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Abstract

Human adaptability relies crucially on the ability to

learn and merge knowledge both from supervised and un-

supervised learning: the parents point out few important

concepts, but then the children fill in the gaps on their own.

This is particularly effective, because supervised learning

can never be exhaustive and thus learning autonomously

allows to discover invariances and regularities that help

to generalize. In this paper we propose to apply a similar

approach to the task of object recognition across domains:

our model learns the semantic labels in a supervised fash-

ion, and broadens its understanding of the data by learning

from self-supervised signals how to solve a jigsaw puzzle on

the same images. This secondary task helps the network to

learn the concepts of spatial correlation while acting as a

regularizer for the classification task. Multiple experiments

on the PACS, VLCS, Office-Home and digits datasets con-

firm our intuition and show that this simple method outper-

forms previous domain generalization and adaptation solu-

tions. An ablation study further illustrates the inner work-

ings of our approach.

1. Introduction

In the current gold rush towards artificial intelligent sys-

tems it is becoming more and more evident that there is

little intelligence without the ability to transfer knowledge

and generalize across tasks, domains and categories [11].

A large portion of computer vision research is dedicated

to supervised methods that show remarkable results with

convolutional neural networks in well defined settings, but

still struggle when attempting these types of generaliza-

tions. Focusing on the ability to generalize across domains,
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Figure 1. Recognizing objects across visual domains is a challeng-

ing task that requires high generalization abilities. Other tasks,

based on intrinsic self-supervisory image signals, allow to capture

natural invariances and regularities that can help to bridge across

large style gaps. With JiGen we learn jointly to classify objects and

solve jigsaw puzzles, showing that this supports generalization to

new domains.

the community has attacked this issue so far mainly by su-

pervised learning processes that search for semantic spaces

able to capture basic data knowledge regardless of the spe-

cific appearance of input images. Existing methods range

from decoupling image style from the shared object con-

tent [3], to pulling data of different domains together and

imposing adversarial conditions [27, 28], up to generating

new samples to better cover the space spanned by any future

target [39, 46]. With the analogous aim of getting general

purpose feature embeddings, an alternative research direc-

tion has been recently pursued in the area of unsupervised

learning. The main techniques are based on the definition of

tasks useful to learn visual invariances and regularities cap-

tured by spatial co-location of patches [35, 10, 37], counting

primitives [36], image coloring [49], video frame ordering

[32, 47] and other self-supervised signals.

Since unlabeled data are largely available and by their

very nature are less prone to bias (no labeling bias issue
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[44]), they seem the perfect candidate to provide visual in-

formation independent from specific domain styles. Despite

their large potential, the existing unsupervised approaches

often come with tailored architectures that need dedicated

finetuning strategies to re-engineer the acquired knowledge

and make it usable as input for a standard supervised train-

ing process [37]. Moreover, this knowledge is generally ap-

plied on real-world photos and has not been challenged be-

fore across large domain gaps with images of other nature

like paintings or sketches.

This clear separation between learning intrinsic regulari-

ties from images and robust classification across domains is

in contrast with the visual learning strategies of biological

systems, and in particular of the human visual system. In-

deed, numerous studies highlight that infants and toddlers

learn both to categorize objects and about regularities at the

same time [2]. For instance, popular toys for infants teach

to recognize different categories by fitting them into shape

sorters; jigsaw puzzles of animals or vehicles to encour-

age learning of object parts’ spatial relations are equally

widespread among 12-18 months old. This type of joint

learning is certainly a key ingredient in the ability of hu-

mans to reach sophisticated visual generalization abilities

at an early age [16].

Inspired by this, we propose the first end-to-end archi-

tecture that learns simultaneously how to generalize across

domains and about spatial co-location of image parts (Fig-

ure 1, 2). In this work we focus on the unsupervised task

of recovering an original image from its shuffled parts, also

known as solving jigsaw puzzles. We show how this popular

game can be re-purposed as a side objective to be optimized

jointly with object classification over different source do-

mains and improve generalization with a simple multi-task

process [7]. We name our Jigsaw puzzle based Generaliza-

tion method JiGen. Differently from previous approaches

that deal with separate image patches and recombine their

features towards the end of the learning process [35, 10, 37],

we move the patch re-assembly at the image level and we

formalize the jigsaw task as a classification problem over

recomposed images with the same dimension of the origi-

nal one. In this way object recognition and patch reordering

can share the same network backbone and we can seam-

lessly leverage over any convolutional learning structure as

well as several pretrained models without the need of spe-

cific architectural changes.

