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Abstract. Domain adaptation approaches have shown promising results
in reducing the marginal distribution difference among visual domains.
They allow to train reliable models that work over datasets of different
nature (photos, paintings etc.), but they still struggle when the domains
do not share an identical label space. In the partial domain adaptation
setting, where the target covers only a subset of the source classes, it is
challenging to reduce the domain gap without incurring in negative trans-
fer. Many solutions just keep the standard domain adaptation techniques
by adding heuristic sample weighting strategies. In this work we show
how the self-supervisory signal obtained from the spatial co-location of
patches can be used to define a side task that supports adaptation re-
gardless of the exact label sharing condition across domains. We build
over a recent work that introduced a jigsaw puzzle task for domain gen-
eralization: we describe how to reformulate this approach for partial do-
main adaptation and we show how it boosts existing adaptive solutions
when combined with them. The obtained experimental results on three
datasets supports the effectiveness of our approach.

Keywords: domain adaptation · self-supervision · multi-task learning.

1 Introduction

Today the most popular synonym of Artificial Intelligence is Deep Learning : new
convolutional neural network architectures constantly hit the headlines by im-
proving the state of the art for a wide variety of machine learning problems and
applications with impressive results. The large availability of annotated data, as
well as the assumption of training and testing on the same domain and label
set, are important ingredients of this success. However this closed set condition
is not realistic and the learned models cannot be said fully intelligent. Indeed,
when trying to summarize several definitions of intelligence from dictionaries,
psychologists and computer scientists of the last fifty years, it turns out that
all of them highlight as fundamental the ability to adapt and achieve goals in
a wide range of environments and conditions [13]. Domain Adaptation (DA)
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2 S. Bucci et al.

and Domain Generalization (DG) methods are trying to go over this issue and
allow the application of deep learning models in the wild. Many DA and DG
approaches have been developed for the object classification task to reduce the
domain gap across samples obtained from different acquisition systems, different
illumination conditions and visual styles, but most of them keep a strong control
on the class set, supposing that the trained model will be deployed exactly on
the same categories observed during training. When part of the source classes
are missing at test time, those models show a drop in performance which indi-
cates the effect of negative transfer in this Partial Domain Adaptation (PDA)
setting. The culprit must be searched in the need of solving two challenging
tasks at the same time: one that exploits all the available source labeled data
to train a reliable classification model in the source domain and another that
estimates and minimizes the marginal distribution difference between source and
target, but disregards the potential presence of a conditional distribution shift.
Very recently it has been shown that this second task may be substituted with
self-supervised objectives which are agnostic with respect to the domain identity
of each sample. In particular, [5] exploits image patch shuffling and reordering
as a side task over multiple sources: it leverages the intrinsic regularity of the
spatial co-location of patches and generalizes to new domains. This informa-
tion appears also independent from the specific class label of each image, which
makes it an interesting reference knowledge also when the class set of source
and target are only partially overlapping. We dedicate this work to investigate
how the jigsaw puzzle task of [5] performs in the PDA setting and how it can be
reformulated to reduce the number of needed learning parameters. The results
on three different datasets indicate that our approach outperforms several com-
petitors whose adaptive solutions include specific strategies to down-weight the
samples belonging to classes supposedly absent from the target. We also discuss
how such a re-scaling process can be combined with the jigsaw puzzle obtaining
further gains in performance.

