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Abstract

We present a multivariate hierarchical space-time model to describe the joint series of monthly
extreme temperatures and amounts of rainfall. Data are available for 360 monitoring stations
over 60 years, with missing data affecting almost all series. Model components account for spatio-
temporal dependence with annual cycles, dependence on covariates and between responses. The
very large amount of data is tackled modeling the spatio-temporal dependence by the nearest
neighbor Gaussian process. Response multivariate dependencies are described using the linear
model of coregionalization, while annual cycles are assessed by a circular representation of time.
The proposed approach allows imputation of missing values and easy interpolation of climate sur-
faces at the national level. The motivation behind is the characterization of the so called ecoregions
over the Italian territory. Ecoregions delineate broad and discrete ecologically homogeneous areas
of similar potential as regards the climate, physiography, hydrography, vegetation and wildlife, and
provide a geographic framework for interpreting ecological processes, disturbance regimes, vege-
tation patterns and dynamics. To now, the two main Italian macro-ecoregions are hierarchically
arranged into 35 zones. The current climatic characterization of Italian ecoregions is based on
data and bioclimatic indices for the period 1955-1985 and requires an appropriate update.

1 Introduction

Climate elements and regimes, such as temperature, precipitation and their annual cycles, primar-
ily affect type and distribution of plants, animals, and soils as well as their combination in complex
ecosystems [3, 32]. As such, the ecological classification of climate represents one of the basic step
for the definition and mapping of ecoregions, i.e. of broad ecosystems occurring in discrete geograph-
ical areas [2, 30]. In keeping with these assumptions, a hierarchical classification of the ecoregions
was recently performed in Italy including climate among the main diagnostic features, together with
biogeography and physiography [12]. The Italian ecoregions (see figure 1) are arranged into four hi-
erarchically nested tiers, which consist of 2 Divisions, 7 Provinces, 11 Sections, and 33 Subsections1.
For each of the tiers a different climatic diagnostic detail has been adopted: different macroclimatic

11 Temperate Division. 1A Alpine Province. 1A1 Western Alps Section; 1A1a Alpi Marittime Subsection; 1A1b
Northwestern Alps Subsection; 1A2 Central and Eastern Alps Section; 1A2a Pre-Alps Subsection; 1A2b Dolomiti and
Carnia Subsection; 1A2c Northeastern Alps Subsection. 1B Po Plain Province; 1B1 Po Plain Section; 1B1a Lagoon
Subsection; 1B1b Central Plain Subsection; 1B1c Western Po Basin Subsection. 1C Apennine Province; 1C1 Northern
and Western Apennine Section; 1C1a Toscana and Emilia-Romagna Subsection; 1C1b Tuscan Basin Subsection; 1C2
Central and Southern Apennine Section; 1C2a Umbria and Marche Apennine Subsection; 1C2b Lazio and Abruzzo
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zones and regions characterize Divisions and Provinces, whereas different bioclimatic types and ranges
in observed thermo-pluviometric data characterize Section and Subsections.

1.1 Bioclimatic classification

To now, the climatic features adopted for the diagnosis and description of the Italian ecoregions
mainly refer to data and bioclimatic indices that date back to the period 1955-1985. It needs to be
updated in order to validate ecoregion boundaries, summarize current and past climatic conditions
of the ecoregions, assess climate impacts on ecosystems at the meso-scale and formulate reliable bio-
diversity conservation strategies. To these aim several models and approaches have been proposed
[see 25, 34] and several limitations have been pointed out such over smoothing in the interpolation of
climate variables, severe loss of precision at small spatial resolution and more. As a matter of fact,
temperature and precipitation data are generally heavily discretized in both space and time and require
the interpolation to climate surfaces. Interpolations are usually carried out neglecting the correlation
between climatic variables and provide climate surfaces that are often over-smoothed especially at
the sub-continental scale. The uncertainty of estimated temperatures and precipitations considerably
increases in areas characterized by large variation in elevation or with sparse weather monitoring sta-
tions. [24] clearly state that “rigorous mapping of climatic patterns outstands as one of the mayor
issues concerning climatic change”. In their paper they investigate the extent of the bioclimatic ap-
proach to develop a rigorous cartographic methodology to express climatic diversity patterns. Their
work is strongly affected by the quality of climate surfaces available at the chosen scale. [31] present
four approaches that summarize projected climate changes across Ontario’s ecosystems at two spatial
scales (ecoregions and selected natural heritage areas). The four approaches are based on interpolated
climate surfaces obtained neglecting the correlation among climatic variables and without a rigorous
assessment of estimates uncertainty. The majority of the above cited works define and analyze ecore-
gions making extensive use of the WorldClim database. The most recent release of the WorldClim
database was obtained using the work of [19] who present an updated version of an older protocol
due to [25]. With this new release WorldClim includes independent spatially interpolated monthly
estimates of many climate variables for global land areas, at approximately 1 km2 spatial resolution.
Monthly values of temperature (minimum, maximum and average), precipitation, solar radiation, va-
por pressure and wind speed are aggregated across the target temporal range 1970-2000 using data
from between 9000 and 60000 weather monitoring stations. Weather station data were interpolated
using thin-plate splines with covariates including elevation, distance to the coast and three satellite-
derived variables: maximum and minimum land surface temperature as well as cloud cover obtained
by the MODIS satellite platform. The authors propose to use a multi-step procedure, adopting the
best performing model for each region and variable. Although this solution allows for an improvement
in terms of goodness of fit, it does not allow for an easy evaluation of the overall uncertainty and does
not avoid the risk of over-smoothing that was already observed with the previous protocol.