We demonstrate that JiGen allows to better capture the

shared knowledge among multiple sources and acts as a reg-

ularization tool for a single source. In the case unlabeled

samples of the target data are available at training time, run-

ning the unsupervised jigsaw task on them contributes to

the feature adaptation process and shows competing results

with respect to state of the art unsupervised domain adapta-

tion methods.

2. Related Work

Solving Jigsaw Puzzles The task of recovering an orig-

inal image from its shuffled parts is a basic pattern recog-

nition problem that is commonly identified with the jigsaw

puzzle game. In the area of computer science and artifi-

cial intelligence it was first introduced by [17], which pro-

posed a 9-piece puzzle solver based only on shape informa-

tion and ignoring the image content. Later, [22] started to

make use of both shape and appearance information. The

problem has been mainly cast as predicting the permuta-

tions of a set of squared patches with all the challenges re-

lated to number and dimension of the patches, their com-

pleteness (if all tiles are/aren’t available) and homogeneity

(presence/absence of extra tiles from other images). The

application field for algorithms solving jigsaw puzzles is

wide, from computer graphics and image editing [8, 40]

to re-compose relics in archaeology [4, 38], from model-

ing in biology [31] to unsupervised learning of visual repre-

sentations [15, 35, 10]. Existing assembly strategies can be

broadly classified into two main categories: greedy methods

and global methods. The first ones are based on sequential

pairwise matches, while the second ones search for solu-

tions that directly minimize a global compatibility measure

over all the patches. Among the greedy methods, [18] pro-

posed a minimum spanning tree algorithm which progres-

sively merges components while respecting the geometric

consistent constraint. To eliminate matching outliers, [41]

introduced loop constraints among the patches. The prob-

lem can be also formulated as a classification task to predict

the relative position of a patch with respect to another as

in [15]. Recently, [38] expressed the patch reordering as

the shortest path problem on a graph whose structure de-

pends on the puzzle completeness and homogeneity. The

global methods consider all the patches together and use

Markov Random Field formulations [9], or exploit genetic

algorithms [40]. A condition on the consensus agreement

among neighbors is used in [42], while [35] focuses on a

subset of possible permutations involving all the image tiles

and solves a classification problem. The whole set of per-

mutations is instead considered in [10] by approximating

the permutation matrix and solving a bi-level optimization

problem to recover the right ordering.

Regardless of the specific approach and application, all

the most recent deep-learning jigsaw-puzzle solvers tackle

the problem by dealing with the separate tiles and then find-

ing a way to recombine them. This implies designing tile-

dedicated network architectures then followed by some spe-

cific process to transfer the collected knowledge in more

standard settings that manage whole image samples.

Domain Generalization and Adaptation The goal of

domain generalization (DG) is that of learning a system that

can perform uniformly well across multiple data distribu-
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Figure 2. Illustration of the proposed method JiGen. We start from images of multiple domains and use a 3 × 3 grid to decompose them

in 9 patches which are then randomly shuffled and used to form images of the same dimension of the original ones. By using the maximal

Hamming distance algorithm in [35] we define a set of P patch permutations and assign an index to each of them. Both the original ordered

and the shuffled images are fed to a convolutional network that is optimized to satisfy two objectives: object classification on the ordered

images and jigsaw classification, meaning permutation index recognition, on the shuffled images.