2 Related Work

Closed Set Domain Adaptation When the source and target data belongs
to two different marginal distributions but the two domains share the same la-
bel set, it is relatively easy to train a source classifier that adapts to the target
domain by adding extra conditions on the learned features. Several recent ap-
proaches minimize domain shift measures like the Maximum Mean Discrepancy
[28,14,16,17], and the Wasserstein distance [8,12], or exploit other statistical
moment matching constraints [31,21] or even introduce dedicated batch normal-
ization layers in deep learning networks [6,19]. Another family of methods use
adversarial losses that force the data to be indistinguishable in terms of their
domain label [10,27]. Those solutions borrow the idea at the basis of Generative
Adversarial Network (GAN, [11]) that can be also directly applied to match
domains at pixel level [2,26,24]. All these methods exploit the availability of un-
supervised target data at training time by leveraging on the domain identity of
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the samples. However, several other unsupervised models could be learned from
those samples and used as extra regularization tools for the source model. A
very common solution is that of measuring the source prediction uncertainty on
the target data with an entropy loss which is minimized during training [16,18].
A recent stream of works has introduced techniques to extract self-supervisory
signals from unlabeled data as the patch relative position [9,22], counting prim-
itives [23], or image coloring [33]. They capture invariances and regularities that
allow to train models useful as fine-tuning priors, and those information appear
also independent from the specific visual domain of the data from which they are
obtained. Indeed, [5] showed how shuffling and reordering image patches can be
used as a side task to learn a robust model over multiple sources that generalizes
even to unseen target samples.

Partial Domain Adaptation The PDA setting relaxes the fully shared label
space assumption among the domains and allows the target to cover only a sub-
set of the source class set. Here it becomes important to adjust the adaptation
process so that the samples with not shared labels would not influence the learn-
ing process. The first work which considered this setting focused on localizing
domain specific and generic image regions [1]. The attention maps produced
by this initial procedure are less sensitive to the difference in class set with re-
spect to the standard domain classification procedure and allow to guide the
training of a robust source classification model. Although suitable for robotics
applications, this solution is insufficient when each domain has spatially diffused
characteristics. In those cases the more commonly used PDA technique consists
in adding a re-weight source sample strategy to a standard domain adaptation
learning process. Both the Selective Adversarial Network (SAN, [3]) and the
Partial Adversarial Domain Adaptation (PADA, [4]) approaches build over the
domain-adversarial neural network architecture [10] and exploit the source clas-
sification model predictions on the target samples to evaluate a statistics on the
class distribution. The estimated contribution of each source class either weights
the class-specific domain classifiers [3], or re-scales the respective classification
loss and a single overall domain classifier [4]. A different solution is proposed
in [32], where each domain has its own feature extractor and the source sam-
ple weight is obtained from the domain recognition model rather than from the
source classifier. An alternative view on the PDA problem is presented in two re-
cent preprints [20,30]. The first work uses two separate deep classifiers to reduce
the domain shift by enforcing a minimal inconsistency between their predictions
on the target. Moreover the class-importance weight is formulated analogously to
PADA, but averaging over the output of both the source classifiers. The second
work does not attempt to aligning the whole domain distributions and focuses
instead on matching the feature norm of source and target. This choice makes
the proposed approach robust to negative transfer with good results in the PDA
setting without any heuristic weighting mechanism.

Our work follow this research direction seeking a different solution with re-
spect to the usual adversarial and sample weighting technique. We propose to
leverage the self-supervised signal captured by a jigsaw puzzle task on the image
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Feature Extractor
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�
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Fig. 1. Schematic representation of our SSPDA approach. All the parts in gray describe
the main blocks of the network with the solid line arrows indicating the contribution of
each group of training samples to the corresponding final tasks and related optimiza-
tion objectives according to the assigned blue/green/black colors. The blocks in red
illustrate the domain adversarial classifier with the gradient reversal layer (GRL) and
source sample weighting procedure (weight γ) that can be added to SSPDA (refer to
section 3.4).

patches as side objective to the classification model and show its effectiveness
both alone and in combination with other more standard strategies.