1.2 The available data

Precipitation and min/max temperature data were recorded monthly at 360 monitoring stations over
60 years (1951-2010). Therefore, the overall database consists of approximately 750000 records for

Apennine Subsection; 1C2c Campania Apennine Subsection; 1D Italian part of Illyrian Province.
2 Mediterranean Division. 2A Italian part of Ligurian-Provencal Province. 2B Tyrrhenian Province; 2B1 Northern
and Central Tyrrhenian Section;2B1a Eastern Liguria Subsection; 2B1b Maremma Subsection; 2B1c Roman Area Sub-
section; 2B1d Southern Lazio Subsection; 2B2 Southern Tyrrhenian Section; 2B2a Western Campania Subsection; 2B2b
Lucania Subsection; 2B2c Cilento Subsection; 2B2d Calabria Subsection; 2B3 Sicilia Section; 2B3a Iblei Subsection; 2B3b
Sicilia Mountains Subsection; 2B3c Central Sicilia Subsection; 2B3d Western Sicilia Subsection; 2B4 Sardegna Section;
2B4a Southwestern Sardegna Subsection; 2B4b Northwestern Sardegna Subsection; 2B4c Southeastern Sardegna Sub-
section; 2B4d Northeastern Sardegna Subsection. 2C Adriatic Province; 2C1 Central Adriatic Section; 2C1a Abruzzo
and Molise Adriatic Subsection; 2C1b Marche Adriatic Subsection; 2C2 Southern Adriatic Section; 2C2a Murge and
Salento Subsection; 2C2b Gargano Subsection.
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Min. 1st Qu. Median Mean 3rd Qu. Max.
Rain 0.00 1.88 7.64 11.50 18.47 68.33
T. max 0.00 5.42 13.47 16.50 24.31 96.25
T. min 0.00 5.45 13.47 16.52 24.17 96.25

Table 1: Summary statistics of the percentages of missing data at monitoring station.

three variables. The data were mostly obtained from National Institutions, such as ISPRA (“Progetto
Annali” and SCIA), CRA/CREA, Meteomont (Guardia Forestale) and ENEA. Furthermore, data
from additional stations were acquired from numerous Italian local authorities (Regions, Provinces)2.
Almost all time series are affected by variable amounts of missing data as shown in table 1 reporting
summary statistics on percentages of missing values by stations. The observed climate variables vary
consistently with the 33 ecoregional subsections, as is shown in Figure 2.

1.3 Spatio-temporal interpolation of large datasets

Bioclimatic classification requires an effective interpolation approach accounting for the correlation
among climate variables and such that uncertainty evaluation is rigorously obtained. A very large
amount of literature on the interpolationj of massive spatial and spatio-temporal data is now avail-
able, with some review papers [26, 28] and books [4, 21, 13] to which the interested reader is referred
for details. In what follows, we restrict our interest to inferences that can be carried on at arbitrary
spatial and temporal resolutions, possibly finer than those of the observed data, and to approaches
that allow for a rigorous evaluation of the overall uncertainty and that are computationally feasible.
The common choice would be to construct a stochastic process model to capture dependence using a
spatio-temporal covariance function [21, and references therein]. While the richness and flexibility of
spatio-temporal process models are indisputable, their computational feasibility and implementation
pose major challenges for large datasets. Model-based inference almost always involves the calculation
of inverses of large matrices, say N ×N , where N is the number of spatio-temporal points considered.
Unless the matrix is sparse or has a specific structure that eases the computation, O(N3) floating
points operations would be required for any matrix inversion. Approaches for modeling large covari-
ance matrices in purely spatial settings include low rank and covariance tapering models [21, 4, 13,
and references therein] and multivariate tapering proposed in Bevilacqua et al. [7], approximations
using Gaussian Markov Random Fields (GMRF), the Laplace transform and Stochastic Partial differ-
ential Equations [35, 36, 29, 9, 8], products of lower dimensional conditional densities [see 15, 16, and
references therein] and composite likelihoods [17] with the recent multivariate extension proposed in
Bevilacqua et al. [6]. A large number of extensions to spatio-temporal settings have been proposed,
including [14], [20] and [27] who introduce dynamic spatio-temporal low-rank spatial processes, while
[39] choose a GMRF approach. All the previous works use dynamic models defined for fixed temporal
lags and are not easily extended to continuous spatio-temporal domains. Continuous spatio-temporal
process modeling of large data has received relatively less attention. Composite likelihoods are pro-
posed in [1] and [5] for parameter estimation in a continuous space-time setup. Both papers focus

