, we developed a model of FFCS usage and built a simulator to design
new systems based on electric vehicles [5]. In particular, we tackled the charging station placement
problem, showing that the optimal placement requires few stations to satisfy charging requests in
different cities [6].

To the best of our knowledge, we are the first to face the demand prediction problem in
Free-Floating Car-Sharing Systems tackling both the temporal and spatial prediction with a real-world
heterogeneous dataset. The demand prediction problem (or its variations) has been tackled in other
domains [18,19], but we here focus on multiple prediction tasks (long-term, short-term) across different
aspects (temporal and spatial) on the car-sharing domain.
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Furthermore, while previous work [20] focused on the temporal prediction of car-sharing demand
in a very short-term basis (demand prediction in the next few minutes), in this work we focus on the
problem at different time scales. We also compare several prediction strategies and analyze how the
temporal prediction problem relates to the spatial prediction one. Moreover, we are the first to use a
very heterogeneous dataset including dozens of features to tackle the prediction problems. This allows
us to provide insights on which of those features are the most important ones to solve our prediction
problems as well as to have a broader perspective on the challenges involved in car-sharing prediction.

3. Data Gathering Methodology

3.1. FFCS Data Collection

We collect data from Car2Go, a popular FFCS system that offers its services in more than 25 cities
and 3.6 million customers in 2019. Briefly, Car2Go works as follows. The system knows the position
of all cars (available or not) in the fleet. A customer looks for and reserves an available car by using
a smartphone application, after which he or she can rent and drive the car. At the end of the ride,
the customer parks and returns the car by notifying the FFCS system via the smartphone application.
The system records the new position of the car, and makes it available for other customers.

Car2go allows developers to interact with their services through a public Application
Programming Interface (API) (The use of the Car2Go API (https://www.car2go.com/api/tou.htm)
is subject to approval by Car2Go. We got the approval in September 2016 and continued to collect
data until January 2018). With this API, we can retrieve the current position of available cars in a
given city. Each car is identified by its plate, and it is possible to identify rentals by simply performing
periodic queries. In our previous work, we developed a system for collecting data from Car2Go’s
API [7]. This same system, called Urban Mobility Analysis Platform (UMAP) is used in this work.
It allows us to systematically collect precise data about car rentals in all cities where Car2Go offers its
service. More specifically, UMAP queries the Car2Go API every minute to get the currently available
cars. It then rebuilds the history of rentals of each car, identifying bookings and parkings. A booking is
the time period in which a car is booked by a customer (or in maintenance). Conversely, a parking is
the time period during which a car has been available for a ride to users.

Since customers can reserve a car and then cancel the reservation afterwards without actually
renting it, we consider a rental a booking with (i) distance between starting and final locations greater
than 500 m; (ii) travel duration shorter than 1 h. In a nutshell, we discard those bookings which where
not converted into rentals (i.e., when the user reserved the car without actually driving it), and those
rentals where the car disappears for long periods (i.e., possibly due to maintenance). We refer the
reader to previous work [7] for a detailed analysis of these implementation decisions.

Here we focus on Car2Go rentals recorded in Vancouver for 10 months during 2017. We chose
the city of Vancouver as a case study for two reasons. First, among the cities where Car2Go offers its
service Vancouver is the city the highest number of rentals per day. Second, because of the amount
of open data made available by the Vancouver municipality. In total, we collect more than 1 million
rentals that we use as ground truth to train and test machine-learning algorithms to predict service
demand across time and space.

3.2. Socio-Demographic, Weather and Other Open Data

In addition to information about rentals in the city of Vancouver, we also use socio-demographic
data as input to car usage prediction algorithms. Specifically, we consider the Vancouver census
open data (https://opendata.vancouver.ca/pages/home/), which divides the city in 22 official
neighborhoods. Our work uses this same spatial division. For each neighborhood, the census
dataset provides detailed socio-demographic information such as number of residents in a given
age range, their income, household compositions, and commuting habits. The census also reports
information about services that are in the neighborhoods, e.g., shops, bus stops, and parking places.