tions. The main challenge is being able to distill the most

useful and transferrable general knowledge from samples

belonging to a limited number of population sources. Sev-

eral works have reduced the problem to the domain adap-

tation (DA) setting where a fully labeled source dataset and

an unlabeled set of examples from a different target domain

are available [11]. In this case the provided target data is

used to guide the source training procedure, that however

has to run again when changing the application target. To

get closer to real world conditions, recent work has started

to focus on cases where the source data are drawn from

multiple distributions [30, 48] and the target covers only a

part of the source classes [5, 1]. For the more challenging

DG setting with no target data available at training time, a

large part of the previous literature presented model-based

strategies to neglect domain specific signatures from multi-

ple sources. They are both shallow and deep learning meth-

ods that build over multi-task learning [21], low-rank net-

work parameter decomposition [26] or domain specific ag-

gregation layers [14]. Alternative solutions are based on

source model weighting [29], or on minimizing a validation

measure on virtual tests defined from the available sources

[25]. Other feature-level approaches search for a data rep-

resentation able to capture information shared among mul-

tiple domains. This was formalized with the use of deep

learning autoencoders in [20, 27], while [33] proposed to

learn an embedding space where images of same classes but

different sources are projected nearby. The recent work of

[28] adversarially exploits class-specific domain classifica-

tion modules to cover the cases where the covariate shift

assumption does not hold and the sources have different

class conditional distributions. Data-level methods propose

to augment the source domain cardinality with the aim of

covering a larger part of the data space and possibly get

closer to the target. This solution was at first presented with

the name of domain randomization [43] for samples from

simulated environments whose variety was extended with

random renderings. In [39] the augmentation is obtained

with domain-guided perturbations of the original source in-

stances. Even when dealing with a single source domain,

[46] showed that it is still possible to add adversarially

perturbed samples by defining fictitious target distributions

within a certain Wasserstein distance from the source.

Our work stands in this DG framework, but proposes an

orthogonal solution with respect to previous literature by in-

vestigating the importance of jointly exploiting supervised

and unsupervised inherent signals from the images.

3. The JiGen Approach

Starting from the samples of multiple source domains,

we wish to learn a model that can perform well on any

new target data population covering the same set of cate-

gories. Let us assume to observe S domains, with the i-

th domain containing Ni labeled instances {(xi
j , y

i
j)}

Ni

j=1
,

where xi
j indicates the j-th image and yij ∈ {1, . . . , C}

is its class label. The first basic objective of JiGen is to

minimize the loss Lc(h(x|θf , θc), y) that measures the er-

ror between the true label y and the label predicted by the

deep model function h, parametrized by θf and θc. These

parameters define the feature embedding space and the fi-

nal classifier, respectively for the convolutional and fully

connected parts of the network. Together with this objec-

tive, we ask the network to satisfy a second condition re-

lated to solving jigsaw puzzles. We start by decomposing

the source images using a regular n × n grid of patches,

which are then shuffled and re-assigned to one of the n2

grid positions. Out of the n2! possible permutations we se-

lect a set of P elements by following the Hamming distance

based algorithm in [35], and we assign an index to each en-
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try. In this way we define a second classification task on

Ki labeled instances {(zik, p
i
k)}

Ki

k=1
, where zik indicates the

recomposed samples and pik ∈ {1, . . . , P} the related per-

mutation index, for which we need to minimize the jigsaw

loss Lp(h(z|θf , θp), p). Here the deep model function h has

the same structure used for object classification and shares

with that the parameters θf . The final fully connected layer

dedicated to permutation recognition is parametrized by θp.

Overall we train the network to obtain the optimal model

through

argmin
θf ,θc,θp

S∑

i=1

Ni∑

j=1

Lc(h(x
i
j |θf , θc), y

i
j)+

Ki∑

k=1

αLp(h(z
i
k|θf , θp), p

i
k) (1)

where both Lc and Lp are standard cross-entropy losses. We

underline that the jigsaw loss is also calculated on the or-

dered images. Indeed, the correct patch sorting corresponds

to one of the possible permutations and we always include

it in the considered subset P . On the other way round, the

classification loss is not influenced by the shuffled images,

since this would make object recognition tougher. At test

time we use only the object classifier to predict on the new

target images.

Extension to Unsupervised Domain Adaptation

Thanks to the unsupervised nature of the jigsaw puz-

zle task, we can always extend JiGen to the unlabeled

samples of target domain when available at training

time. This allows us to exploit the jigsaw task for un-

supervised domain adaptation. In this setting, for the

target ordered images we minimize the classifier pre-

diction uncertainty through the empirical entropy loss

LE(x
t) =

∑
y∈Y

h(xt|θf , θc)log{h(x
t|θf , θc)}, while for

the shuffled target images we keep optimizing the jigsaw

loss Lp(h(z
t|θf , θp), p

t).