2Data sources, organized by region: Abruzzo: Regione Abruzzo, direzione Lavori Pubblici e Protezione Civile; Basil-
icata: Regione Basilicata, Ufficio Protezione Civile; Calabria: Regione Calabria, ARPACAL, Centro funzionale multi-
rischi; Campania: Regione Campania, Direzione generale Protezione Civile; Emilia Romagna: ARPA Emilia Romagna:
Friuli Venezia Giulia: ARPA Friuli Venezia Giulia, Protezione Civile Regionale; Lazio: Regione Lazio, Servizio Inte-
grato Agrometeorologico; Liguria: Arpa Liguria; Lombardia: Arpa Lombardia, Protezione Civile Regionale; Marche:
Regione Marche, Servizio Agrometeo Regionale; Molise: Protezione Civile Regionale; Piemonte: Arpa Piemonte; Puglia:
Regione Puglia, Arpa, Protezione Civile Regionale; Sardegna: Regione Sardegna, Arpa Sardegna; Sicilia: Regione Si-
cilia, Osservatorio Acque, Assessorato dell’Energia e dei servizi di pubblica utilità, dipartimento dell’Acqua e dei rifiuti;
Trentino: Provincia di Trento, Centro funzionale Protezione Civile; Toscana: Regione Toscana, Settore idrologico re-
gionale; Umbria: Regione Umbria, Centro funzionale decentrato di monitoraggio meteo-idrologico; Valle d’Aosta: Arpa
Valle D’Aosta; Veneto: Arpa Veneto.
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(a) k = 5

(b) k = 2 (c) k = 3 (d) k = 4

Figure 1: Ecoregional hierarchical tier organization and climate monitoring network (a).

upon constructing computationally feasible likelihood approximations and inference is restricted to
parameter estimation only. Uncertainty estimates are mostly based on asymptotic results which are
often inappropriate for irregularly observed data. Moreover, in both cases predictions at arbitrary
locations and time points are obtained imputing estimates into an interpolator derived with a different
process model. Furthermore, computations are expensive for large N and may not be accurate in re-
flecting the predictive uncertainty. Finally, an interesting proposal was recently provided by [15] with
the definition of the Nearest Neighbor Gaussian Process (NNGP) approximation for large continuous
spatial datasets, extended to the spatio-temporal framework in [16].

In this work we are going to apply, introducing several novelties, the approach proposed by [16] to
a multivariate spatio-temporal setting, using a generalised NNGP approximation on a multi-response
problem. To this aim, we combine the NNGP with the linear model of coregionalization [22] and with
a circular representation of time [see for instance 37] to include annual cycles. We obtain a computa-
tionally feasible tool that allows for multivariate interpolation with large continuous space-time data,
providing an accurate evaluation of the associated uncertainties. The proposed approach is applied
to the characterization of Italian ecoregions in terms of temperature and precipitation, providing suc-
cessful answers to the problems mentioned above: we estimate a joint model that accounts for climate
variables correlation and obtain rigorous assessment of all estimates and predictions uncertainty. We
deal with a huge amount of data and avoid over-smoothing. Further, we introduce annual cycles using
a novel and flexible tool, we discuss the “best” ecoregions hierarchical classification tier in terms of
temperature and precipitation characterization and, eventually, we get a direct imputation of missing
data.
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Figure 2: Boxplots of maximum, minimum temperature and rainfall by ecoregions. Colors follow the
Italian ecoregional Sections, see figure 1.

While in section 1.2 we gave a full description of the available data and of the four ecoregion
hierarchical classification tiers, the rest of the paper is organized as follows. Section 2 is dedicated to
the definition of the multivariate coregionalization model for the Italian data, while section 3 contains
the NNGP definition and some details of the implementation of estimates and predictions. Results are
reported and commented in section 4, while section 5 contains some final remarks and addresses for
future developments.

2 The Model

Let s ∈ S ⊂ Rd, with d = 2, and t ∈ T ⊂ R be spatial and temporal coordinates respectively, and let
Y ∗1 (s, t), Y ∗2 (s, t) and Y ∗3 (s, t) represent the precipitation level, minimum and maximum temperatures
observed at (s, t). Then these variables have the following constraints: Y ∗1 (s, t) ≥ 0 and Y ∗3 (s, t) ≥
Y ∗2 (s, t). To simplify modeling and computations, we prefer to work with latent variables defined over
the entire real line R, embedding the above constraints in the variable definitions. Latent variables
Y1(s, t), Y2(s, t) and Y3(s, t) are defined as follows:{

Y1(s, t) = Y ∗1 (s, t) if Y ∗1 (s, t) > 0,

Y1(s, t) ≤ 0 if Y ∗1 (s, t) = 0,

Y2(s, t) = Y ∗2 (s, t),{
Y3(s, t) = Y ∗3 (s, t)− Y ∗2 (s, t) if Y ∗3 (s, t)− Y ∗2 (s, t) > 0,

Y3(s, t) ≤ 0 if Y ∗3 (s, t)− Y ∗2 (s, t) = 0.

Each latent response Yi, i = 1, 2, 3 is described by a combination of fixed and random terms:

Yi(s, t) = X(s)βzk(s) + ωi(s, t) + λi(s, t) + εi(s, t)

with εi(s, t)
iid∼ N(0, σ2

ε,i). Here X(s) = (1, X(s)) and X(s) is the elevation of site s. The integer

valued indicator zk(s) ⊂ Z+ is the ecoregion label for the kth ecoregion tier: with k = 1 we have one
ecoregion covering the entire country, while k = 5 returns the finer classification with 35 ecoregions.
In general z1(s) = 1, z2(s) ∈ {1, 2}, z3(s) ∈ {1, 2, . . . 7}, z4(s) ∈ {1, 2, . . . 13} and z5(s) ∈ {1, 2, . . . 35}.
Then βzk = (β0,zk , β1,zk)′ are regression coefficients, varying with the ecoregion. The term λi(s, t)
describes the monthly effect of the annual cyclical behavior. More precisely, we represent time on a
circular scale with 1 year period. We assume that h∗t = ht mod L is a circular variable with period
L = 1years, where ht = |tl − td| is the temporal lag. This choice implies that e.g.: if ht = 1years, then
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h∗t = ht mod 1year = 0; if ht = 1.1years, then h∗t = 0.1 and so on. Then assuming λi(s, t) ⊥ λi(s
′, t)

for all t’s and i’s, we describe the monthly effect of the annual cyclical behavior of each response by:

λi(s, t) ∼ N
(
0, σ2

cy,i exp(−φcy,ih∗t )
)
, i = 1, 2, 3 (1)

where σ2
cy,i, φcy,i > 0 holds for both annual cyclical parameters.

Finally, the term ωi(s, t) in (2) is defined as a multivariate spatio-temporal Gaussian process (GP)
with dependent components. First we consider the multivariate GP w(s, t) = (w1(s, t), w2(s, t), w3(s, t))′,
where wi(s, t) ⊥ wj(s, t), for all (s, t)’s and wi ∼ GP (0, C(hs, ht;θi)) where C(hs, ht;θi) is a spatio-
temporal correlation function and where hs = ||sl−sq|| and ht are the spatial and temporal distances
with (hs, ht) ∈ R2×R. We choose the general non-separable space-time correlation structure proposed
by [23], defining C(·, ·; ·) as in his equation (14), i.e.:

C(hs, ht;θi) =
1

(φti,i|ht|2αi + 1)τ
exp

(
− φsp,i‖hs‖2γi

(φti,i|ht|2αi + 1)ηiγi

)
. (2)

Non-negative scaling parameters φti,i and φsp,i are associated to time and space respectively, the
smoothness parameters αi and γi take values in (0, 1], the space-time interaction parameter ηi ranges
in [0, 1] and τ ≥ d/2. Following both [23] and [15], we set τ = 1, α = 1 and γ = 0.5. Attractively, as ηi
decreases towards zero, we achieve separability in space and time. Using the independent components
of w , we can now define ω(s, t) = (ω1(s, t), ω2(s, t), ω3(s, t))′ as follows:

ω(s, t) = Aw(s, t) (3)

where AA′ = Cov (ω1, ω2, ω3) = Σ. Now, letting Ti = a ia
′
i, where ai is the ith column of A , the

covariance matrix for the process ω at different times and locations is given by:

Σl,q = Cov(ω(sl, tl),ω(sq, tq)) =

3∑
i=1

TiC ((||sl − sq||, |tl − tq|);θi) .

Remark that the choice of A in equation (3) is not unique and has specific consequences on the process
structure [22], hence a careful choice is required. A popular choice is the Cholesky decomposition of the
symmetric matrix Σ that produces a lower diagonal matrix. This decomposition induces an artificial
ordering of the response variables in this setting, given that the correlation structure of ω1 depends only
on C(·, ·;θ1), the one of ω2 depends on C(·, ·;θ1) and C(·, ·;θ2), while the correlation of ω3 depends on
C(·, ·;θ1), C(·, ·;θ2) and C(·, ·;θ3). To avoid this artificial ordering, we propose to decompose by Σ by
a different approach: let Γ = diag(γ1, γ2, γ3) be the diagonal matrix of the square rooted eigenvalues
of Σ and Ψ be the orthogonal matrix of its eigenvectors, such that Ψ′Ψ = I, we then let A = ΨΓΨ′.
Such matrix A is symmetric by construction and its elements do not depend on the ordering of the
eigenvalues. Assume that D is a 3 × 3 matrix that changes the ordering of the elements of ω(s, t).
The covariance matrix of Dω is then DΣD′ with eigenvectors as the columns of matrix DΨ. Now
let DΣD′ = A∗A

′
∗, then A∗ = DΨΓΨ′D′ = DAD′, proving that A∗ has the same values of A but

arranged accordingly to the reordering matrix D.

3 Implementation

The huge dimension of the data, i.e. 360 spatial locations observed at 720 times, does not allow
the implementation of a full multivariate Gaussian process. This issue, generally referred to as “Big
n problem” [26], arises from the need to compute the covariance matrix of the entire multivariate
process, that in our case has dimension 3 ∗ 720 ∗ 360 = 777600. Such a big matrix has to be stored and
inverted to compute the model likelihood, with a computational cost of the order of O(7776003). This
is not feasible even for very large computers or computer clusters. For this reasons, an approximated
approach has to be adopted. Several approaches to obtain computationally feasible approximations of
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Gaussian processes have been proposed in the literature [for example see 26, and references therein].
In this work we adopt an efficient and accurate approximation of a Gaussian process recently proposed
by Datta et al. [15], namely the Nearest Neighbors Gaussian Process (NNGP).

To address some issues related to the numerical stability of the estimation algorithm, we propose
to rescale and standardize the response 6.o,6ovariables. Only in the case of the monthly rain amount,
in order to preserve the information about the zeroes, we simply rescale the variable by its standard
deviation. Hence, in what follows, Y1 is rescaled while Y2 and Y3 are both standardized. Results are
presented according to the model (transformed) scale (except for the RMSE and figure 4).