https://www.car2go.com/api/tou.htm
https://opendata.vancouver.ca/pages/home/
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In total, the census presents more than 800 socio-demographic and other spatial features. Among those,
we manually selected 83 features that might be related to human mobility (the complete list of features
is available at https://opendata.vancouver.ca/pages/census-local-area-profiles-2016-attributes/).
In addition, we also consider (i) the distance to downtown—computed as the distance from
the neighborhood to the downtown neighborhood (considered to be the central area; We use
the neighborhoods central points for distance computation). (ii) an indicator of human activity,
measured by the number of emergency calls per time bin (obtained from the Vancouver census);
and (iii) the hourly weather for Vancouver—as directly available from the OpenWeather project
(https://openweathermap.org/history-bulk). For each of the 22 neighborhoods, we normalize each
numerical feature by the area of the neighborhood. Our goal is to include a super-set of features possibly
correlated with human mobility and thus car rental prediction, to provide the machine-learning
algorithms with an input dataset as rich and diverse as possible to learn from.

4. Dataset Overview

We first provide an overview of the data at our disposal offering insights into the diversity
and heterogeneity present both in the temporal and spatial FFCS usage patterns as well as in the
socio-demographic data.

4.1. FFCS Temporal Characterization

We start by showing the temporal evolution of rentals over time. Figure 1 shows the total number
of starting rentals per hour in the whole city during part of September 2017. Even if we can spot
some periodicity, there is a lot of variability that makes the prediction problem not straightforward.
For our analyses, from now on we aggregate rentals both in time and in space. Specifically, given a
neighborhood we consider the fraction of rentals starting and ending there. We aggregate the time series
of rentals into 7 time bins per each day, namely from midnight to 6am (night period), and then every 3
h. This time granularity is typically used for system design and management [16]. The rationale is to
provide the FFCS company that actionable information on the demand for cars, e.g., to schedule car
maintenance or implement relocation policies. A one-hour period is often too short for the company to
be able to respond to changes in demand.
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Figure 1. Time series of starting rentals in September 2017 aggregated per hour. The difference in
the total number of time bins and the actual number of hours in the month are due to missing data
(crawler failures).

To give more details about the variability of the data, Figure 2a shows box-plots of the numbers of
rentals starting in each time bin. Each box-plot represents the quartiles of the distribution, with outliers

https://opendata.vancouver.ca/pages/census-local-area-profiles-2016-attributes/
https://openweathermap.org/history-bulk
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shown as points (We consider as outliers those points that are outside the mean ±2.698 times the
standard deviation range). The series shows large variability, with peaks during early mornings
(6–9 am) and afternoon (3–6 pm and 6–9 pm), and with low values during nighttime (12–6 am).
Figure 2b shows box-plots of the total number of rentals grouped per day of the week. The number of
rentals peaks on Fridays, with significantly lower values registered on Sundays and Mondays. Again,
we observe a quite size-able variability over the days, as observed by in the size of the box-plots.
Such variability hints at the fact that prediction models must be able to deal with size able temporal
variations in the demand for cars.
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(a) Box-plots of number of rentals starting in each time bin
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(b) Box-plots of number of rentals starting in each day of the week

Figure 2. Temporal characterization of number of rentals. Box-plots highlighting the variability over
the day for the same time bin of the day (top plots), and over different days (bottom plots).

4.2. FFCS Spatial Characterization

We now take a closer look into how these figures vary across different areas of the city. Rather than
providing a complete characterization of the origin/destination matrix (which is outside the scope of
this work), we here focus on particular examples to showcase the spatial variability in the demand
for cars. We focus on the morning and afternoon peak time bins (6–9 am and 6–9 pm). For each
neighborhood we compute the net flow, defined as the difference between the number of rentals
starting from that neighborhood and the number of rentals arriving at that neighborhood during the
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specified time period. We consider the cumulative net flow in September 2017. Figure 3b depicts the
results with a heat map. Darker red neighborhoods mean that arrivals exceed departures, i.e., the
neighborhood is attracting vehicles. Conversely, lighter colors imply that more vehicles are departing
from that neighborhood than arriving in it. Numbers identify different neighborhoods. The downtown
business area (number 3) attracts a lot of rides in the morning period (Figure 3a), while the opposite
pattern is seen during the afternoon period (Figure 3b). In general, we can assert that the FFCS
demand is higher in the peak hours, and the cars flow towards downtown in the morning and towards
residential areas in the afternoon. This is clearly visible in Figure 4 which reports the total net flow for
two neighborhoods for each hour of the day, namely the downtown neighborhood (number 3), and the
Grandview-Woodland (number 21) neighborhood, a residential area close to downtown.
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(a) 6–9 am rental net flow
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Figure 3. Heatmap of net flow for each neighborhood in Vancouver. The more the area is red, the higher
are the arrivals with respect to the departures. Neighborhood numbering is shown (from 0 to 21).
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Figure 4. Total net flow in September 2017 for Downtown (neighborhood 3) and Grandview-Woodland
(neighborhood 21) over different hours of the day.
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4.3. Socio-Demographic and Weather Data Characterization