3 Solving Jigsaw Puzzles for Partial Domain Adaptation

3.1 Problem Setting

Let us introduce the technical terminology for the PDA scenario. We have ns

annotated samples from a source domain Ds = {(xsi ,ysi )}n
s

i=1, drawn from the

distribution S, and nt unlabeled examples of the target domain Dt = {xtj}n
t

j=1

drawn from a different distribution T . The label space of the target domain is
contained in that of the source domain Yt ⊆ Ys. Thus, besides dealing with the
marginal shift S 6= T as in standard unsupervised domain adaptation, it is nec-
essary to take care of the difference in the label space which makes the problem
even more challenging. If this information is neglected and the matching between
the whole source and target data is forced, any adaptive method may incur in
a degenerate case producing worse performance than its plain non-adaptive ver-
sion. Still the objective remains that of learning both class discriminative and
domain invariant feature models which can be formulated as a multi-task learn-
ing problem [7]. Instead of just focusing on the explicit reduction of the feature
domain discrepancy, one could consider some inherent characteristics shared by
any visual domain regardless of the assigned label and derive a learning problem
to solve together with the main classification task. By leveraging the inductive
bias of related objectives, multi-task learning regularizes the overall model and
improves generalization having as an implicit consequence the reduction of the
domain bias. This reasoning is at the basis of the recent work [5], which proposed
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to use jigsaw puzzle as a side task for closed set domain adaptation and gener-
alization: the model named JiGen is described in details in the next subsection.

3.2 Jigsaw Puzzle Closed Set Adaptation

Starting from the ns labeled and nt unlabeled images, the method in [5] decom-
poses them according to an 3 × 3 grid obtaining 9 squared patches from every
sample, which are then moved from their original location and re-positioned
randomly to form a shuffled version z of the original image x. Out of all the 9!
possibilities, a set of p = 1, . . . , P permutations are chosen on the basis of their
maximal reciprocal Hamming distance [22] and used to define a jigsaw puzzle
classification task which consists in recognizing the index p of the permutation
used to scramble a certain sample. All the original {(xsi ,ysi )}n

s

i=1, {xtj}n
t

j=1 as well

as the shuffled versions of the images {(zsk,psk)}Ks

k=1 , {(ztk,ptk)}Kt

k=1 are given as
input to a multi-task deep network where the convolutional feature extraction
backbone is indicated by Gf and is parametrized by θf , while the classifier Gc
of the object labels and Gp of the permutation indices, are parametrized re-
spectively by θc and θp. The source samples are involved both in the object
classification and in the jigsaw puzzle classification task, while the unlabeled
target samples deal only with the puzzle task. To further exploit the available
target data, the uncertainty of the estimated prediction ŷt = Gc(Gf (xt)) is

evaluated through the entropy H = −
∑|Ys|
l=1 ŷ

t
l log ŷtl and minimized to enforce

the decision boundary to pass through low-density areas. Overall the end-to-end
JiGen multi-task network is trained by optimizing the following objective

arg min
θf ,θc,θp

1

ns

ns∑
i=1

Lc(Gc(Gf (xsi ), y
s
i )) + αs

1

Ks

Ks∑
k=1

Lp(Gp(Gf (zsk), psk))+

η
1

nt

nt∑
j=1

H(Gc(Gf (xtj))) + αt
1

Kt

Kt∑
k=1

Lp(Gp(Gf (ztk), ptk)) , (1)

where Lc and Lp are cross entropy losses for both the object and puzzle classifiers.
In the closed set scenario, the experimental evaluation of [5] showed that tuning
two different hyperparameters αs and αt respectively for the source and target
puzzle classification loss is beneficial with respect to just using a single value
α = αs = αt, while it is enough to assign a small value to η (∼ 10−1).

3.3 Jigsaw Puzzle for Partial Domain Adaptation

The two Lp terms in (1) provide a domain shift reduction effect on the learned
feature representation, however their co-presence seem redundant: indeed the
features are already chosen to minimize the source classification loss and the self-
supervised jigsaw puzzle task on the target back-propagates its effect directly
on the learned features inducing a cross-domain adjustment. By following this
logic, we decided to drop the source jigsaw puzzle term, which corresponds to
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setting αs = 0. This choice has a double positive effect: on one side it allows
to reduce the number of hyper-parameters in the learning process leaving space
for the introduction of other complementary learning conditions, on the other
we let the self-supervised module focus only on the samples from the target
without involving the extra classes of the source. In the following we indicate this
approach as SSPDA: Self-Supervised Partial Domain Adaptation. A schematic
illustration of the method is presented in Figure 1.