3.1 NNGP

Letting N be the number of observations in space and time, we denote their locations by (sn, tn),
n = 1, . . . , N and we let ωn = (ω1(sn, tn), ω2(sn, tn), ω3(sn, tn))′ with ω = (ω1, . . . ,ωN )′. If f(·) is a
generic density function, then the joint distribution of the whole set of observations is given by

f(ω) =

N∏
n=1

f(ωn|ωn−1, . . . ,ω1) (4)

with ω0 = ∅. In (4) f(ω) and f(ωn|ωn−1, . . . ,ω1) are Gaussian densities of size 3·N and 3, respectively.
Notice that, though there is no univocal definition of a space-time ordering of observed locations, (4)
is a valid representation of the joint density for any given ordering.

Let Ωn = (ωn−1, . . . ,ω1)′ be the conditional set of ωn in (4) and let Ωn(m) ⊆ Ωn be a set
that contains at most m elements of Ωn. With the NNGP the joint distribution of the whole set of
observations in (4) is by

N∏
n=1

f(ωn|Ωn(m)). <

Indeed the quality of the approximation increases with m and, as shown by [15], and the best results
are achieved if we chose the m elements of Ωn that have the higher correlation with ωn.

To implement the NNGP three decisions have to be made:

• how to order the observations;

• how to choose the the value of m;

• how to choose the elements of Ωn(m) ⊆ Ωn.

The ordering A natural ordering is immediately available for the time dimension, but there is not
a unique way to order observations in space at a given time. The way we order spatial locations has a
strong influence on the definition of how candidate locations enter Ωn(m). Here we follow Datta et al.
[15] and order locations first according to one of the two coordinates and then according to the other.
This ensures that Ωn includes observations spatially and temporally close to ωn.

The value of m Compared to the size of the problem, the number of neighbors m should be small
in order to obtain a computational gain. Datta et al. [16] showed that, assuming that the elements of
Ωn(m) are “close enough” (correlated or geographically close) to ωn, m ∈ {10, . . . , 20} produces an
approximation almost indistinguishable from the original process.

The elements in Ωn(m) Again, following Datta et al. [16], the best choice for Ωn(m) is to take the
m elements that have higher correlation with ωn. In a purely univariate temporal or spatial setting,
assuming that the correlation decreases with the distance, the optimal choice for the elements Ωn(m)
would consider observations spatially/temporally closer to ωn. In a spatio-temporal setting with non-
separable correlation function, there is not a one to one relation between distances and correlation,
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since a spatio-temporal distance is not uniquely defined. In an univariate spatio-temporal setting,
Datta et al. [16] propose an adaptive approach in which Ωn(m) is defined at each MCMC iteration as
the set that has the higher correlation with ωn.

Basing the choice of Ωn(m) on correlations would imply to consider all possible sets of m neighbors
at each point for each MCMC iteration. In this work we prefer not to follow this approach, mostly for
computational reasons as, unlike in Datta et al. [16], here we deal with a very large multivariate spatio-
temporal data base. Hence we propose to define a spatio-temporal distance as shown in expression
(5) and to include in Ωn(m) the locations with smaller distances from ωn. Obviously, the spatial and
temporal dimensions have different scales, so we adjust the spatio-temporal distance euristically as
follows: √(

hs
2

30

)2

+ h2t , (5)

assuming that one year has the same weigh as 150Km’s. Our choice is justified by the following
considerations: in each neighborhood we want to include information on the spatial dependence,
the time dependence and the cross-correlation structure, furthermore we need information on the
annual cyclical component. Equation (5) ensures that the generic point (sn, tn) has approximately m
neighbors,

√
m of which are observed at the same time and at different locations,

√
m share the same

spatial location and are observed at different times and the remaining are observed at different times
and locations. Furthermore, in order to learn about the annual cyclical component, we may have to
modify the points at the boundaries of Ωn(m). This is done in such a way that, for example, the
neighborhood of location s-January 2000 includes location s-January 1999 and s-February 1999.

3.2 Implementation details

In our setting E(ω) = 0N , then using standard results from the multivariate normal theory, we can
write

f(ωn|Ωn(m)) = φ3(ωn|BnΩn(m),Fn)

where φ3(ωn|BnΩn(m),Fn) is the 3−variate normal distribution with mean BnΩn(m) and covariance
matrix Fn. Parameters Bn and Fn depend on the Gneiting correlation function parameters, on Σ and
on the distances between the spatio-temporal locations in (ωn,Ωn(m)).

Our data are observed over 360 spatial locations, that are the same at each time point. Given the
set of m values we explored (m = 10, 15, 20), the maximum temporal distance between ωn and the
elements of Ωn(m) is equal to 1 year, with the exception of the first 12 months in the database that
have a maximum distance of less then one year. Hence, starting from the 13th time-point onwards, the
parameters Bn and Fn at the same spatial location will be the same, as they are based on the same
distance matrices. Then we only need to compute Bn and Fn for the first 13 times and 360 spatial
locations, thus obtaining a huge computational gain. Notice that in this setting the computation of
the full conditionals of ωn implies only a time window of two years at each sampled location. Given
that after the first 12 months the distances between points start to repeat, we need to compute the
full conditionals for the first 13 months and the last 12 months, as in these latter cases the two years
time window is not available.