We now provide some examples of the socio-demographic and open data. Figure 5 reports the
weather condition during the month of September 2017. It being a categorical variable, we assign to
each weather condition a different value on the y-axis. As expected, the weather conditions change
over time quite frequently. Moreover, no visible correlation is found when comparing the weather
conditions with the number of rentals in Figure 1.

Similarly, Figure 6a,b show the number of high-income households and the number of emergency
calls per day for each neighborhood, respectively. Also in this case, it is hard to see any clear correlation
with the net flow per neighborhood reported in Figure 3b. The scenario is similar considering other
socio-demographic features.

0 100 200 300 400 500
Time Bin

Clear
Clouds

Haze,Smoke
Haze,Rain,Smoke

Mist
Mist,Smoke

Mist,Rain
Mist,Rain,Thunderstorm

Smoke
Rain

Fog,Mist
Fog

Haze
Rain,Smoke

Fog,Rain
Fog,Mist,Rain

Drizzle

W
ea

th
er

 T
yp

e

Figure 5. Time series of weather conditions per hour during September 2017. Each point in the plot
represents an occurred weather type.
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Figure 6. Heatmap of a sample of demographic (a) and socio-demographic (b) data at our disposals.
These two samples look quite correlated.



Electronics 2020, 9, 72 9 of 20

Despite the non-linear correlations between the socio-demographic data and rentals, it is possible
that the combination of multiple features helps the prediction of car rentals, as we will discuss in
the next sections. This is exactly what the machine-learning algorithms aim at, i.e., building a model
from data, leveraging correlation from multiple variables that, considered together, carry enough
information to predict system usage. Thus, we let the machine-learning model decide if and how to
factor different features in the prediction model.

5. Temporal Predictions of Rentals

In this section, we describe our task of predicting the number of rentals in the whole city at a
given time in the future. Eventually, the same methodology could be applied for each neighborhood.
This prediction can exploit historical data, i.e., given the time series of rentals in the past, predict the
number of rentals in the future. If only the past time series are used, the problem falls in the univariate
regression class, i.e., the prediction is based only on past data of the same target variable. Let x(t) be
our target variable, i.e., the number of rentals at time t. In the case of prediction with historical data,
we predict

x(t + j) = f (x(t), x(t− 1), . . . , x(t− k)), j > 0,

as a function f () of the past k + 1 data points of x itself. j is the horizon of the prediction.
If we also have other information, we can build a more generic model to consider the dependence

to other variables. We want to predict

x(t + j) = g(y1, y2, . . . , yl), j > 0,

where {yi} are different variables—possibly other time series themselves (including x)—and g is the
model that allows us to predict x at time t + j. This problem is a multivariate regression problem,
where multiple features are used to predict the target variable x.

Considering the time horizon of the prediction, we can formulate two versions of the problem:
predict the long-term or short-term usage. In the first case, we build and train a single model using
all data at our disposal to predict the system usage in the next months. In the short-term version,
we target the prediction of the next time bin t + 1 only, i.e., j = 1. In this second case, we build and
update a new model at each time bin by adding the latest recorded number of rentals to the training
set as soon as it becomes available.

Both predictions are important for the car-sharing provider. For instance, the long-term predictions
are important to know if their fleet size is enough to keep up with the expected demand. The short-term
is important to know when to take a car down for maintenance, or when and where cars should be
eventually relocated to those neighborhoods where the demand is expected to increase shortly. While
for long-term prediction we use the time series of the rentals and information about day of the week
and hour of the day, for short prediction we can also use the near future weather condition information.