Implementation Details Overall JiGen1 has two param-

eters related to how we define the jigsaw task, and three re-

lated to the learning process. The first two are respectively

the grid size n×n used to define the image patches and the

cardinality of the patch permutation subset P . As we will

detail in the following section, JiGen is robust to these val-

ues and for all our experiments we kept them fixed, using

3 × 3 patch grids and P = 30. The remaining parameters

are the weights α of the jigsaw loss, and η assigned to the

entropy loss when included in the optimization process for

unsupervised domain adaptation. The final third parameter

regulates the data input process: the shuffled images enter

the network together with the original ordered ones, hence

each image batch contains both of them. We define a data

bias parameter β to specify their relative ratio. For instance

1Code available at https://github.com/fmcarlucci/JigenDG

β = 0.6 means that for each batch, 60% of the images are

ordered, while the remaining 40% are shuffled. These last

three parameters were chosen by cross validation on a 10%
subset of the source images for each experimental setting.

We designed the JiGen network making it able to lever-

age over many possible convolutional deep architectures.

Indeed it is sufficient to remove the existing last fully con-

nected layer of a network and substitute it with the new ob-

ject and jigsaw classification layers. JiGen is trained with

SGD solver, 30 epochs, batch size 128, learning rate set to

0.001 and stepped down to 0.0001 after 80% of the training

epochs. We used a simple data augmentation protocol by

randomly cropping the images to retain between 80−100%
and randomly applied horizontal flipping. Following [37]

we randomly (10% probability) convert an image tile to

grayscale.

4. Experiments

Datasets To evaluate the performance of JiGen when

training over multiple sources we considered three domain

generalization datasets. PACS [26] covers 7 object cate-

gories and 4 domains (Photo, Art Paintings, Cartoon and

Sketches). We followed the experimental protocol in [26]

and trained our model considering three domains as source

datasets and the remaining one as target. VLCS [44] aggre-

gates images of 5 object categories shared by the PASCAL

VOC 2007, LabelMe, Caltech and Sun datasets which are

considered as 4 separated domains. We followed the stan-

dard protocol of [20] dividing each domain into a training

set (70%) and a test set (30%) by random selection from

the overall dataset. The Office-Home dataset [45] contains

65 categories of daily objects from 4 domains: Art, Clipart,

Product and Real-World. In particular Product images are

from vendor websites and show a white background, while

Real-World represents object images collected with a regu-

lar camera. For this dataset we used the same experimental

protocol of [14]. Note that Office-Home and PACS are re-

lated in terms of domain types and it is useful to consider

both as test-beds to check if JiGen scales when the number

of categories changes from 7 to 65. Instead VLCS offers

different challenges because it combines object categories

from Caltech with scene images of the other domains.

To understand if solving jigsaw puzzles supports gener-

alization even when dealing with a single source, we ex-

tended our analysis to digit classification as in [46]. We

trained a model on 10k digit samples of the MNIST dataset

[24] and evaluated on the respective test sets of MNIST-

M [19] and SVHN [34]. To work with comparable datasets,

all the images were resized to 32× 32 treated as RGB.

Patch-Based Convolutional Models for Jigsaw Puzzles

We start our experimental analysis by evaluating the ap-

plication of existing jigsaw related patch-based convolu-

2232



PACS art paint. cartoon sketches photo Avg.

CFN - Alexnet

J-CFN-Finetune 47.23 62.18 58.03 70.18 59.41

J-CFN-Finetune++ 51.14 58.83 54.85 73.44 59.57

C-CFN-Deep All 59.69 59.88 45.66 85.42 62.66

C-CFN-JiGen 60.68 60.55 55.66 82.68 64.89

Alexnet

[26]
Deep All 63.30 63.13 54.07 87.70 67.05

TF 62.86 66.97 57.51 89.50 69.21

[28]