Grid prediction Let Y0 = (Y(sN+1, tN+1), . . .Y(sN+720, tN+720))′ be the 3-variate time series of
Y ’s at a spatial grid point and let define Ωy,N+j = (yN+j−1, . . . ,y1) as the conditioning set of yN+j ,
with j ∈ {1, . . . , 720} and yn = (y1(sn, tn), y2(sn, tn), y3(sn, tn))′. In like vein, we define Ωy,N+j(m) as
the set of m nearest neighbors of yN+j , based on the distance (5). Notice that, since Ωy,N+j contains
all spatio-temporal locations, the set of m nearest neighbors Ωy,N+j(m) can contain temporal indexes
that are even higher than tN+j , e.g. in the set of neighbors of the first time of a grid point, there can
be points in the second or third time.
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m

10 15 20

3 4593496 3434861 3362126
k 4 4797839 4518074 3853829

5 6793930 5537513 5432627

Table 2: Model choice, DIC values for different choices of the hierarchical ecoregional tier (k) and
neighborhood size (m) in the NNGP approximation.

We want to obtain samples of Y0 from the predictive density

f(y0|yO) =

∫ 720∏
j=1

f(yN+j |Ωy,N+j ,θ)f(yM ,θ|yO)dθdyM . (6)

where yM and yO are subsets of y = (y1, . . . ,yN )′ composed of, respectively, missing and observed
data, θ contains all model parameters and f(yM ,θ|yO) is the posterior distribution. Our interest
is also in the prediction of the annual cyclical component λ0 = (λN+1, . . . ,λN+12), where λN+j =
(λ1(sj , tj), λ2(sj , tj), λ3(sj , tj))

′. We then sample from the following predictive density:

f(λ0|yO) =

∫
f(λ0|y0,y,θ)

720∏
j=1

f(yN+j |Ωy,N+j ,θ)f(yM ,θ|yO)dθdyMdy0. (7)

The density f(yN+j |Ωy,N+j ,θ) in (6) and (7) is a trivariate normal, but as with equation (4), es-
timation of its parameters requires the computation/inversion of a covariance matrix of dimension
N + j [4].We then use the NNGP to approximate the predictive densities and substitute Ωy,N+j(m) to
Ωy,N+j in both expressions. After model fitting, posterior samples from (6) and (7) can be obtained
using standard Monte Carlo procedures.

4 Results and discussion

We estimated nine different models, varying the number of neighbors in the NNGP, m = {10, 15, 20},
and the ecoregional hierarchical tier, k ∈ {3, 4, 5}. The MCMC was implemented with 100000 iter-
ations, a burn-in phase of 70000 and thinning by 12, keeping 2500 samples for posterior inferences.
Posteriors estimates were obtained in about three days of a fast computer cluster, as specified below.
Model choice was performed using the DIC [38] and results are reported in table 2. As expected,
the largest number of neighbors always returns the smallest DIC value for a given k. In bold we
highlight the “best” model that suggest to aggregate ecoregions into 7 distinct provinces (see figure
1). Provinces represent the highest and most general ecoregional tier among those considered with
the model implementation. Therefore, this result is consistent with a principle widely adopted by
hierarchical approaches for the ecological classification of land. This basic principle states that climate
acts as a primary environmental factor in determining the broad-scale ecosystem variation. On the
contrary, factors such as geomorphology and soil features assume an equal or greater importance than
climate only at lower levels [3, 33].

Posterior estimates of the Gaussian Process parameters (see equations (1) and (2)) and their vari-
ances are reported in table 3, while in figure 3 the proportion of the variance of the seasonal, space-time
and residual term over their sum is reported, this in order to descripe the relevance of each term in
explaining the totalvariation of each variable. It is worth noticing that for the minimum temperature
almost the entire variation can be ascribed to the seasonal component, while for the thermal excursion
a 15.5% is due to the spatiotemporal term and a negligible contribution comes from the residual part.
The precipitation has a different behaviour, a large portion of variation is seasonal (51%), but now
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Figure 3: Proportion of the space-time, seasonal and residual components of the variance for each
climate variable

the space-time dynamic has more relevant role, while 14.6% of variation is left unexplained. These
behaviour of the three variables is perfectly compatible with the physics of the phenomena described,
where rainfall is more influenced by local events here not available. Table 3 shows a clear evidence
that the three components are non-separable in space and time, as the η parameter is never close to 0.
The practical ranges and covariances of the three components provide useful information on the extent
of the spatial, temporal and annual cyclical dependence. The spatial practical ranges of the process
components are 15.95km (Y1), 21.676km (Y2) and 6.967km (Y3), suggesting a much more localized
behavior of the temperature range with respect to the other two variables. In terms of time depen-
dence, we have the following practical ranges: 37.78 days (Y1), 113.73 days (Y2) and 45.98 days (Y3).
These values highlight the length of time windows of correlated behavior for each component, sug-
gesting a similar temporal dependence for the rainfall and the temperature range. Finally the annual
cyclical effect φcy (practical ranges: 71.99 days (Y1), 107.60 days (Y2), 112.19 days (Y3)) highlights
a similar behavior for the second and third variables, as expected: a shorter cycle is estimated for
the rain, while annual cycles are longer and almost seasonal (4 months long) for both temperatures.
Correlation between climate variables are also obtained and they are all significantly different from
zero. Rain and minimum temperature are positively correlated (0.210 with a narrow 95% credible
interval (0.208,0.213)), while rain an temperature range are negatively correlated (-0.214 with again a
narrow 95% CI (-0.218,-0.211)). The minimum temperature and the temperature range are negatively
correlated, showing a stronger relation, as expected (-0493, 95% CI (-0.499,-0.497)). This proposal
allows to gather considerably more information on the joint behavior of the climate variables than
previous studies where an older version of the database was also used to correlate climate data with
altitude [11, 10].