In this work, we consider discrete time, i.e., we split time into fixed size time intervals as defined in
the aggregation step—see Section 4 for more details. We then build and train several machine-learning
models to tackle each aforementioned problem. Our goal is to compare algorithms in terms of accuracy
of the prediction and complexity of the model. At last, we are also interested in considering models
that are interpretable, i.e., that allow us to understand which are the most important features that affect
car-sharing usage in large cities. We evaluate all models considering three metrics: APE (absolute
percentage error), MAPE (mean absolute percentage error), and RMSE (root mean square error) over
the validation set. The APE is defined as

APE = 100 ∑
ti∈V

| x(ti)− x̂(ti) |
x(ti)

,
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where V is the validation set, x(ti) is the actual value of the data at moment ti and x̂(ti) is the predicted
value. The MAPE is then given by

MAPE =
1
|V| × APE.

and the RMSE is defined as

RMSE =

√
1
|V| ∑

ti∈V

(
x(ti)− x̂(ti)

)2
.

5.1. Prediction Models

We use off-the-shelf machine-learning models both for the long-term and short-term scenarios.
We consider the following univariate models: a simple baseline (BL) approach, the auto-regressive
moving average (ARIMA) and the seasonal auto-regressive moving average (SARIMA) algorithms.
Univariate models do not account for the influence of other time-variant factors such as weather
conditions, time of day, number of emergency calls, etc. To account for that, we also investigate the
performance of linear regression, Random Forests Regression (RFR), Support Vector Regression (SVR),
and long-term short-term memory neural networks (NN).

We add categorical features (the day of the week and weather, for instance) to these algorithms
to improve on the univariate models. Following correct practices [21], we represent each categorical
feature as many binary variables, one for each category. For example, when representing a given
weather type, the corresponding binary variable will be set to True while all the other weather-related
variables to False. We used the algorithms implementation in Python libraries scikit-learn (https:
//scikit-learn.org/) [22] and Keras (https://keras.io/). Our code for the analysis is publicly available
at https://github.com/dougct/carsharing-prediction. For details about each model, we refer the
reader to [9]. In our implementations, we start with the library’s default hyper-parameters and conduct
a grid search to find a set of such parameters that worked well with our models. We report the range
of the grid search along with the description of the models below.

Baseline. A simple approach to determine x(t + j) in a time bin is to take the average number
of rentals in the same time bins in the available past days. We compare all our prediction models to
this baseline.

ARIMA. ARIMA (auto-regressive integrated moving average) is widely used to predict time
series data. ARIMA models are a combination of auto-regressive models with moving average models.
The creation of an ARIMA model involves specifying three parameters (p, d, q). The d parameter
measures how many times we must differentiate the data to obtain stationary data. After determining
d, we use sample partial auto correlation function to get the value p. Finally, we determine the order q
by looking at the sample auto correlation function of the differentiated data. For simplicity, we restrict
our grid search to find the best parameters values to the range [0, 3]. The combination that gave us the
best results is (p, d, q) = (2, 0, 1).

SARIMA. A SARIMA model incorporates the seasonality (periodicity) of the data into an ARIMA
model, enhancing its predictive power. For instance, when modeling a time series, it is often the case
that the data has a daily, weekly, or monthly periodicity. We used our previous ARIMA model with an
additional explicit daily seasonal component (P = 7 as the number of time bins in a day in our case).

Linear Regression. We fit a linear model by finding the coefficients that multiply each feature.
SVR. In our experiments, we use a Support Vector Regression (SVR) model with the following

combination of parameters, which produce the best results among the values we tested: C = 1000,
γ = 0.1, and ε = 0.1, with the RBF kernel. The values for the parameters γ = 0.1, and ε = 0.1
were evaluated in the range [0, 1], and for the C parameter we considered the range [1, 10000], using
exponential steps. The value 1000 was chosen once it provided a reasonable balance between model
performance and generality.

https://scikit-learn.org/
https://scikit-learn.org/
https://keras.io/
https://github.com/dougct/carsharing-prediction
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RFR. Random Forest Regression is an ensemble learning method that can be used for regression.
The decision is based on the outcome of many decision trees, each of which is built with a random
subset of the features. One advantage of random forests over linear regression is that the forest model
can capture the non-linearity. Another advantage of RFR is that they are interpretable models, i.e., they
offer a ranking of the most important features for the prediction problem. Here, we use 50 decision
trees (Throughout the manuscript, interpretable refers to the fact that it is possible to understand
the decision taken by the classification model. However, interpretability has not to be confused with
explainability, which refers to the motivations of the decision. The latter is only possibly via domain
knowledge). In this model, we use the default library parameters, but we evaluate the impact different
numbers of trees, for which the results are shown in the next sections.