Deep All 57.55 67.04 58.52 77.98 65.27

DeepC 62.30 69.58 64.45 80.72 69.26

CIDDG 62.70 69.73 64.45 78.65 68.88

[25]
Deep All 64.91 64.28 53.08 86.67 67.24

MLDG 66.23 66.88 58.96 88.00 70.01

[14]
Deep All 64.44 72.07 58.07 87.50 70.52

D-SAM 63.87 70.70 64.66 85.55 71.20

Deep All 66.68 69.41 60.02 89.98 71.52

JiGen 67.63 71.71 65.18 89.00 73.38

Resnet-18

[14]
Deep All 77.87 75.89 69.27 95.19 79.55

D-SAM 77.33 72.43 77.83 95.30 80.72

Deep All 77.85 74.86 67.74 95.73 79.05

JiGen 79.42 75.25 71.35 96.03 80.51

Table 1. Domain Generalization results on PACS. The results of

JiGen are average over three repetitions of each run. Each column

title indicates the name of the domain used as target. We use the

bold font to highlight the best results of the generalization meth-

ods, while we underline a result when it is higher than all the others

despite produced by the naı̈ve Deep All baseline. Top: comparison

with previous methods that use the jigsaw task as a pretext to learn

transferable features using a context-free siamese-ennead network

(CFN). Center and Bottom: comparison of JiGen with several do-

main generalization methods when using respectively Alexnet and

Resnet-18 architectures.

Figure 3. Confusion matrices on Alexnet-PACS DG setting, when

sketches is used as target domain.

tional architectures and models to the domain generaliza-

tion task. We considered two recent works that proposed

a jigsaw puzzle solver for 9 shuffled patches from images

decomposed by a regular 3 × 3 grid. Both [35] and [37]

use a Context-Free Network (CFN) with 9 siamese branches

that extract features separately from each image patch and

then recompose them before entering the final classifica-

tion layer. Specifically, each CFN branch is an Alexnet

[23] up to the first fully connected layer (fc6) and all the

branches share their weights. Finally, the branches’ outputs

are concatenated and given as input to the following fully

connected layer (fc7). The jigsaw puzzle task is formal-

ized as a classification problem on a subset of patch per-

mutations and, once the network is trained on a shuffled

version of Imagenet [12], the learned weights can be used

to initialize the conv layers of a standard Alexnet while the

rest of the network is trained from scratch for a new target

task. Indeed, according to the original works, the learned

representation is able to capture semantically relevant con-

tent from the images regardless of the object labels. We

followed the instructions in [35] and started from the pre-

trained Jigsaw CFN (J-CFN) model provided by the authors

to run finetuning for classification on the PACS dataset with

all the source domain samples aggregated together. In the

top part of Table 1 we indicate with J-CFN-Finetune the

results of this experiment using the jigsaw model proposed

in [35], while with J-CFN-Finetune++ the results from the

advanced model proposed in [37]. In both cases the average

classification accuracy on the domains is lower than what

can be obtained with a standard Alexnet model pre-trained

for object classification on Imagenet and finetuned on all the

source data aggregated together. We indicate this baseline

approach with Deep All and we can use as reference the cor-

responding values in the following central part of Table 1.

We can conclude that, despite its power as an unsupervised

pretext task, completely disregarding the object labels when

solving jigsaw puzzles induces a loss of semantic informa-

tion that may be crucial for generalization across domains.

To demonstrate the potentialities of the CFN architec-

ture, the authors of [35] used it also to train a supervised ob-

ject Classification model on Imagenet (C-CFN) and demon-

strated that it can produce results analogous to the standard

Alexnet. With the aim of further testing this network to

understand if and how much its peculiar siamese-ennead

structure can be useful to distill shared knowledge across

domains, we considered it as the main convolutional back-

bone for JiGen. Starting from the C-CFN model provided

by the authors, we ran the obtained C-CFN-JiGen on PACS

data, as well as its plain object classification version with

the jigsaw loss disabled (α = 0) that we indicate as C-CFN-

Deep All. From the obtained recognition accuracy we can

state that combining the jigsaw puzzle with the classifica-

tion task provides an average improvement in performance,

which is the first result to confirm our intuition. However,

C-CFN-Deep All is still lower than the reference results ob-

tained with standard Alexnet.
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For all the following experiments we consider the con-

volutional architecture of JiGen built with the same main

structure of Alexnet or Resnet, using always the image as

a whole (ordered or shuffled) instead of relying on separate

patch-based network branches. A detailed comparison of

per-class results on the challenging sketches domain for J-

CFN-Finetune++ and JiGen based on Alexnet reveals that

for four out of seven categories, J-CFN-Finetune++ is actu-

ally doing a good job, better than Deep All. With JiGen we

improve over Deep All for the same categories by solving

jigsaw puzzles at image level and we keep the advantage of

Deep All for the remaining categories.