In figure 4 examples of maps of two monthly effects of the annual cyclical components are reported.
The maps for the months of January and August have been chosen as representative of the factors
affecting the composition of ecosystems and their distribution over the Italian territory. Above all,
these factors include moisture availability in the different seasons, winter cold and summer drought.
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φsp φti φcy η

Y1
Est. 0.188 28.979 15.210 0.774
(CI) (0.184 0.192) (28.871 29.072) (14.972 15.394) (0.774 0.775)

Y2
Est. 0.138 9.628 10.176 0.943
(CI) (0.137 0.140) (9.476 9.750) (10.102 10.239) (0.942 0.943)

Y3
Est. 0.431 23.814 9.760 0.166
(CI) (0.429 0.432) (23.576 23.995) (9.690 9.835) (0.165 0.168)

σ2cy σ2ε σ2ω

Y1
Est. 0.617 0.176 0.413
(CI) (0.612 0.623) (0.175 0.178) 0.409 0.416)

Y2
Est. 6.968 0.008 0.050
(CI) (6.830 7.092) (0.008 0.008) (0.050 0.051)

Y3
Est. 2.799 0.062 0.525
(CI) (2.647 2.919) (0.061 0.062 ) (0.519 0.532)

Table 3: Posterior estimates of the Gaussian process and annual cyclical component parameters, as in
equations (2) and (1), respectively.

Firstly, the model was able to show some interesting seasonal patterns of rainfall (fig. 4a and 4d). These
include: (i) the continental regime of the Alpine Province, the only region with larger rainfall values in
summer than in winter months; (ii) the transitional character of the Po Plain Province towards a more
Mediterranean regime, with lower summer rainfall; (iii) the very clear latitudinal gradient in both the
Apennine and peninsular Tyrrhenian Provinces, which mainly reflects the varying distance from the
coast of the mountain reliefs. More local patterns are suggested as well, that however need a more in
depth investigation at the Section and/or Subsection ecoregional levels. These include, for example, the
longitudinal summer gradient in rainfall between Eastern and Western Alps and the marked summer
rainfall decrease in some Southern peninsular and main island sectors. Secondly, winter cold (fig.
4b) clearly characterises both the Alpine and Po Plain Provinces within the Temperate Division. On
the contrary, the variable behaviour within the Apennine Province should be further investigated in
order to highlight in detail the differences with the Tyrrhenian Province of the Mediterranean Region.
Patterns that need to be characterised at lower ecoregional levels emerged in this case as well. These
include, for example, the latitudinal gradient along the Adriatic Province and the differences between
the two main Tyrrhenian islands. The third component of the process, among the several features,
highlights the relevance of reduced winter temperatures and their variation in characterising the termic
continentality of the Po Plain and Adriatic Provinces. It also confirms that higher temperatures occur
in both the Tyrrhenian and the Adriatic Mediterranean Provinces.

In tables 4 and 5 the posterior estimates of the intercepts and regression coefficients distinguished
by ecoregion are reported. Remark that all estimates for the 4th ecoregion (1D) are not relevant
and very different from the other values, due to the presence of only one monitoring station in the
given area. This suggests to consider the aggregation of the 4th ecoregion to one of its neighbors for
future investigations, as recently tested in the first report on the Italian natural capital3. Estimates of
the model intercepts β0’s allow to analyse the behaviour of each component in the specific ecoregion.
The only estimate that shows a value close to zero is for temperature range in ecoregion 1B, the
Po Plain Province, suggesting a very small temperature range. All ecoregions are well characterized
with some overlapping of credible intervals for each variable, suggesting similarities between areas.
Similar behavior in terms of rainfall (Y1) can be found in ecoregions 1B, 2A, 2B and 2C (j = 2, 5, 6, 7),
while 1A, 1B and 2C (j = 1, 2, 7) show similarities in terms of minimum temperature (Y2) and only
1A and 2C (j = 1, 7) show intervals estimates overlapping for the temperature range (Y3). Notice
that 1B covering the Po Plain is a very variable area where a transition from the continental to the
mediterranean behaviours occurs. The relation with the elevation described by the estimates of the
regression coefficients β1’s often admits the zero value in the 95% credible interval. This is likely
linked to the presence of a latitudinal gradient in the area. For example, in the Po Plain Province (1B)
a large area is divided by the Po river in a northern sector with continental regime and a southern
sector with Apennine regime, as already highlighted for the effects of the cyclical components. The
Alpine province (1A) is associated to regression coefficients that are all quite far from zero and this

3
Italian Natural Capital Committee (INCC), 2017. 1st Report on the State of Natural Capital in Italy (synthesis). Available at: http://www.

minambiente.it/sites/default/files/archivio/allegati/sviluppo_sostenibile/sintesi_raccomandazioni_primo_rapporto_capitale_naturale_english_version.pdf
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β0,1 β0,2 β0,3 β0,4