Neural Networks. We also consider a Long Short-Term Memory (LSTM) Neural Network model.
LSTMs have a memory that helps capturing past trends in the data, which may favor our prediction
task. We experiment with several different architectures. In particular, we test different configurations
for the architecture: the number of neurons varies in the range [4, 128] for the first layer, and in the
range [4, 32] for the second layer. Because of the nature of the task (regression and not classification),
the number of neurons in the third layer is set to one. The best results are obtained with a three-layer
architecture where the input layer has 64 neurons (one for each feature), the dense layer has 4 neurons,
and the output layer has one neuron. In our experiments, to balance prediction accuracy and training
time, the model is trained for 50 epochs. As we will see in Section 5.3, increasing the number of
epochs to more than 50 has no significant effect (less than 1% reduction in the MAPE, on average) on
performance.

5.2. Long-Term Predictions—Results

Here we predict the FFCS demand for cars in the future months given a model built on the
previous months. We use in our experiments car-sharing usage data for the first nine months of 2017 in
the city of Vancouver. Given the volume of rentals in the training period, we try to predict the number
of rentals in the validation period. For that, we use a model that is trained once and then used to
perform all the predictions in the validation period. Our training set consists of the volume of rentals
for the first six months, and the validation data consists of volume of rentals for the next three months.

Table 1 shows the average mean absolute percentage error (MAPE), the standard deviation of the
APE, and the RMSE for each of the prediction models. The models that rely only on the time series
(ARIMA and SARIMA) can capture some patterns in the data, as their performance is considerably
better than the baseline. However, the multivariate models perform better, with Random Forest
Regression reaching the best performance. In Figure 7 we show the comparison between the actual
values and the prediction in one month of the validation set using the Random Forest Regression
model (orange dashed line). Overall, the model can predict quite well the daily and weekly periodicity
of rentals, but in general it slightly underestimates the actual number of rentals. This could be due to
the fact the training period refers to the first six months of the year, during which the average number
of rentals is lower than during the validation period (Fall season).

Table 1. Long-term temporal prediction—Mean Absolute Percentage Error (MAPE), Standard
Deviation of the Absolute Percentage Error (APE) and Root Mean Square Error (RMSE) for each
prediction model in the validation set.

Prediction Model MAPE [%] σ(APE) [%] RMSE

Baseline 40.05 44.95 321.32
ARIMA 25.53 19.68 238.87

SARIMA 21.15 21.74 159.17
Linear Regression 15.80 15.61 178.57

Support Vector Regression 15.12 16.14 179.99
Random Forest Regression 14.63 11.62 157.40

Neural Networks 15.83 16.60 187.08
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Figure 7. Long-term temporal prediction— Performance of the RFR model in one month of the
validation set. The difference in the total number of time bins and the actual number of hours in the
month are due to missing data (crawler failures).

5.3. Short-Term Predictions—Results

We now tackle the problem of predicting the demand of cars in a city in the next time bin.
Differently from the long-term predictions we use adaptive models, i.e., the model is re-trained every
time new data is made available, then we can add it to the training set. We here focus on the following
prediction task: given the volume of rentals per time bin period for a specific number of past days and
the weather conditions in those days, predict the number of rentals in the next time bin period.

We study this prediction task using two approaches: expanding window and sliding window.
In the expanding window approach, after making the first prediction, we add the actual value to the
training set, therefore increasing the amount of data available for training in the next step. To train
our models, we first set aside 24 days of data for validation, and start with 28 days of training data.
In the sliding window approach, after making the prediction we remove the oldest training data and
add the actual value to the training set. Therefore, the training set size is always the same during the
evaluation of the models. To train our models, we consider different sliding windows sizes (from 7 to
28 days), and validate on the same validation set of 24 days as with the expanding window.