Multi-Source Domain Generalization We compare the

performance of JiGen against several recent domain gener-

alization methods. TF is the low-rank parametrized net-

work that was presented together with the dataset PACS

in [26]. CIDDG is the conditional invariant deep domain

generalization method presented in [28] that trains for im-

age classification with two adversarial constraints: one that

maximizes the overall domain confusion following [19] and

a second one that does the same per-class. In the DeepC

variant, only this second condition is enabled. MLDG

[25] is a meta-learning approach that simulates train/test do-

main shift during training and exploit them to optimize the

learning model. CCSA [33] learns an embedding subspace

where mapped visual domains are semantically aligned

and yet maximally separated. MMD-AAE [27] is a deep

method based on adversarial autoencoders that learns an in-

variant feature representation by aligning the data distribu-

tions to an arbitrary prior through the Maximum Mean Dis-

crepancy (MMD). SLRC [13] is based on a single domain

invariant network and multiple domain specific ones and it

applies a low rank constraint among them. D-SAM [14] is

a method based on the use of domain-specific aggregation

modules combined to improve model generalization: it pro-

vides the current sota results on PACS and Office-Home.

For each of these methods, the Deep All baseline indicates

the performance of the corresponding network when all the

introduced domain adaptive conditions are disabled.

The central and bottom parts of Table 1 show the re-

sults of JiGen on the dataset PACS when using as back-

bone architecture Alexnet and Resnet-182. On average Ji-

Gen produces the best result when using Alexnet and it is

just slightly worse than the D-SAM reference for Resnet-18.

Note however, that in this last case, JiGen outperforms D-

SAM in three out of four target cases and the average advan-

tage of D-SAM originate only from its result on sketches.

On average, JiGen outperforms also the competing methods

on the VLCS and on the Office-Home datasets (see respec-

tively Table 2 and 3). In particular we remark that VLCS

is a tough setting where the most recent works have only

2With Resnet18, to put JiGen on equal footing with D-SAM we follow

the same data augmentation protocol in [14] and enabled color jittering.

VLCS Caltech Labelme Pascal Sun Avg.

Alexnet

[28]

Deep All 85.73 61.28 62.71 59.33 67.26

DeepC 87.47 62.60 63.97 61.51 68.89

CIDDG 88.83 63.06 64.38 62.10 69.59

[33]
Deep All 86.10 55.60 59.10 54.60 63.85

CCSA 92.30 62.10 67.10 59.10 70.15

[13]
Deep All 86.67 58.20 59.10 57.86 65.46

SLRC 92.76 62.34 65.25 63.54 70.97

[26]
Deep All 93.40 62.11 68.41 64.16 72.02

TF 93.63 63.49 69.99 61.32 72.11

[27] MMD-AAE 94.40 62.60 67.70 64.40 72.28

[14]
Deep All 94.95 57.45 66.06 65.87 71.08

D-SAM 91.75 56.95 58.59 60.84 67.03

Deep All 96.93 59.18 71.96 62.57 72.66

JiGen 96.93 60.90 70.62 64.30 73.19

Table 2. Domain Generalization results on VLCS. For de-

tails about number of runs, meaning of columns and use of

bold/underline fonts, see Table 1.

Office-Home Art Clipart Product Real-World Avg.

Resnet-18

[14]
Deep All 55.59 42.42 70.34 70.86 59.81

D-SAM 58.03 44.37 69.22 71.45 60.77

Deep All 52.15 45.86 70.86 73.15 60.51

JiGen 53.04 47.51 71.47 72.79 61.20

Table 3. Domain Generalization results on Office-Home. For

details about number of runs, meaning of columns and use of

bold/underline fonts, see Table 1.

presented small gain in accuracy with respect to the cor-

responding Deep All baseline (e.g. TF). Since [14] did not

present the results of D-SAM on the VLCS dataset, we used

the code provided by the authors to run these experiments.

The obtained results show that, although generally able to

close large domain gaps across images of different styles

as in PACS and Office-Home, when dealing with domains

all coming from real-world images, the use of aggregative

modules does not support generalization.

Ablation We focus on the Alexnet-PACS DG setting for

an ablation analysis on the respective roles of the jigsaw

and of the object classification task in the learning model.

For these experiments we kept the jigsaw hyperparameters

fixed with a 3 × 3 patch grid and P = 30 jigsaw classes.