3.4 Combining Self-Supervision with other PDA Strategies

To further enforce the focus on the shared classes, SSPDA can be extended
to integrate a weighting mechanism analogous to that presented in [4]. The
source classification output on the target data are accumulated as follow γ =
1
nt

∑nt

j=1 ŷtj and normalized γ ← γ/max(γ), obtaining a |Yt|-dimensional vector
that quantifies the contribution of each source class. Moreover, we can easily
integrate a domain discriminator Gd with a gradient reversal layers as in [10], and
adversarially maximize the related binary cross-entropy to increase the domain
confusion, taking also into consideration the defined class weighting procedure
for the source samples. In more formal terms, the final objective of our multi-task
problem is

arg min
θf ,θc,θp

max
θd

1

ns

ns∑
i=1

γy

(
Lc(Gc(Gf (xsi ), y

s
i )) + λ log(Gd(Gf (xsi )))

)
+

1

nt

nt∑
j=1

γy

(
ηH(Gc(Gf (xtj))) + λ log(1−Gd(Gf (xtj)))

)
+

αt
1

Kt

Kt∑
k=1

Lp(Gp(Gf (ztk), ptk)) , (2)

where λ is a hyper-parameter that adjusts the importance of the introduced
domain discriminator. We adopted the same scheduling of [10] to update the
value of λ, so that the importance of the domain discriminator increases with
the training epochs, avoiding the noisy signal at the early stages of the learning
procedure. When λ = 0 and γy = 1/|Ys| we fall back to SSPDA.

4 Experiments

4.1 Datasets

We test our algorithm on three different Partial Domain Adaptation benchmarks
following the setting previously used in [4].

Office-31 [25] is widely used in domain adaptation, it contains 4.652 images
of 31 object categories common in office environments. Samples are drawn from
three annotated distributions: Amazon (A), Webcam (W) and DSLR (D): we
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considered six different conditions by alternatively selecting one source domain
and one target domain from AWD, and testing only 10 categories of the target
which are those shared by Office-31 and Caltech-256.

Office-Home [29] is a domain adaptation dataset containing around 15,500
images organized in 65 categories of common home and office objects. It has four
domains: Art (Ar), Clipart (Cl), Product(Pr) and Real world (Rw), and is more
challenging compared to Office-31 due to strong domain shifts in distributions,
class imbalances within the data and size variations of images. We considered
12 different settings by choosing source and target domain from the available
domains, and removed from the target the last 40 classes in alphabetic order.

VisDA2017 is the dataset used in the 2017 Visual Domain Adaptation chal-
lenge (classification track). It has two domains, synthetic 2D object renderings
and real images with a total of 208k images organized in 12 categories. In our
experiments we focused on the synthetic-to-real shift, the same considered in the
original challenge, but keeping only the first 6 categories of the target in alpha-
betic order. With respect to the other considered testbeds, VisDA2017 allow us
to investigate our approach on a very large-scale sample size scenario.

4.2 Implementation Details

We implemented all our deep methods in PyTorch. Specifically the main back-
bone of our SSPDA network is a ResNet-50 pre-trained on ImageNet and corre-
sponds to the feature extractor defined asGf , while the specific object and puzzle
classifiers Gc, Gp are implemented each by an ending fully connected layer. The
domain classifier Gd is introduced by adding three fully connected layers after
the last pooling layer of the main backbone, and using a sigmoid function for
the last activation as in [10]. By training the network end-to-end we fine-tune
all the feature layers, while Gc, Gp and Gd are learned from scratch. We train
the model with backpropagation using SGD with momentum set at 0.9, weight
decay 0.0005 and initial learning rate 0.0005. We use a batch size of 64 (32 source
samples + 32 target samples) and, following [5], we shuffle the tiles of each input
image with probability 1 − β, with β = 0.7. Shuffled samples are only used for
the auxiliary jigsaw task, therefore only unshuffled (original) samples are passed
to Gd and Gc for domain and label predictions. The entropy weight η and jigsaw
task weight αt are set respectively to 0.2 and 1. Our data augmentation protocol
is the same of [5].