Y1
Est. 1.348 0.741 0.965 -0.050
(CI) (1.280 1.400) (0.668 0.794) (0.924 1.003) (-8.155 7.777)

Y2
Est. 0.207 0.225 0.094 -0.005
(CI) (0.189 0.234) (0.207 0.240) (0.084 0.106) (-1.746 1.758)

Y3
Est. 0.155 0.008 0.779 0.083
(CI) (0.055 0.201 ) (-0.069 0.097) (0.737 0.844) (-4.919 4.748)

β0,5 β0,6 β0,7

Y1
Est. 0.633 0.740 0.783
(CI) (0.520 0.787) (0.710 0.774) (0.745 0.838)

Y2
Est. 0.878 0.457 0.277
(CI) (0.838 0.910) (0.445 0.464) (0.263 0.295)

Y3
Est. -1.965 -0.070 0.196
(CI) (-2.038 -1.856) (-0.125 -0.038) (0.127 0.264)

Table 4: Point estimates of the intercepts at each ecoregion and for each Gaussian process component.
Ecoregions are coded as follows 1 = 1A, 2 = 1B, 3 = 1C, 4 = 1D, 5 = 2A, 6 = 2B and 7 = 2C.

β1,1 β1,2 β1,3 β1,4

Y1
Est. 0.029 0.498 0.248 63.022
(CI) (-0.022 0.068) (0.189 0.742) (0.208 0.294) (-650.237 788.956)

Y2
Est. -0.747 -0.322 -0.452 73.423
(CI) (-0.761 -0.729) (-0.414 -0.242) (-0.470 -0.437) (-86.057 231.301)

Y3
Est. -0.366 -0.094 -1.073 -117.311
(CI) (-0.428 -0.305) (-0.648 0.423) (-1.177 -1.023) (-544.667 338.024)

β1,5 β1,6 β1,7

Y1
Est. -0.532 0.548 0.416
(CI) (-1.250 0.241) (0.502 0.592) (0.272 0.546)

Y2
Est. -2.802 -0.842 -0.452
(CI) (-3.038 -2.541) (-0.856 -0.826) (-0.498 -0.405 )

Y3
Est. 8.256 0.040 -0.736
(CI) (6.891 9.607) (-0.042 0.112) (-0.985 -0.570)

Table 5: Point estimates of the regression coefficients×1000 at each ecoregion and for each Gaussian
process component. Ecoregions are coded as follows 1 = 1A, 2 = 1B, 3 = 1C, 4 = 1D, 5 = 2A, 6 = 2B
and 7 = 2C.

can be linked to the absence of a latitudinal gradient, being the region affected only by a longitudinal
variation. Moreover the area is characterized by a considerable relief energy (large quota gradient).

After model fitting, we used posterior samples to predict the values of the three variables over
a 15Km × 15km grid of 3305 spatial points over 720 times. Posterior estimates of each time series
were obtained in only 20 minutes on the TeraStat cluster [18] that allows for fast computing with
a limitation on the number of processes that can be lunched simultaneously. Such limitation is not
implemented at the Bari ReCaS DataCenter that provides a computing power of 128 servers each with
64 cores and 256GB of RAM. It houses a small cluster dedicated to High Performance Computing,
running applications using many cores at the same time, that was used for parallel computing of the
predictions. To asses the out of sample predictive capability of the chosen model, we built a validation
set starting with the finest definition of ecoregions (k = 5, 35 ecoregions). We selected 10% of the
available observations with at least one station per ecoregion, excluding ecoregions with only one
station (1A1a,1D1a). The validation set was used to evaluate the root mean squared prediction error
for each response variable on its original scale, obtaining very encouraging results: Rain 5.8mm, T.
min 1.3◦, T. max 1.4◦ corresponding to a relative error4 of 0.38% for the Rain, 2.64% and 2.47% for
the maximum and minimum temperature respectively.

5 Concluding remarks and future developments

In this paper we present a multivariate generalization of the NNGP model proposed in Datta et al.
[16]. Our model combines the computational efficiency of NNGP’s with several new ideas for handling
complex structures typical of climate variables. We use the linear model of coregionalization to account
for multivariate spatio-temporal dependencies, a circular representation of the time index to define the
annual cycles and propose an efficient implementation of the NNGP that allows to estimate the model
with a huge amount of data. Results are very encouraging as we are able to interpolate climate

4100 ·RMSE/Range(Y )
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(a) Rainfall January (b) Temperature min. January (c) ∆ Temperature January

(d) Rainfall August (e) Temperature min. August (f) ∆ Temperature August

Figure 4: Maps of the monthly effects of January (a,b,c) and August (d,e,f) on the annual cycles of
the three components of the process.

variables at any spatial and temporal resolution and impute missing values. The richness of model
output allows to characterise the Italian ecoregions with respect to rainfall, minimum and maximum
temperature returning information on cyclical trend, spatial and temporal correlation.

The future will find us working on more detailed bioclimatic characterisation of the Italian ecore-
gions. To do that we need to obtain parameter estimates for all the available ecoregional tiers, including
Divisions, Sections and Subsections. We are interested in better understanding the role of climate vari-
ables at a more detailed ecoregion level. Further, as new ecoregional boundaries have recently been
proposed mainly based on biogeographic and physiographic considerations (Blasi et al., unpublished
data), the model could be applied to develop a climatic characterisation of the new strata, comparing
results to those reported in this paper.
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