In Table 2, we compare the performance of all models using the two approaches. The best
results for the sliding window approach are obtained with the largest possible window (28 days).
The expanding window approach offers slightly better results, which can be attributed to the
fact that the model can exploit more data, while patterns are not changing rapidly in time.
Again, the multivariate models, and in particular the Random Forest Regression model, reach the best
performance. Interestingly, the Neural Network model performs similarly to other models, suggesting
that for this specific use case, a simple and more interpretable model such as an RFR is enough.
Furthermore, as shown in Figure 8, increasing the number of epochs does not have a significant effect
on the performance of the Neural Networks model.

We show in Figure 9 the performance of the best model, i.e., RFR with expanding window. In this
short-term formulation of the problem, the prediction naturally adapts to changes over time, resulting
in better predictions to the long-term prediction scenario. Moreover, the weather data also provides
useful information.

We now explore the importance of each feature for the model by analyzing the RFR feature
ranking. When training a decision tree, it is possible to compute how much each feature decreases the
tree’s weighted impurity. For a forest, the reduction in impurity from each feature can be averaged and
the features can be ranked according to this measure. This gives a simple and interpretable feedback
on which features are most useful for the prediction. We find that the most important features for the
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model are: (i) if we are in the daily peaks from 3 pm to 9 pm, (ii) during the night (0–6 am) or (iii) if we
are on a Friday and Saturday. Interestingly, the most important weather condition for the regressors is
the presence of clouds, while the second one is a (rare) condition of presence of fog, mist and rain in
the considered time bin.

Table 2. Short-term temporal prediction—Mean Absolute Percentage Error (MAPE),
Absolute Percentage Error (APE), and Root Mean Squared Error (RMSE), for each prediction
model in the validation set.

Prediction Model
Expanding Window (Starting: 28 Days) Sliding Window (28 Days)

MAPE [%] σ(APE) [%] RMSE MAPE [%] σ(APE) [%] RMSE

Baseline 20.12 16.64 195.53 20.12 16.64 195.53
ARIMA 36.01 35.87 306.80 36.52 36.60 305.50
SARIMA 17.60 20.01 160.42 18.02 21.75 163.94
Linear Regression 18.28 20.38 179.11 18.11 20.55 178.61
Support Vector Regression 12.22 15.62 128.72 12.87 18.52 136.14
Random Forests Regression 9.71 8.34 104.99 10.08 12.23 109.47
Neural Networks 10.52 12.93 128.84 10.52 12.74 123.55
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Figure 8. Effect of the number of epochs on the performance (MAPE) of the Neural Networks model.
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Figure 9. Short-term temporal prediction—Performance of the RFR model with expanding window in
the validation set (24 days).
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5.4. The Effect of Weather Information

At this point, it is relevant to discuss the importance of weather forecast for the predictions.
First, for the long-term predictions, we did not use any weather information, as that would require
perfect weather forecast in a period far in the future (in our case, three months). In order to validate
the effect of weather in this idealized situation, we assumed such perfect forecast and evaluated our
models using weather information as a feature. By assuming perfect forecast, we can set an upper
bound on the effect of weather information on the models. Our results show that on average, weather
information improves the models by about 3% on the MAPE.

Second, for the short-term predictions, we do use weather information. Again, we assume
perfect weather forecast in the short-term (next three hours). This assumption is reasonable because
weather forecast for such short periods should be quite close to perfect. By doing so, we filter out
any dependence on the particular weather forecast technique used (which could vary across different
cities/countries and is therefore out of the scope of our work).

According to the feature importance, among the features used for the short-term predictions (day
of the week, hour of the day, and weather type), the weather is the least important feature. As such,
we do not expect a great impact of weather mispredictions on our results. Indeed, our results with the
random forests model (the one with the best performance among the models we evaluated) show that
by removing weather information from the features the prediction accuracy decreases by less than
2% on the MAPE.

6. Spatial Prediction of Rentals with Socio-Demographic Data

We now shift our attention to predict the demand of cars in a neighborhood without using
past data as features. In other words, given only socio-demographic data in the neighborhoods,
we try to predict the average number of expected rentals at each time bin, and at each neighborhood.
This problem is often referred to as a green field or cold start approach. In this case, the operator is
interested in knowing what the system usage in a new neighborhood could be (or even a new city)
based only on socio-demographic data. Historical data are available from other neighborhoods (or
cities), and are used only for training.