Model Selection As standard practice, we used 10% of the source training
domain to define a validation set on which the model is evaluated after each epoch
e. The obtained accuracy Ae is dynamically averaged with the value obtained at
the previous epoch with Ae ← wAe−1 + (1−w)Ae. The final model to apply on
the target is chosen as the one producing the top accuracy over all the epochs
e = 1, . . . , E. We noticed that this procedure leads to a more reliable selection
of the best trained model, preventing to choose one that might have overfitted
on the validation set. For all our experiments we kept w = 0.6. We underline
that this smoothing procedure was applied uniformly on all our experiments.
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Table 1. Classification accuracy in the PDA setting defined on the Office-31 dataset
with all the 31 classes used for each source domain, and a fixed set of 10 classes used
for each target domain. The results are obtained using 10 random crop predictions on
each target image and are averaged over three repetitions of each run.

Office-31
A→W D→W W→D A →D D→A W→A Avg.

Resnet-50 75.37 94.13 98.84 79.19 81.28 85.49 85.73

DAN[15] 59.32 73.90 90.45 61.78 74.95 67.64 71.34
DANN[10] 75.56 96.27 98.73 81.53 82.78 86.12 86.50
ADDA[27] 75.67 95.38 99.85 83.41 83.62 84.25 87.03
RTN[16] 78.98 93.22 85.35 77.07 89.25 89.46 85.56

IWAN [32] 89.15 99.32 99.36 90.45 95.62 94.26 94.69
SAN [3] 93.90 99.32 99.36 94.27 94.15 88.73 94.96
PADA[4] 86.54 99.32 100 82.17 92.69 95.41 92.69
TWIN [20] 86.00 99.30 100 86.80 94.70 94.50 93.60

JiGen [5] 92.88 92.43 98.94 89.6 84.06 92.94 91.81
SSPDA 91.52 92.88 98.94 90.87 90.61 94.36 93.20

SSPDA-γ 99.32 94.69 99.36 96.39 86.36 94.22 95.06
SSPDA-PADA 99.66 94.46 99.57 97.67 87.33 94.26 95.49

Moreover the hyper-parameters of our model are the same for all the domain
pairs within each dataset and also across all the datasets. In other words we
did not select a tailored set of parameters for each sub-task of a certain dataset
which could lead to further performance gains, a procedure used in previous
works [4,3].

4.3 Results of SSPDA

Here we present and discuss the obtained classification accuracy results on the
three considered datasets: Office-31 in Table 1, Office-Home in Table 2 and
VisDA in Table 3. Each table is organized in three horizontal blocks: the first
one shows the results obtained with standard DA methods, the second block
illustrates the performance with algorithms designed to deal with PDA and the
third one includes the scores of JiGen and SSPDA. Only Table 1 has an extra
fourth block that we will discuss in details in the following section.

Both JiGen and SSPDA exceed all plain DA methods and present accuracy
value comparable to those of the PDA methods. In particular SSPDA is always
better than PADA [4] on average, and for both Office-Home and VisDA it also
outperforms all the other competing PDA methods with the only exception of
IAFN [30]. We highlight that this approach uses a competitive version of ResNet-
50 as backbone, with extra bottleneck fully connected layers which add about 2
million parameters to the standard version of ResNet-50 that we adopted.

4.4 Results of SSPDA combined with other PDA strategies

To analyze the combination of SSPDA with the standard PDA source re-weighting
technique and the adversarial domain classifier, we extended the experiments on
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Table 2. Classification accuracy in the PDA setting defined on the Office-Home dataset
with all the 65 classes used for each source domain, and a fixed set of 25 classes used
for each target domain. The results are obtained by averaging over three repetitions of
each run.