{α = 0, β = 1} means that the jigsaw task is off, and the

data batches contain only original ordered images, which

corresponds to Deep All. The value assigned to the data

bias β drives the overall training: it moves the focus from

jigsaw when using low values (β < 0.5) to object clas-

sification when using high values (β ≥ 0.5). By setting

the data bias to β = 0.6 we feed the network with more

ordered than shuffled images, thus keeping the classifica-

tion as the primary goal of the network. In this case, when

changing the jigsaw loss weight α in {0.1, 1}, we observe

results which are always either statistically equal or better

than the Deep All baseline as shown in the first plot of Fig-
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Figure 4. Ablation results on the Alexnet-PACS DG setting. The reported accuracy is the global average over all the target domains with

three repetitions for each run. The red line represents our Deep All average from Table 1.
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Figure 5. Analysis of the behaviour of the jigsaw classifier on the

Alexnet-PACS DG setting. For the plot on the left each axes refers

to the color matching curve in the graph.

ure 4. The second plot indicates that, for high values of

α, tuning β has a significant effect on the overall perfor-

mance. Indeed {α ∼ 1, β = 1} means that jigsaw task is

on and highly relevant in the learning process, but we are

feeding the network only with ordered images: in this case

the jigsaw task is trivial and forces the network to recognize

always the same permutation class which, instead of regu-

larizing the learning process, may increase the risk of data

memorization and overfitting. Further experiments confirm

that, for β = 1 but lower α values, JiGen and Deep All

perform equally well. Setting β = 0 means feeding the net-

work only with shuffled images. For each image we have

P variants, only one of which has the patches in the correct

order and is allowed to enter the object classifier, resulting

in a drastic reduction of the real batch size. In this condi-

tion the object classifier is unable to converge, regardless

of whether the jigsaw classifier is active (α > 0) or not

(α = 0). In those cases the accuracy is very low (< 20%),

so we do not show it in the plots to ease the visualization.

Jigsaw hyperparameter tuning By using the same ex-

perimental setting of the previous paragraph, the third plot

in Figure 4 shows the change in performance when the num-

ber of jigsaw classes P varies between 5 and 1000. We

started from a low number, with the same order of mag-

nitude of the number of object classes in PACS, and we

grew till 1000 which is the number used for the experiments

in [35]. We observe an overall variation of 1.5 percentage

points in the accuracy which still remains (almost always)

higher than the Deep All baseline. Finally, we ran a test to

check the accuracy when changing the grid size and conse-

quently the patch number. Even in this case, the range of

variation is limited when passing from a 2 × 2 to a 4 × 4
grid, confirming the conclusions of robustness already ob-

tained for this parameter in [35] and [10]. Moreover all the

results are better than the Deep All reference.

It is also interesting to check whether the jigsaw clas-

sifier is producing meaningful results per-se, besides sup-

porting generalization for the object classifier. We show its

recognition accuracy when testing on the same images used

to evaluate the object classifier but with shuffled patches. In

Figure 5, the first plot shows the accuracy over the learn-

ing epochs for the object and jigsaw classifiers indicating

that both grows simultaneously (on different scales). The

second plot shows the jigsaw recognition accuracy when

changing the number of permutation classes P : of course

the performance decreases when the task becomes more

difficult, but overall the obtained results indicate that the

jigsaw model is always effective in reordering the shuffled

patches.

Single Source Domain Generalization The generaliza-

tion ability of a model depends both on the chosen learning

process and on the used training data. To investigate the for-

mer and better evaluate the regularization effect provided by

the jigsaw task, we consider the case of training data from

a single source domain. For these experiments we com-

pare against the generalization method based on adversar-

ial data augmentation (Adv.DA) recently presented in [46].

This work proposes an iterative procedure that perturbs the

samples to make them hard to recognize under the current

model and then combine them with the original ones while

solving the classification task. We reproduced the experi-

mental setting used in [46] and adopt a similar result display

style with bar plots for experiments on the MNIST-M and

SVHN target datasets when training on MNIST. In Figure

6 we show the performance of JiGen when varying the data

bias β and the jigsaw weight α. With the red background

shadow we indicate the overall range covered by Adv.DA

results when changing its parameters3, while the horizon-

tal line is the reference Adv.DA results around which the

authors of [46] ran their parameter ablation analysis. The

figure indicates that, although Adv.DA can reach high peak

3The whole set of results is provided as supplementary material of [46].
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Figure 6. Single Source Domain Generalization experiments. We analyze the performance of JiGen in comparison with the method

Adv.DA [46]. The shaded background area covers the overall range of results of Adv.DA obtained when changing the hyper-parameters

of the method. The reference result of Adv.DA (γ = 1, K = 2) together with its standard deviation is indicated here by the horizontal red

line. The blue histogram bars show the performance of JiGen when changing the jigsaw weight α and data bias β.