Since we have 22 neighborhoods which constitute our dataset for the training step, we could
suffer from an overfitting problem. To minimize this potential effect, we follow a state-of-the-art
approach, namely leave-one-out testing: given a target neighborhood, we consider information from
all other neighborhoods for training the learning model, and consider the neighborhood that we left
out for validation.

We manually select 83 socio-demographic features that we think might be related to human
mobility. Here, we only apply the Support Vector Regression and Random Forest Regression models,
given that they were the best performing models (aside from neural networks) in the temporal
prediction. We do not consider neural networks since these are known to not work well with a very
small training set as in this case. Additionally, being the RFR an ensemble method, it is known to be
resilient to overfitting [9].

Considering hyper-parameter tuning, for SVR, we try three different kernels (linear, polynomial
and RBF), with different combinations of parameters. The best performances are obtained for ε = 0.1,
C = 100 (C = 10 for RBF), and γ = 1

# f eatures (γ = 1 for RBF). For RFR, we try number of trees ranging
from 10 to 100. We show the impact of hyper-parameter tuning in the following.

Figures 10a and 11b show the SVR prediction accuracy for the task of predicting the number of
starting and ending rentals, respectively. For each kernel type and for each time bin, we report the
average MAPE over the 22 experiments (one for each neighborhood that is left out during training).
The SVR model performs rather poorly regardless of the parameter setting. Considering the targeted
time bin, errors are higher for the morning slots, independently of the kernel, while the time bin from
0 am to 6 am is the one for which the model achieves the best performance. The polynomial kernel
performs the best: yet the average (over all time bins) MAPE is 70% for the prediction of starting
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rentals, and 64% for the prediction of ending rentals. For the sake of completeness, best RMSE for
starting and ending rentals predictions are 499.776 and 427.675, respectively, both for time bin from
0 am to 6 am.
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(a) SVR Model: Starting rentals
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Figure 10. Spatial prediction—MAPE for Support Vector Regression models, using different kernels.

The results for the Random Forest Regression model are shown in Figure 11a,b, for different
number of trees. For a given time bin, we observe limited variation in the MAPE for increasing number
of trees, which suggests that a small number of trees (30 or 40 trees, for instance) could be enough.
This is expected given again the limited number of samples for the training. In this case, the overall
MAPE is 59%.

Moving to the predictions for ending rentals in Figure 11b, we observe smaller errors, with the
best case with 20 or 40 trees, with the overall MAPE being 56%. Again, in the time bin from 0 am to
6 am we obtain the best predictions while the worst are obtained from 6 am to 9 am (for starting rentals
prediction). Regarding RMSE measure, the best value for starting rentals is 427.260 for time from 0 am
to 6 am and 50 trees, while for final rentals the best RMSE is 732.825 for time bin 6 am to 9 am.

Overall, the usage of only socio-demographic data as features offers from quite large prediction
error. In the following, we investigate which features are the most important so to also perform feature
selection and possibly improve the model.
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Figure 11. Spatial prediction—MAPE for Random Forests Regression models, using different number
of trees.

Feature Ranking and Selection

As in the previous section, we here analyze the feature ranking for the RFR model. Table 3 reports
the top-15 most relevant features along with their relevance. This feature ranking procedure allows us
on the one hand to identify what information the FFCS operator should focus on when considering
new neighborhoods of the city in which to implement its service. On the other hand, it allows us to
reduce the number of features to use in the model: we can focus only on the most important ones.

To evaluate the impact of the features on the performance of the model, we train once again the
RFR with an increasing number of features, chosen according to the given rank. We fix the number of
trees according to the best average MAPE obtained in Figure 11a,b: 40 trees for the starting and 20 for
the ending rentals prediction. Figure 12 shows the results. It reports the MAPE versus the number of
features in the model. Notice the U-shaped curve of the average MAPE (dashed black line). Intuitively,
too few features worsen the regression performance due to lack of information, but too many features
reduce the performance since the training is more complicated and the model gets confused.