Office-Home
Ar→Cl Ar→Pr Ar→Rw Cl →Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Resnet-50 38.57 60.78 75.21 39.94 48.12 52.90 49.68 30.91 70.79 65.38 41.79 70.42 53.71

DAN[15] 44.36 61.79 74.49 41.78 45.21 54.11 46.92 38.14 68.42 64.37 45.37 68.85 54.48
DANN[10] 44.89 54.06 68.97 36.27 34.34 45.22 44.08 38.03 68.69 52.98 34.68 46.50 47.39
RTN[16] 49.37 64.33 76.19 47.56 51.74 57.67 50.38 41.45 75.53 70.17 51.82 74.78 59.25

IWAN [32] 53.94 54.45 78.12 61.31 47.95 63.32 54.17 52.02 81.28 76.46 56.75 82.90 63.56
SAN [3] 44.42 68.68 74.60 67.49 64.99 77.80 59.78 44.72 80.07 72.18 50.21 78.66 65.30
PADA[4] 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06
HAFN[30] 53.35 72.66 80.84 64.16 65.34 71.07 66.08 51.64 78.26 72.45 55.28 79.02 67.51
IAFN[30] 58.93 76.25 81.42 70.43 72.97 77.78 72.36 55.34 80.40 75.81 60.42 79.92 71.83

JiGen [5] 53.19 65.45 81.30 68.84 58.95 74.34 69.94 50.95 85.38 75.60 60.02 81.96 68.83
SSPDA 52.02 63.64 77.95 65.66 59.31 73.48 70.49 51.54 84.89 76.25 60.74 80.86 68.07

Table 3. Classification accuracy in the PDA setting defined on VisDA2017 dataset
with all the 12 classes used for each source domain, and a fixed set of 6 classes used
for each target domain. The results are obtained using 10 random crop predictions on
each target image and are averaged over three repetitions of each run.

VisDA2017
Syn.→Real

Resnet-50 45.26

DAN[15] 47.60
DANN[10] 51.01
RTN[16] 50.04

PADA[4] 53.53
HAFN[30] 65.06
IAFN[30] 67.65

JiGen [5] 68.33
SSPDA 68.89
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Fig. 2. Histogram showing the elements of the γ vector, corresponding to the class
weight learned by PADA, SSPDA-γ and SSPDA-PADA for the A→W experiment.

the Office-31 dataset. The bottom part of Table 1 reports the obtained results
when we add the estimate of the target class statistics through the weight γ
(SSPDA-γ) and when also the domain classifier is included in the network as in
[4] (SSPDA-PADA). In the first case, estimating the target statistics helps the
network to focus only on the shared categories, with an average accuracy im-
provement of two percentage points over the plain SSPDA. Moreover, since the
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technique to evaluate γ is the same used in [4], we can state that the advantage
comes from a better alignment of the domain features, thus from the introduc-
tion of the self-supervised jigsaw task. Indeed, by comparing the γ values on
the A→W domain shift we observe that SSPDA-γ is more precise in identifying
the missing classes of the target (see Figure 2). In the second case, since the
produced features are already well aligned across domains, we fixed λ-max to
0.1 and observed a further small average improvement, with the largest advan-
tage when the A domain is used as source. From the last bar plot on the right
of Figure 2 we also observe a further improvement in the identification of the
missing target classes.

5 Conclusions

In this paper we discussed how the self-supervised jigsaw puzzle task can be
used for domain adaptation in the challenging partial setting with some of the
source classes missing in the target. Since the high-level knowledge captured
by the spatial co-location of patches is unsupervised with respect to the image
object content, this task can be applied on the unlabeled target samples and
help to close the domain gap without suffering from negative transfer. More-
over we showed that the proposed solution can be seamlessly integrated with
other existing partial domain adaptation methods and it contributes to a reli-
able identification of the categories absent in the target with a consequent further
improvement in the recognition results. In the future we plan to further explore
the jigsaw puzzle task also in the open-set scenario where the target contains
new unknown classes with respect to the source.
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