PACS-DA art paint. cartoon sketches photo Avg.

Resnet-18

[30]

Deep All 74.70 72.40 60.10 92.90 75.03

Dial 87.30 85.50 66.80 97.00 84.15

DDiscovery 87.70 86.90 69.60 97.00 85.30

Deep All 77.85 74.86 67.74 95.73 79.05

JiGen αs=αt=0.7 84.88 81.07 79.05 97.96 85.74

JiGen αt=0.1 85.58 82.18 78.61 98.26 86.15

JiGen αt=0.3 85.08 81.28 81.50 97.96 86.46

JiGen αt=0.5 85.73 82.58 78.34 98.10 86.19

JiGen αt=0.9 85.32 80.56 79.93 97.63 85.86

Table 4. Multi-source Domain Adaptation results on PACS ob-

tained as average over three repetitions for each run. Besides con-

sidering the same jigsaw loss weight for source and target samples

αs
= αt, we also tuned the target jigsaw loss weight while keep-

ing αs
= 0.7 showing that we can get even higher results.

values, it is also very sensitive to the chosen hyperparame-

ters. On the other hand, JiGen is much more stable and it

is always better than the lower accuracy value of Adv.DA

with a single exception for SVHN and data bias 0.5, but we

know from the ablation analysis, that this corresponds to a

limit case for the proper combination of object and jigsaw

classification. Moreover, JiGen gets close to Adv.DA ref-

erence results for MNIST-M and significantly outperform it

for SVHN.

Unsupervised Domain Adaptation When unlabeled tar-

get samples are available at training time we can let the

jigsaw puzzle task involve these data. Indeed patch re-

ordering does not need image labels and running the jig-

saw optimization process on both source and target data

may positively influence the source classification model for

adaptation. To verify this intuition we considered again

the PACS dataset and used it in the same unsupervised do-

main adaptation setting of [30]. This previous work pro-

posed a method to first discover the existence of multiple

latent domains in the source data and then differently adapt

their knowledge to the target depending on their respective

similarity. It has been shown that this domain discovery

(DDiscovery) technique outperforms other powerful adap-

tive approaches as Dial [6] when the source actually in-

cludes multiple domains. Both these methods exploit the

minimization of the entropy loss as an extra domain align-

ment condition: in this way the source model when predict-

ing on the target samples is encouraged to assign maximum

prediction probability to a single label rather than distribut-

ing it over multiple class options. For a fair comparison

we also turned on the entropy loss for JiGen with weight

η = 0.1. Moreover, we considered two cases for the jig-

saw loss: either keeping the weight α already used for the

PACS-Resnet-18 DG experiments for both the source and

target data (α = αs = αt = 0.7), or treating the domain

separately with a dedicated weight for the jigsaw target loss

(αs = 0.7, αt = [0.1, 0.3, 0.5, 0.9]). The results for this

setting are summarized in Table 4. The obtained accuracy

indicates that JiGen outperforms the competing methods on

average and in particular on the difficult task of recognizing

sketches. Furthermore, the advantage remains true regard-

less of the specific choice of the target jigsaw loss weight.

5. Conclusions

In this paper we showed for the first time that general-

ization across visual domains can be achieved effectively

by learning to classify and learning intrinsic image invari-

ances at the same time. We focused on learning spatial co-

location of image parts, and proposed a simple yet powerful

framework that can accommodate a wide spectrum of pre-

trained convolutional architectures. Our method JiGen can

be seamlessly and effectively used for domain adaptation

and generalization as shown by the experimental results.

We see this paper as opening the door to a new research

thread in domain adaptation and generalization. While here

we focused on a specific type of invariance, several other

regularities could be learned possibly leading to an even

stronger benefit. Also, the simplicity of our approach calls

for testing its effectiveness in applications different from

object categorization, like semantic segmentation and per-

son re-identification, where the domain shift effect strongly

impact the deployment of methods in the wild.
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