We further evaluate the RFR model by selecting the best number of features (the one that
minimizes the average MAPE), which results to selecting the top 7 features in Table 1. With this
subset, the average MAPE is 41% and RMSE equals to 1104.501 for starting rentals, while for arrivals
MAPE is 39% and RSME is equal to 1010.453. As expected, using only the most important features
significantly improves the performance.
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Finally, we explore the spatial prediction error, i.e., we look if there are neighborhoods that
present significantly higher errors than others. Figure 13 depicts the heatmap of the MAPE per
neighborhood, averaged over all time bins. The more the area is red the higher the average MAPE
is. Each green dot represents actual positions of starting or arrival rentals as recorded in the original
trace. The neighborhoods with the highest error are the ones labeled 15, 18, 11, and 0. We can see that
neighborhoods 15, 18, and 0 are in the periphery and intersect only partially with the rental area of the
FFCS operator. This mismatch confuses the prediction since our model assumes the operative area
coincides with the total area of each neighborhood. Thus, our model predicts much higher numbers
of rentals (reflecting the whole neighborhood area) than the ones that are actually done (reflecting
the restricted operational area). Neighborhood 0 has instead a large presence of parks where clearly
the car cannot operate. As such, the features of this area are also not reflecting the entire area, fooling
the classifier.

In general, the performance of the spatial predictions is lower when compared to the temporal
predictions. This is expected given the nature of the problem, the limited amount of available data,
and because the number of rentals varies widely within each neighborhood. However, we would like
to emphasize that the results of the spatial prediction could be quite useful: the ranking of the regions
in terms of service demand is indeed preserved in the predictions. In other words, the neighborhood
with the largest demands, which could be the preferred locations to extend the service, would still be
predicted correctly.
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Figure 12. Spatial prediction—MAPE in the different time bins by selecting the most relevant features
in RFR.
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Table 3. Spatial prediction—Most relevant features and their importance for the prediction using
Random Forest Regression. The first 7 are the ones that for obtain the best overall model.

Rank Feature Relevance

1 Number of emergency calls 0.0717
2 Distance from downtown 0.0481
3 People commuting by walk 0.0381
4 People commuting within Vancouver 0.0342
5 People with income between 100,000 and 149,999 $CAD 0.0298
6 People with income between 60,000 and 69,999 $CAD 0.0286
7 People legally recognized as couple 0.0281
8 People with income more than 150,000 $CAD 0.0274
9 People divorced 0.0261
10 People commuting within the same neighborhood 0.0249
11 Couples with more than 3 children 0.0239
12 People with age between 50 and 54 years 0.0233
13 Unemployed people 0.0231
14 People never married 0.0217
15 People with income between 80,000 and 89,999 $CAD 0.0211

Figure 13. Spatial distribution—Heatmap of average MAPE per neighborhood. Rentals are shown on
the map as green points.

7. Conclusions

In this paper, we studied the problem of predicting FFCS demand patterns in time and space,
a relevant problem to an adequate provisioning of the service and maintenance of the fleet. Relying on
data from real FFCS rides in Vancouver as well as the municipality socio-demographic information,
we investigated to which extent modern machine-learning-based solutions allow us to predict the
transportation demand.

Our results show that the temporal prediction of rentals can be performed with relative
errors down to 10%. In this scenario, a Random Forests Regression performs consistently among
the best models, and allowing us to also discover which features are more useful for prediction.
When considering the spatial prediction using socio-demographic data, we obtain relative errors
around 40%, after feature selection. This is expected due to the scarcity of data, but the prediction
results are still useful. Indeed, since the number of rentals varies widely within each neighborhood,
the relative ranking is preserved. This is valuable for, e.g., looking for the area where to first extend the
service. Again, using a Random Forest Regression model, we can observe which features are the most
useful for the prediction, a precious information for providers and regulators that wish to understand
FFCS systems and to provide a high-quality service that benefits both providers and its costumers.
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As future work, we would like to investigate whether this same strategy generalizes to different
cities. Answering this question is challenging due to the heterogeneity and diversity of open data in
different cities, and of usage patterns of car sharing around the world. We conjecture that given similar
data the methodology could be applied to other cities, as there is nothing specific to the analyzed city
in it. However, the effectiveness of the models may change depending on peculiarities of each city.
Still, it is an open problem towards which we have provided an important first step.
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